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In the process industry, fault prediction and product-related fault monitoring are important links to ensure product quality and
improve economic benefits. In this paper, under the framework of the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm, a
new and more accurate data-driven method, the ABFGS algorithm, is proposed. Compared with the BFGS algorithm, the ABFGS
algorithm adds output-related fault monitoring capabilities and has strong robustness, which can eliminate the influence of
outliers on measurement data. 'e effectiveness of this method has been verified by the Eastman benchmark program in
Tennessee.'e simulation results show that this method can eliminate the influence of outliers and effectively predict the process.
Compared with the other three algorithms, the ABFGS algorithm can not only clearly and accurately indicate whether the detected
fault is related to the output but also provide a higher fault monitoring rate.

1. Introduction

Industrial production of a set of large equipment is com-
posed of a large number of working parts, connected to each
other, and between different parts together, a component
failure often causes a chain reaction; if some small faults
cannot be ruled out in time, this will lead to the whole system
paralysis or even the whole manufacturing process, light
influence production, or downtime production; even the
machine is destroyed, causing casualties. 'erefore, as an
important technology to improve process safety and ensure
product quality, process monitoring has been highly valued
by academia and industry in recent twenty years [1, 2].
Common methods are the model-based method [3] and the
data-driven method [4]. Data-driven technology requires
less prior knowledge, has no accurate system model, only
depends on historical process measurement, and is more
applicable to output-related monitoring. 'e most studied

data-driven methods are principal component analysis
(PCA) [5] and partial least squares (PLS).

In the past, the quality of output products was estimated by
the experience of skilled technicians, which brought potential
risks to the safety and reliability of the process. In order to
ensure that the output products meet the standards, prediction
[6] and output-related fault monitoring has become an active
field. BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm is
introduced in this paper to monitor output-related faults. BFGS
algorithm is a quasi-Newton algorithm [7–10] independently
proposed by Broyden, Fletcher, Goldfarb, and Shanno in 1970
to solve unconstrained optimization problems. BFGS algorithm
and PLS algorithm belong to the conjugate direction method of
optimization. BFGS algorithm not only satisfies the property of
conjugate direction but also is the quasi-Newton algorithmwith
the best numerical stability so far. BFGS algorithm has the
advantages of conjugate direction method and quasi-Newton
method [11]: fast convergence and little iteration. BFGS
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algorithm is an efficientmethod for processing large amounts of
data for quality prediction and fault monitoring [12]. It de-
composes the input data space into main subspace and residual
subspace, which are usually monitored by Hotelling’s statistics
and the SPE statistics, respectively. Because the BFGS algorithm
decomposes the available data space obliquely, the output-re-
lated process variables may be included in the residual space, so
two commonly used statistical data become unsuitable for
output-related fault monitoring [13].

'e measured values collected from industrial processes
usually contain outliers. Statistically speaking, outliers are
samples with different characteristics from most data. 'e
method of studying the problem of inclusion outliers needs
strong anti-interference ability [14–17]. Generally speaking,
outliers can be divided into two types, namely, (1) highly
leveraged data, which is far away from the data center in the
available space, and (2) highly residual data, where there is a
large deviation between the actual value and the predicted
value in the product quality variable space [18]. Outliers may
occur for several reasons; for example, the measurement
process may be incorrectly observed and recorded or copied
to a historical database. 'e presence of outliers can have a
serious adverse effect on modeling and may distort the
estimation of parameters, resulting in poor performance of
the model [19, 20]. Usually, outliers will affect the normal
distribution of data sets and bring difficulties to the BFGS
algorithm based on the assumption of normal distribution
process measurement. 'erefore, outliers are paid more and
more attention to in data preprocessing and data modeling.
Some data modeling methods reduce the influence of out-
liers by detecting and eliminating outliers during data
preprocessing [21–23]. While eliminating outliers can be
effective in some processes, caution is needed because the
elimination process can also erase important hidden in-
formation, which can have a negative impact later in the data
modeling process, for example, lack of robustness to high
leverage and high residual.

In this paper, we propose an output-related prediction
and fault monitoring algorithm called Advanced BFGS
(ABFGS) algorithm. 'is method improves the BFGS al-
gorithm in two aspects. (1) In order to achieve more accurate
process prediction, the weight of outliers can be reduced
with less calculation by selecting an appropriate weighting
scheme. (2) By orthogonal decomposition, the output-re-
lated and output-unrelated subspaces are established, and
more effective monitoring statistics are developed for the
monitoring scheme. 'erefore, the ABFGS algorithm can
not only eliminate the influence of outliers on the regression
coefficient but also avoid the problem of losing important
information. Finally, the validity of the ABFGS algorithm is
verified by Tennessee Eastman (TE) benchmark process.

'is paper is organized as follows. In the second section,
the BFGS algorithm and existing problems are discussed. In
the third section, the output-related prediction and fault
monitoring of ABFGS are proposed. 'e fourth section
reports the simulation results of the TE process using an
industrial benchmark. Finally, the fifth part summarizes the
thesis.

Notation: gk � g(Bk) � ∇f(Bk) represents the gradient,
which is a vector composed of all partial derivatives
(zf(B)/zBi) as components, where Bi is the i th component
of vector B. ‖a‖ represents the second norm of vector a, that
is, the sum of squares of each component of a, and then the
root sign is opened. Fl,n− l,α represents the critical value of the
right tail probability α of F distribution with degrees of
freedom of l and n − l in statistics. χ2h,α represents the critical
value of the right tail probability α of χ2 distribution with
degree of freedom of h in statistics. |xi − xj| represents the
absolute value of the difference between two numerical
values. [n/2] is the integer sign, and the largest integer not
larger than n/2 is obtained.

2. Preparing Knowledge and
Problem Expression

2.1. Process Prediction and Fault Monitoring Based on BFGS
Algorithm. Given a normalized input data matrix X ∈ RN×m

and the corresponding normalized output matrix Y ∈ RN×1,
where N is the number of sample points, m is the number of
process variables. 'e objective function is

minf(B) �
1
2
‖Y − XB‖

2

�
1
2

YTY + BTXTXB − 2YTXB􏼐 􏼑.

(1)

'e gradient of the objective function f(B) is

∇f(B) � XTXB − XTY. (2)

For the convenience of writing, remember
gk � g(Bk) � ∇f(Bk) � XTXBk − XTY. 'e specific steps of
BFGS Algorithm 1 in fault detection are given in the fol-
lowing [12].

'e regression coefficientM � Pb of output Y to input X
can be obtained by the BFGS algorithm. For a new nor-
malized sample xnew ∈ R1×m, its corresponding predicted
output is y � xnewM. In addition, the BFGS algorithm di-
vides the input space into main subspace and residual space,
namely, X � 􏽢X + 􏽥X � TPT + 􏽥X. 'e fault monitoring of two
spaces adopts statistics T2 and SPE, respectively. 'e cal-
culation formula is as follows:

T
2

� tT
TTT
n − 1

􏼠 􏼡

− 1

t, (3)

SPE � XT I − PPT
􏼐 􏼑X. (4)

'e calculation formula of two statistics of new sample
points is

t2new � xnewPΛ
− 1PTxT

new, whereΛ �
1

n − 1
TTT �

1
n − 1

PTXTXP,

spenew � xnew I − PPT
􏼐 􏼑

�����

�����
2
.

(5)
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When the significance level α is given, the threshold
value of statistical information is given by the following
formula:

Jth,T2 �
l n

2
− 1􏼐 􏼑

n(n − 1)
Fl,n− l,α. (6)

Here, n is the number of sampled samples and l is the
number of reserved principal components.

Jth,SPE � gχ2h,α. (7)

Here, g � ρ2/2μ, h � 2μ2/ρ2, and μ and ρ2 are the mean
and variance of SPE statistics of the sample. When
t2new > Jth,T2 , the main subspace fault exists; when
spenew > Jth,SPE, the residual subspace fault exists.

2.2. Problems in the BFGS Algorithm. Running the BFGS
algorithm on the input space is oblique decomposition for
the output Y. 'e main part 􏽢X contains the orthogonal
information of Y, and the residual part 􏽢X contains the re-
lated information of Y. 'erefore, the BFGS algorithm
cannot be well used for output-related fault monitoring. In
addition, the measured data collected from actual industrial
processes usually contain some outliers, whichmay affect the
normal distribution of data. However, the BFGS algorithm is
sensitive to these outliers. Specifically, the obtained principal
components cannot accurately reflect the characteristics of
most data, so satisfactory monitoring results cannot be
obtained.

3. Advanced BFGS Algorithm

3.1. Robust Normalization. Multivariate process measure-
ment should be normalized in analysis. When the data set
does not contain outliers, the normalization uses the fol-
lowing formula:

x �
1
n

􏽘

n

i�1
xi,

s
2

�
1

n − 1
􏽘

n

i�1
xi − x( 􏼁

2
.

(8)

Mean x and variance s2 can show the center and di-
vergence of measurement, respectively. However, when
outliers appear in the data, especially when the number of
outliers is large, the mean and variance may seriously deviate
from the actual values. 'ese deviations will lead to inac-
curate prediction results and loss of application value.

When the data set contains outliers, robust normaliza-
tion can be used. In this paper, the weighted center of sample
points is defined as

e �
􏽐

n
i�1 wixi( 􏼁

􏽐
i�1
i�1wi

. (9)

'e weight coefficient formula is wi � (1/1+

‖xi − 􏽢x‖2∗m). Here, 􏽢x is the median of all sample points, and

m ∈ N∗ is a constant. Its size can be trained by training
sample points. 'e variance formula is

Qn � η xi − xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌|i< j􏼚 􏼛
(k)

. (10)

Here, k �
h

2􏼠 􏼡 � h(h − 1)/2, h � [n/2] + 1, and [] rep-
resents the integer part. Under the condition i< j, we cal-
culate |xi − xj|. 'en, the obtained data are sorted in
ascending order. Multiply the k th by η getting variance Qn,
where η � 2.2219 is the correction coefficient [24]. Next, the
original data can be normalized by weighted center e and
variance Qn.

3.2. Prediction Based on ABFGS Algorithm. ABFGS algo-
rithm is a robust version of the BFGS algorithm, which
reduces the influence of outliers by choosing an appropriate
weighting scheme. Outliers refer to points far from the
record center. In the ABFGS algorithm, their influence will
be limited by a smaller weight coefficient. In the input
variable space and the output variable space, there are two
kinds of outliers: high leverage point and high residual point
[18, 25], respectively. In the ABFGS algorithm, the formulas
of two weights: leverage weight wx

i and residual weight wr
i

are as follows:

w
x
i � f

li

ei li( 􏼁
, c􏼠 􏼡, (11)

w
r
i � f

ri − e(r)

ei ri − e(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
, c⎛⎝ ⎞⎠. (12)

Here, f(z, c) � (1/1 + (z/c)2), the weight function
f(·, ·) is the Fair function, z is a variable, c is a tuning
constant, which is usually set as c � 4, and e(·) is calculated
by the weight center of this paper, which can be calculated by
formula (9). In this paper, li is calculated by formula
li � ‖xi − e(X)‖2. xi is the point on the convex set X, defi-
nition ri � yi − tib, where ri represents the difference be-
tween the ith observed value and the predicted value, ti is the
ith row of the score matrix T, and b is the load vector.

Considering the influence of these two outliers, the
global weight wi � wx

i wr
i of the ith object is recalculated in

each iteration step. 'e new weighted observation value
(

��
wi

√
xi,

��
wi

√
yi) is obtained. 'en, the BFGS Algorithm 2

can be run on the reweighted model.
'e ABFGS algorithm proposed in this paper has the

following advantages over the BFGS algorithm in process
prediction:

(1) For the data center, the ABFGS algorithm using
weighted center is more robust to outliers than the
BFGS algorithm using the mean center.

(2) ABFGS accelerates the convergence speed of the
outlier weight coefficient. 'e weight of ABFGS
outliers is much smaller than the BFGS algorithm,
which ensures the accuracy of the prediction of
process data containing outliers.
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3.3. Fault Monitoring Based on ABFGS Algorithm.
According to the relationship between input and output, the
input is decomposed orthogonally [12, 13]. Specific methods
are as follows:

(1) Perform singular value decomposition (SVD) on
matrix MMT to establish projection matrix

MMT � PM
􏽥PM􏽨 􏽩
ΛM 0
0 0􏼢 􏼣

PT
M

􏽥PT

M
􏼢 􏼣, ΠM � PMPT

M,

Π⊥M � 􏽥PM
􏽥PT

M, ΛM ∈ R
l×l. Here, PM ∈ Rm×l,

􏽥PM ∈ Rm×(m− l), and ΠM and Π⊥M are projection
matrices of X.

(2) Decompose the input X into two orthogonal sub-
spaces 􏽢X � XΠM � T􏽢uP

T
M,T􏽢u � XPM ∈ RN×l, and

􏽥X � XΠ⊥M � T􏽥u
􏽥PT

M,T􏽥u � X􏽥PM ∈ RN×(m− l). 'e two
subspaces represent output-related and output-un-
related monitoring results.

(3) For the new sample point x ∈ Rm, it can be
decomposed into 􏽢x ∈ Rm and 􏽥x ∈ Rm. 'en, calculate
t􏽢x � xPM ∈ RN×l and t􏽥x � x􏽥PM ∈ RN×(m− l).

(4) Calculate the output-related and output-unrelated
observation statistics T2

􏽢x
� tT

􏽢x
(TT

􏽢x T􏽢x/n − 1)t􏽢x and
T2

􏽥x � tT􏽥x (TT

􏽥x T􏽥x/n − 1)t􏽥x in subspace 􏽢X and 􏽥X,
respectively.

(5) Calculate the thresholds, where
Jth,T2

􏽢u
� ((N2 − 1)/N(N − l))Fα(l, N − l) and

Jth,T2
􏽥u

� ((N2 − 1)/N(N − l))Fα(m − l, N − m − l)

are the thresholds of output-related statistics T2
􏽢x
and

output-unrelated statistics T2
􏽥x, respectively.

Finally, fault monitoring can be expressed as follows:

(1) When T2
􏽢x
> Jth,T2

􏽢x
, an output-related fault is detected

(2) When T2
􏽥x > Jth,T2

􏽥x
, an output-unrelated fault is

detected

Compared with the BFGS algorithm, this algorithm de-
composes the input data variables into output-related parts and
output-unrelated parts. On this basis, it can construct more
favorable statistical information, thus effectively revealing
whether the fault is related to the output. 'erefore, based on
robustness to outliers, the ABFGS algorithm can provide more
accurate results for process fault monitoring.

To illustrate the effectiveness of the algorithm, this paper
evaluates the performance of the algorithm with the fol-
lowing three evaluation indexes [12].

FAR �
no. of false alarms

total normal samples
× 100%,

FDR �
no. of effective alarms
total faulty samples

× 100%,

SDR �
no. of effective alarms in normal data

total samples
+
no. of false alarms in the fault data

total samples
× 100%.

(13)

4. Case Study of Tennessee Eastman
(TE) Process

4.1. TE Process. TE process has a complex engineering
background, involving a large number of random, fuzzy,
uncertain, and uncontrollable factors. TE benchmark pro-
cess is a simulation system based on the actual chemical
production process, which provides a practical platform for
the evaluation of process control and monitoring methods
[26–28]. TE process model consists of five primary units.
'ere are 41 measured values XMEAS (1–41), 12 manipu-
lated variable XMV (1–12), and 8 components: A, B, C, D, E,
F, G, and h, where g and h are two by-products.

TE process includes 22 sets of training data and cor-
responding test data, which are represented by IDV (i) (i �

1, 2, . . . , 22) [29]. Except for IDV (0) obtained under normal
operating conditions, other 21 sets of data were collected and
operated for 48 hours under 21 different fault conditions.
960 sample points were taken from each test set. 'e fault in
the fault set starts from the 161st sample point and ends at
the 960th observed sample point. In this paper, 22 process
measurements XMEAS (1–22) and 11 manipulated variables

XMV (1–11) are taken as input data matrices [30]. XMEAS
(35) represents the product quality of component g and
represents the process output. With IDV (0) as the training
set, the performance of the ABFGS algorithm is verified by
21 other fault test sets.

4.2. Selection of m Value of Weighted Center. It can be seen
from the six figures in Figure 1 that the distance between the
weighted center and the real center fluctuates slightly when
the value of m is small. But with the increase of the value of
m, the distance between the two centers tends to be stable. In
both cases (a) and (b), the distance between the two centers
is the smallest when m � 2. In four cases (c), (d), (e), and (f ),
the distance between the two centers is the smallest when
m � 1. 'erefore, the ratio of outliers and whether outliers
are larger or smaller than normal values affect the value of m.

4.3. SimulationofOutputCorrelationPredictionPerformance.
'eABFGS algorithm uses the weighted center to determine
the center of data, while the standard BFGS algorithm uses
the mean center in the same process. In order to show that
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(1) Give the initial point B0 ∈ Rm, the initial quasi-Newton matrix H0 ∈ Rm×m, and the termination limit ε> 0, iterations k � 0.
(2) If ‖gk‖≤ ε, stop.
(3) Calculate dk � − Hkgk.
(4) Let vk � dk/‖dk‖, calculate the score vector tk � Xvk, and load vector pk � XTtk/tTk tk. Among them, tk is the k column of T, and pk

is the k column of P. 'e k th component bk � YTtk/tTk tk of the load vector b is calculated. Calculate load vector.
(5) Find step factor αk by linear search. Make Bk+1 � Bk + αkdk.
(6) Correction Hk produces Hk+1,

Hk+1 � (E − (skyT
k /s

T
k yk))Hk(E − (yksT

k /s
T
k yk)) + (sksT

k /s
T
k yk).

Hk+1 satisfies the quasi-Newton condition Hk+1yk � sk, where
yk � gk+1 − gk, sk � Bk+1 − Bk.

(7) k � k + 1, go to Step 2.

ALGORITHM 1: BFGS algorithm.

(1) Calculate the robust starting value of weight wi � wx
i wr

i . 'e residual weight wr
i is obtained by ri � yi − e(y) and (12).'e leverage

weight wx
i is calculated by (11), and the score vector is replaced by xi.

(2) 'e ith rows of X and y are multiplied by ��
wi

√
(i � 1, 2, . . . , N) to obtain weighted data matrices X1 and y1. BFGS regression

analysis is performed on the new weighted data matrices X1 and y1. 'e updated score matrix T is obtained from the regression
analysis results. 'en, each row of the newmatrix T is corrected by dividing ��

wi

√ . 'e b vector of the original problem is calculated
by the modified score matrix T.

(3) Update residual ri by formula ri � yi − tib. 'en, use ri to correct the weight of wi.
(4) Repeat steps 2 and 3 until b converges. As long as the norm of the difference between two successive approximations of b is less

than the specified threshold (e.g., 0.01), the iteration will stop. Go to Step 5.
(5) 'e final regression coefficient vectorM � Pb is obtained through the last ABFGS regression step. 'e final prediction function is

yi � xiM. Here, xi is the new sample point and yi is the corresponding output prediction. Establish an online output prediction
scheme by using the prediction function.

ALGORITHM 2: ABFGS algorithm.
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Figure 1: Continued.
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the ABFGS algorithm (with the weighted center) is more
robust to outliers than the BFGS algorithm (with the mean
center), we introduce a certain percentage of outliers to
available measured values in simulation. Because of the
physical limitations of sensors, outliers can be higher or
lower than normal values [19]. 'erefore, we set the outliers
to 0.5 times and 1.5 times of normal data. 'e ratio of
outliers is 5%, 10%, and 15% respectively.

Take the first two columns of the input data to form a
two-dimensional variable space. Figures 2(a)–2(f), respec-
tively, show various centers of data: the weighted center
proposed in this paper, total square loss center (tSL-center)
[19], mean center with anomalies, and true center without
outliers. It can be seen from the figure that the data center
(weighted center) estimated by ABFGS is closer to the real
center than other centers.'e weighted center is not affected
by whether the outliers are enlarged or reduced. 'e tSL-
center is closer to the real center than the mean center when
the outliers are enlarged. But if the outliers are reduced, the
tSL-center will be farther away from the real center than the
mean center. 'at is, the tSL-center will be affected by
whether the outliers are enlarged or reduced. In other words,
the weighted center of data based on ABFGS is far away from
outliers, while the rest centers are closer to outliers (such as
the mean center used by BFGS). 'is shows that ABFGS is
more robust to outliers than BFGS. With the increase of the
ratio of outliers, this advantage of ABFGS becomes more
obvious.

We use the training data collected from normal oper-
ating conditions to consider the prediction performance of
the ABFGS algorithm. Specifically, the training set is selected
as half of IDV (0) samples. In order to analyze the robustness
of ABFGS to prediction performance, 5%, 10%, and 15%
outliers were added to normal data (enlarged to 1.5 times of
normal value). Select the other half of IDV (0) as the pre-
dicted test data. 'e simulation results are shown in
Figures 3(a), 3(b), and 3(c). 'e black, red, and blue lines,
respectively, represent the actual measured value of XMEAS

(35), the predicted value of the ABFGS algorithm, and the
BFGS algorithm. It can be seen that, in all cases, the pre-
diction based on ABFGS is closer to the actual measured
value. However, the prediction based on BFGS gradually
deviates from the actual measured value with the increase of
the ratio of outliers. 'erefore, the ABFGS algorithm has
better prediction performance than the BFGS algorithm and
shows stronger robustness when the ratio of outliers
increases.

At last, when 5%, 10%, 15%, 20%, 25%, 30%, 35%, and
40% of the data are taken as outliers, we simulated the mean
squared error (MSE) between the predicted value and the
real measured value of BFGS algorithm and ABFGS algo-
rithm, respectively. 'e simulation results are shown in
Figure 4. It can be seen from Figure 4 that the MSE of BFGS
increases with the increase of abnormal value percentage. In
contrast, the minimum mean square error (MSE) of ABFGS
is quite small and almost zero. In all cases, the MSE value of
BFGS is always higher than that of ABFGS. 'e difference
between them gradually increases with the increase of the
outlier ratio. 'is is because when outliers appear, ABFGS
can reduce the weight of outliers by robust data scaling and
weaken the influence of outliers on the algorithm. However,
for BFGS, it has no way to deal with potential outliers but let
them affect the construction of the model, so it is not robust
to outliers.

It can be seen from the above results that when there are
outliers in the predictor space, compared with BFGS, ABFGS
has better prediction ability and stronger robustness to
outliers.

4.4. Simulation of Output-Related Monitoring Performance.
In this part, we will use the ABFGS algorithm, BFGS al-
gorithm, kernel independent component analysis (KICA)
algorithm [31–34], and PLS algorithm [35–37] to monitor 21
kinds of faults in the TE process and compare their per-
formances. Since faults in measurable variable space may

D
ist

an
ce

 b
et

w
ee

n 
w

ei
gh

te
d 

ce
nt

er
 

an
d 

re
al

 ce
nt

er

11
11.2
11.4
11.6
11.8

12
12.2
12.4
12.6
12.8

13

10 20 30 40 50 60 700
m

(d)
D

ist
an

ce
 b

et
w

ee
n 

w
ei

gh
te

d 
ce

nt
er

 
an

d 
re

al
 ce

nt
er

35

36

37

38

39

40

41

10 20 30 40 50 60 700
m

(e)

D
ist

an
ce

 b
et

w
ee

n 
w

ei
gh

te
d 

ce
nt

er
 

an
d 

re
al

 ce
nt

er

35

36

37

38

39

40

41

10 20 30 40 50 60 700
m

(f )

Figure 1: Influence of different values of the parameter m in the weighted center on the distance between the weighted center and real
center. Each graph contains five curves with random outliers. (a)'e normal point contains a 5% abnormal value, and the abnormal value is
0.5 of the normal value. (b) 'e normal point contains a 10% abnormal value, and the abnormal value is 0.5 of the normal value. (c) 'e
normal point contains a 15% abnormal value, and the abnormal value is 0.5 of the normal value. (d) 'e normal point contains a 5%
abnormal value, and the abnormal value is 1.5 of the normal value. (e) 'e normal point contains a 10% abnormal value, and the abnormal
value is 1.5 of the normal value. (f ) 'e normal point contains a 15% abnormal value, and the abnormal value is 1.5 of the normal value.
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Figure 2: Estimation of data centers of a 2D variable space. (a) 'e normal point contains a 5% abnormal value, and the abnormal value is
0.5 of the normal value. (b) 'e normal point contains a 10% abnormal value, and the abnormal value is 0.5 of the normal value. (c) 'e
normal point contains a 15% abnormal value, and the abnormal value is 0.5 of the normal value. (d) 'e normal point contains a 5%
abnormal value, and the abnormal value is 1.5 of the normal value. (e) 'e normal point contains a 10% abnormal value, and the abnormal
value is 1.5 of the normal value. (f ) 'e normal point contains a 15% abnormal value, and the abnormal value is 1.5 of the normal value.
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Figure 3: Using ABFGS and BFGS to predict output correlation. (a) 'e normal data contains 5% abnormal values. (b) 'e normal data
contains 10% abnormal values. (c) 'e normal data contains 15% abnormal values.
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occur in different subspaces, it is particularly important to
choose the appropriate monitoring scheme according to
relevant test statistics. In this part, IDV (0) is used as the
training set to build the prediction model, and the other 21
fault test sets are used to verify the monitoring efficiency of
the model. In the simulation, we added 25% outliers to the
training set IDV (0), assuming that the outliers are 1.5 times
the normal data. According to [13], the number of latent
variables of the first three methods is set to 6. 'e KICA
algorithm has two independent components.

Firstly, according to the control line of whether the
output exceeds the PauTa criterion, whether the fault is
related to the output is defined. 'e fault monitoring per-
formance of the BFGS algorithm and ABFGS algorithm is
compared through the relationship between fault and out-
put. 'e simulation results of fault IDV(1), IDV (5), and
IDV(19) monitored by BFGS algorithm and ABFGS algo-
rithm are shown in Figures 5–7, respectively.

Figure 5(a) shows the influence of fault IDV (1) on the
output. 'e output is affected by the fault from the 161st
sample, the fault is self-repairing after the 480th sample, and
the output is no longer affected by the fault. Figure 5(b)
shows the monitoring results of the main part (T2) and the
residual part (SPE) of the BFGS algorithm. It can be seen
that after the fault occurs, the fault continuously appears in
the two monitoring results, but there is no way to judge
whether IDV (1) has an influence on the output. Figure 5(c)
shows the output-related and output-unrelated indexes of
the ABFGS algorithm. From the monitoring results, it can be
seen that the output-related part has been monitored for
faults between 161 sample points and 480 sample points.
After the 480th sample point, the output-related parts ba-
sically returned to normal, and only a few sample points
showed faults.'e output-unrelated part shows that the fault
always exists from the beginning of 161 sample points to the
end of sample points. By comparison, ABFGS has superior
performance. It can not only describe that the fault occurred
in the output-related and output-unrelated parts but also
clearly reveal that the influence of IDV (1) on the output is
between the 161st and 480th samples.

Figure 6(a) shows the influence of fault IDV (5) on the
output. It can be seen from the image that only some sample
points between the 161st and 480th sample points are af-
fected by the fault IDV (5). Figure 6(b) shows themonitoring

results of the main part (T2) and residual part (SPE) of the
BFGS algorithm. It can be seen that both parts can indicate
that some sample points between the 161st and 480th have
faults, and other sample points are not affected by faults.
Figure 6(c) shows the output-related and output-unrelated
indexes of the ABFGS algorithm. It can be seen from the
monitoring results that there is a fault in the output-related
part between the 161st and 480th sampling points, and the
output-related part returns to normal after the 480th
sampling point. Output-unrelated part shows that faults
always exist from the 161st sampling point to the end of the
sampling point. 'e ABFGS algorithm can monitor the
whole range of faults and can clearly point out which
sampling points have output-related faults and which
sampling points have output-unrelated faults.

Figure 7(a) shows the influence of the fault IDV (19) on
the output, and the output is not affected by the fault from
the beginning to the end, so it is an output irrelevant fault.
Figure 7(b) shows the monitoring results of the main part
(T2) and residual part (SPE) of the BFGS algorithm. Both
monitoring results indicate that only a few sample points
have a fault. Figure 7(c) shows the output-related and
output-unrelated indexes of the ABFGS algorithm. From the
monitoring results, it can be seen that only a few sample
points in the output-related part have detected faults.
Output irrelevant part shows that almost all sample points
are in fault state from the beginning of 161 sample points to
the end of sample points. 'at is to say, ABFGS can not only
monitor the faults that BFGS cannot monitor but also in-
dicate that the faults occur in the output-unrelated part.

Table 1 lists the monitoring effects of four methods (the
training data contains 25% outliers), including the KICA
algorithm with the best fault monitoring effect at present.
'e first 21 rows of the table reflect the failure detection rate,
and the 22nd row reflects the average failure detection rate. It
can be seen from the columns corresponding to the PLS
algorithm and BFGS algorithm that although both methods
belong to the conjugate direction method, the BFGS algo-
rithm is the quasi-Newton method, which has a higher fault
detection rate than the PLS algorithm. 'e first block in the
table is the fault related to the output. Except for IDV (2), the
highest fault monitoring rate is given by the ABFGS algo-
rithm proposed in this paper. 'e fault monitoring rate of
IDV (2) given by the ABFGS algorithm is 0.5 percentage
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Figure 4: 'e MSE of ABFGS and BFGS with different ratios of outliers are simulated.
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points less than the highest fault monitoring rate.'e second
block in the table is the output-unrelated fault. Except for
IDV (3) and IDV (15), the ABFGS algorithm gives the
highest fault monitoring rate. 'e average fault monitoring
rate of ABFGS is also the highest. 'e false alarm rate is
shown in the last row of the table; the false alarm rate of the
ABFGS algorithm is not the lowest but lower than that of the
KICA algorithm with the second highest fault monitoring
rate. 'e comparison between the four methods shows that
the ABFGS method has the strongest robustness.

Figure 8 shows the successful detection rate (SDR) of 21
faults by four methods.'e ABFGS algorithm has an SDR of
over 90% for 15 faults and an SDR of over 80% for 16 faults.
Except for fault IDV (3) and IDV (15), the ABFGS algorithm

has the highest SDR. SDR of fault IDV (3) ABFGS algorithm
is slightly lower than other methods. 'e fault IDV (15)
ABFGS algorithm and KICA algorithm basically have the
same SDR value, which is higher than that of the other two
methods. At the same time, the SDR values of fault IDV (3),
IDV (9), and IDV (15) are all very low, which shows that they
cannot effectively detect such faults.

Based on the above simulation results and discussions, it is
found that the fault monitoring based on the ABFGS algorithm
can not only reveal the time and possibility of the fault but also
distinguish whether the fault affects the output index. A timely
and accurate fault alarm prompt operator system failure, can
largely avoid the waste of raw materials, and reduce the pro-
duction of defective products. 'erefore, the ABFGS algorithm
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Figure 5: Using the BFGS algorithm and ABFGS algorithm to monitor the fault IDV of TE process (3). (a) Output fault monitoring.
(b) BFGS algorithm monitoring results. (c) ABFGS algorithm monitoring results.
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Figure 6: Using BFGS algorithm and ABFGS algorithm to monitor the fault IDV (5) of TE process (8). (a) Output fault monitoring.
(b) BFGS algorithm monitoring results. (c) ABFGS algorithm monitoring results.
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Figure 7: Using BFGS algorithm and ABFGS algorithm to monitor the fault IDV (19) of TE process (8). (a) Output fault monitoring.
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Table 1: FDRs of the 21 faults in the TE benchmark (%).

Fault
PLS BFGS KICA ABFGS

T2 SPE T2 SPE T2 SPE T2
􏽢U

T2
􏽥U

1 0.00 0.00 50.75 88.63 98.75 98.75 17.88 99.88
2 0.00 0.00 94.00 92.25 98.63 98.50 96.75 98.13
5 5.50 5.38 6.25 6.13 20.50 21.38 8.25 100.00
6 30.25 28.88 79.00 79.50 97.25 98.25 95.63 100.00
7 6.75 6.88 9.00 9.38 37.88 25.00 18.13 100.00
8 32.50 32.13 38.75 40.13 73.63 87.50 39.38 98.13
10 6.88 6.63 10.75 10.63 30.88 9.50 2.25 84.63
12 21.38 20.25 22.38 22.50 68.38 61.75 58.00 99.88
13 41.38 41.00 44.00 43.63 88.63 81.50 61.25 95.25
16 0.25 0.25 1.13 1.00 5.38 1.75 1.25 89.25
17 5.00 5.00 9.50 10.00 7.38 0.75 62.75 96.88
18 30.75 28.88 75.00 75.25 82.38 86.00 84.25 89.88
20 15.13 14.88 16.75 18.75 10.38 5.00 6.75 89.88
21 10.63 10.88 29.38 27.75 36.75 18.50 0.38 43.38
3 4.13 4.13 4.00 4.00 10.63 2.38 0.13 0.38
4 0.00 0.00 1.50 1.50 4.25 0.63 22.00 100.00
9 0.50 0.50 0.38 0.25 0.63 0.25 1.38 2.63
11 1.25 1.25 2.25 2.38 14.25 0.38 10.88 71.38
14 8.13 8.25 9.75 10.13 0.88 2.38 38.63 100.00
15 1.63 1.63 2.13 2.00 6.13 0.88 4.50 2.00
19 1.00 1.00 2.38 2.13 2.25 1.75 2.25 90.13
AVG 10.62 10.37 24.24 26.09 37.89 33.46 30.13 78.65
AVG-FAR 0.63 0.63 0.54 0.57 0.95 1.04 0.86 0.74
'e bold data in the table represent the highest fault detection rate.
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has an excellent ability in monitoring process faults. Combined
with the analysis of the ABFGS algorithm in process prediction,
it can be concluded that the proposed ABFGS algorithm has
goodmonitoring performance for the TE benchmark process in
prediction and output-related fault monitoring.

5. Conclusion

In this paper, a robust ABFGS algorithm is proposed,
which is used for output prediction and output-related
fault monitoring. Data centralization is a key step that
affects the performance of the algorithm. 'e central
formula given in this paper is basically unaffected by
outliers, which ensures the robustness of the ABFGS al-
gorithm in this paper. 'erefore, the ABFGS algorithm
can predict the output more accurately. In addition, in the
aspect of fault monitoring, the BFGS algorithm can only
monitor faults, while the ABFGS algorithm proposed in
this paper can not only monitor faults but also indicate
whether faults are related to output. Accurate prediction
and timely fault monitoring can avoid casualties and
significant economic losses. Finally, the simulation results
of the TE benchmark process show that the ABFGS al-
gorithm does have the above advantages. Compared with
the other three algorithms, the ABFGS algorithm can not
only give out whether the fault is related to the output but
also provide a higher fault monitoring rate, which can
provide a better reference for industrial systems.

'e deficiency of this method is that the BFGS method
has a certain dependence on the initial point, and it needs
to train a better initial point. In addition, this method can
only monitor the occurrence of the fault but does not
specifically locate the fault, which is also a research di-
rection in the future.
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[31] A. Kocsor and L. Tóth, “Kernel based feature extraction with a
speech technology application,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, pp. 2250–2263, 2004.

[32] J. E. Garcia-Bracamonte, J. M. Ramirez-Cortes, J. de Jesus Rangel-
Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto, andV. Alarcon-
Aquino, “An approach on MCSA-based fault detection using
independent component analysis and neural networks,” IEEE
Transactions on Instrumentation andMeasurement, vol. 68, no. 5,
pp. 1353–1361, 2019.

[33] J. M. Lee, S. J. Qin, and I. B. vLee, “Fault detection and di-
agnosis based on modified independent component analysis,”
AICHE Journal, vol. 52, no. 10, pp. 3501–3514, 2006.

[34] Y. Zhang and S. J. Qin, “Fault detection of nonlinear processes
using multiway kernel independent analysis,” Industrial & En-
gineering Chemistry Research, vol. 46, no. 23, pp. 7780–7787,
2007.

[35] S. Rännar, F. Lindgren, P. Geladi, and S. Wold, “A pls kernel
algorithm for data sets with many variables and fewer objects.
Part 1: theory and algorithm,” Journal of Chemometrics, vol. 8,
no. 2, pp. 111–125, 1994.

[36] B. T. Le, D. Xiao, Y. C. Mao, D. K. He, J. L. Xu, and L. song,
“Coal quality exploration technology based on an incremental
multilayer extreme learning machine and remote sensing
images,” IEEE Transactions on Geoscience And Remote
Sensing, vol. 57, pp. 4192–4201, 2019.

[37] G. C. Gajo, T. M. Assis, L. C. Assis, T. C. Ramalho, and
E. F. F. Cunha, “Quantitative Structure-activity relationship
studies for potential rho-associated protein kinase inhibitors,”
Journal of Chemistry, vol. 2016, Article ID 9198582, 12 pages, 2016.

12 Journal of Chemistry


