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Continuing our antecedent work against COVID-19, a set of 5956 compounds of traditional Chinese medicine have been virtually
screened for their potential against SARS-CoV-2 helicase (PDB ID: 5RMM). Initially, a �ngerprint study with VXG, the ligand of
the target enzyme, disclosed the similarity of 187 compounds. �en, a molecular similarity study declared the most similar 40
compounds. Subsequently, molecular docking studies were carried out to examine the binding modes and energies. �en, the
most appropriate 26 compounds were subjected to in silicoADMETand toxicity studies to select the most convenient inhibitors to
be: (1R,2S)-ephedrine (57), (1R,2S)-norephedrine (59), 2-(4-(pyrrolidin-1-yl)phenyl)acetic acid (84), 1-phenylpropane-1,2-dione
(195), 2-methoxycinnamic acid (246), 2-methoxybenzoic acid (364), (R)-2-((R)-5-oxopyrrolidin-3-yl)-2-phenylacetic acid (405),
(Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one (533), 8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tet-
rahydrochromone (637), 3-((1R,2S)-2-(dimethylamino)-1-hydroxypropyl)phenol (818), (R)-2-ethyl-4-(1-hydroxy-2-(methyl-
amino)ethyl)phenol (5159), and (R)-2-((1S,2S,5S)-2-benzyl-5-hydroxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol (5168).
Among the selected 12 compounds, the metabolites, compound 533 showed the best docking scores. Interestingly, the MD
simulation studies for compound 533, the one with the highest docking score, over 100 ns showed its correct binding to SARS-
CoV-2 helicase with low energy and optimum dynamics. Finally, MM-PBSA studies showed that 533 bonded favorably to SARS-
CoV-2 helicase with a free energy value of −83 kJ/mol. Further, the free energy decomposition study determined the essential
amino acid residues that contributed favorably to the binding process. �e obtained results give a huge hope to �nd a cure for
COVID-19 through further in vitro and in vivo studies for the selected compounds.
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1. Introduction

*e WHO disclosed on December 25, 2021 that the con-
firmed COVID-19 infections globally became over 276
million including more than 5 million dead persons [1].
*ese massive numbers demand enormous work from
scientists all over the world to find a cure.

*e utilization of natural products for the treatment
has been mentioned since the oldest historical points [2];
the traditional medicines were unlimited sources for
bioactive natural compounds such as flavonoids [3–5],
alkaloids [6], saponins [7–9], isochromenes [10],
α-pyrones [11, 12], diterpenoids [13], sesquiterpenoids
[14, 15], and steroids [16].

Traditional Chinese medicine (TCM) is an ethno-
medicine that authenticates the experience of ancient Chi-
nese people in the treatment of different illnesses [17]. TCM
is a reflection of a great experience of clinical practice that
extended for thousands of years [18]. To date, the TCM
remedies are still utilized effectively in China as well as
several places of the world [19, 20].

Computer-aided drug design methodologies play an
ever-increasing essential role in the discovery of new drugs
[21, 22]. *ese methodologies have been very effective in
the identification of new promising drug candidates with a
noticeable limitation in time, cost, effort, and use of animal
models [13–15]. *e application of in silico methodologies
included molecular docking [16–23], molecular design
[24, 25], rational drug design [26–31], computational
chemistry [32, 33], toxicity [34–36], ADMET [37–39], and
DFT [40] assessments.

Our teamwork utilized computer-based methodologies
to determine potential inhibitors against COVID-19 in
various reports. For example, metabolites of Artemisia
sublessingiana [41]þ and Monanchora species [42] were
examined in silico against COVID-19. We suggested four
isoflavonoids between a set of 59 as the most promising
inhibitors against hACE2 and Mpro [43]. Recently, our team
adjusted a multistep in silico filtration technique to select the
most promising compound through a huge group of
compounds against a certain COVID-19 protein. For in-
stance, vidarabine was selected to be the most promising
inhibitor against SARS-CoV-2 nsp10 [44]. Complementa-
rily, the most convenient semisynthetic molecule against
PLpro has been determined via a set of 69 compounds [45].

Helicases are pivotal enzymes in the viral lifecycle be-
cause of their responsibility to separate the dsDNA or RNA
strands as well as their essential role in the process of RNA
replication and repair [46]. Helicases can translocate mol-
ecules along the double-stranded (ds) DNA as well as RNA
in a certain direction. Additionally, it can unwind (separate)
the complementary strand of the DNA duplex through the
dissociation of the hydrogen bonds between the nucleotide
bases [47].

In this work, a collection of 5956 natural compounds,
that were derived from traditional Chinese medicine and
available at http://tcm.cmu.edu.tw/, has been subjected to
structure and ligand-based in silico approaches (Figure 1)
to determine the most convenient SARS-CoV-2 helicase

inhibitors. *e starting step in our research was (3S,4R)-
1-acetyl-4-phenylpyrrolidine-3-carboxylic acid (VXG),
the co-crystallized ligand of the SARS-CoV-2 helicase
(PDB ID: 5RMM). VXG showed a high binding affinity
against the target enzyme. Accordingly, it is expected
according to the SAR principles that any compound with
a similar structure could have a high binding affinity too.
*e utilized in silico methods included molecular
structure similarity and fingerprint study against the
VXG. *en, molecular docking against SARS-CoV-2
helicase (PDB ID: 5RMM) was conducted to examine the
binding. ADMET and toxicity were utilized to make sure
about the likeness of the selected compounds. Finally,
molecular dynamics (MD) simulation experiments
(RMSD, RMSF, Rg, SASA, and H-bonding) over 100 ns
for the compound of the highest docking score, as well as
MM-PBSA studies, were preceded to confirm the correct
binding mode.

2. Results and Discussion

2.1. Molecular Filtration Using Fingerprint Method. *e li-
gand-based in silico approach depends on the computation
of chemical and physical properties of a molecule (ligand)
and comparison of these properties with some biologically
active compounds [48]. *e fingerprint study is one of the
ligand-based in silico methods that is vastly employed to
predict the chemical structure’s similarity or dissimilarity of
two compounds or more [49, 50]. During the fingerprint
study, the computer converts the chemical descriptors of a
molecule to mathematical symbols. *e obtained data are
presented as bit strings. *ese strings describe the presence
(1) or absence (0) of a certain 2D fragment or atomic de-
scriptor (property) in the test and reference molecules
[51, 52]. *e co-crystallized ligand is a molecule that has a
very high affinity to bind to a specific protein forming a
ligand-protein complex in a crystallized form [53]. In
consequence, the chemical structure of the co-crystallized
ligand could be utilized effectively as a starting point to
design and discover a potential inhibitor against the target
protein.

Discovery studio 4.0 software was employed to examine
the fingerprint similarity of 5956 natural compounds, which
were derived from traditional Chinese medicine, against
VXG, the co-crystallized ligand of SARS-CoV-2 helicase
(PDB ID: 5RMM). *e experiment determined 187 com-
pounds to be the most similar candidates to VXG (Table 1).
*e study compared the following descriptors (properties)
in the chemical structures of the experiment set and VXG:
H-bond acceptor [54], H-bond donor [55], charge [56],
hybridization [57], positive ionizable atoms [58], negative
ionizable atoms [59], halogens [60], aromatic groups [61],
and aligning with the ALogP [62] of fragments as well as
atoms.

2.2. Molecular Similarity. *e difference between molecular
similarity and fingerprint studies is that the fingerprint study
computes the presence and/or absence of specific 2D atom
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Figure 1: *e employed computational techniques.

Table 1: Fingerprint similarity between 187 natural compounds and VXG.

Comp. Similarity SA SB SC Comp. Similarity SA SB SC
VXG 1 166 0 0 5412 0.582205 602 580 −148
138 1 160 100 6 1585 0.581927 586 553 −132
167 1 169 118 −3 1566 0.581457 439 301 15
215 1 180 166 −14 810 0.581121 197 173 −31
258 1 153 128 13 5449 0.580863 431 288 23
347 1 143 101 23 2379 0.580247 329 113 125
364 1 90 −7 76 5154 0.579775 258 −9 196
379 1 143 101 23 3239 0.579154 589 563 −135
380 1 143 101 23 2356 0.57854 523 450 −69
411 1 112 42 54 3258 0.578205 451 326 3
445 1 186 146 −20 3589 0.578089 496 404 −42
496 1 196 201 −30 362 0.577495 272 17 182
501 1 163 145 3 5439 0.577398 608 599 −154
507 1 158 136 8 3255 0.577267 452 329 2
526 1 143 101 23 1584 0.576874 454 333 0
533 1 133 70 33 71 0.576792 169 127 −3
552 1 173 123 −7 623 0.576792 169 127 −3
554 1 173 121 −7 38 0.576087 265 6 189
555 1 173 121 −7 5441 0.576077 602 591 −148
577 1 154 90 12 1982 0.575087 494 405 −40
610 1 116 39 50 398 0.57485 96 1 70
619 1 156 131 10 114 0.561111 101 14 65
637 1 162 108 4 816 0.56 112 34 54
733 1 169 157 −3 92 0.556886 93 1 73
756 1 206 193 −40 169 0.556886 93 1 73
782 1 220 219 −54 5157 0.556701 108 28 58
792 1 207 178 −41 451 0.554878 182 162 −16
794 1 196 177 −30 5154 0.554307 148 101 18
803 1 169 147 −3 768 0.55418 179 157 −13
806 1 210 206 −44 190 0.553299 109 31 57
807 1 183 144 −17 557 0.55298 167 136 −1
818 1 99 9 67 629 0.55 176 154 −10
2379 1 213 229 −47 495 0.543333 163 134 3
405 0.777 136 9 30 433 0.538462 91 3 75
442 0.738 127 6 39 754 0.537764 178 165 −12
85 0.731 125 5 41 566 0.534743 177 165 −11
260 0.722 117 −4 49 354 0.534535 178 167 −12
208 0.697 124 12 42 597 0.53271 171 155 −5
91 0.689 122 11 44 596 0.531148 162 139 4
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paths and descriptors regarding fragments or substruc-
tures in the examined compounds [63]. Contrastingly,
the molecular similarity calculates specific molecular
descriptors considering the whole chemical structure of
compounds. *ese descriptors are steric, topological,
electronic, and/or physical [64]. Utilizing Discovery
studio 4.0 software, a molecular similarity study was

done on the most similar 187 compounds against VXG.
*e applied descriptors in this study (Figure 2 and Ta-
ble 2) were partition coefficient (ALogp) [65], molecular
weight (M. W) [66], H-bond donors (HBA) [67], H-bond
acceptors (HBD) [68], rotatable bond numbers [69],
number of rings as well as aromatic rings [70], and
minimum distance [71] together with the molecular

Table 1: Continued.

Comp. Similarity SA SB SC Comp. Similarity SA SB SC
102 0.689 122 11 44 601 0.528302 168 152 −2
195 0.681 109 −6 57 752 0.527473 192 198 −26
280 0.674 116 6 50 568 0.526946 176 168 −10
344 0.658 121 18 45 790 0.526012 182 180 −16
370 0.658 121 18 45 2368 0.523041 227 268 −61
672 0.652 167 90 −1 439 0.522222 188 194 −22
48 0.649 113 8 53 158 0.521978 95 16 71
58 0.649 113 8 53 5152 0.521898 143 108 23
100 0.646 104 −5 62 250 0.520408 153 128 13
246 0.644 105 −3 61 591 0.519737 158 138 8
84 0.638 118 19 48 5153 0.517699 117 60 49
5169 0.636 159 84 7 150 0.517241 90 8 76
817 0.633 126 33 40 297 0.515789 147 119 19
396 0.624 106 4 60 2370 0.515738 213 247 −47
245 0.622 102 −2 64 5167 0.51567 181 185 −15
57 0.62 106 5 60 413 0.513986 147 120 19
65 0.62 106 5 60 491 0.513699 150 126 16
1942 0.614339 497 355 −43 5177 0.512195 189 203 −23
5415 0.614108 592 510 −138 415 0.511945 150 127 16
5434 0.614017 587 502 −133 5151 0.511696 175 176 −9
3941 0.613833 426 240 28 2367 0.511364 225 274 −59
4050 0.613551 489 343 −35 544 0.511299 181 188 −15
5441 0.613124 626 567 −172 5159 0.511111 92 14 74
5039 0.613119 458 293 −4 266 0.510903 164 155 2
4055 0.612984 491 347 −37 374 0.510563 145 118 21
3591 0.612751 519 393 −65 418 0.510417 147 122 19
2348 0.612622 563 465 −109 5155 0.510288 124 77 42
3912 0.612319 507 374 −53 207 0.510274 149 126 17
3579 0.612128 535 420 −81 5149 0.51005 203 232 −37
3919 0.611429 428 246 26 5180 0.508197 186 200 −20
5055 0.611111 440 266 14 299 0.507042 144 118 22
5168 0.61 158 93 8 5158 0.506329 120 71 46
539 0.609 162 100 4 5176 0.505208 194 218 −28
342 0.608 110 15 56 397 0.505051 150 131 16
511 0.608 178 127 −12 614 0.505017 151 133 15
784 0.607 193 152 −27 622 0.504983 152 135 14
564 0.605 182 135 −16 512 0.504615 164 159 2
201 0.604 186 142 −20 5173 0.50358 211 253 −45
542 0.589905 187 151 −21 639 0.503356 150 132 16
492 0.58885 169 121 −3 50 0.503165 159 150 7
228 0.586319 180 141 −14 116 0.502982 253 337 −87
2365 0.584081 521 438 −67 80 0.502092 120 73 46
3254 0.58408 587 551 −133 3288 0.502092 240 312 −74
206 0.583178 624 616 −170 454 0.502075 121 75 45
1571 0.582915 464 342 −10 419 0.501742 144 121 22
3591 0.582851 503 409 −49 621 0.50165 152 137 14
1593 0.582512 473 358 −19 203 0.501449 173 179 −7
59 0.582353 99 4 67 3291 0.501006 249 331 −83
64 0.582353 99 4 67 86 0.5 154 142 12
86 0.582278 276 20 178 118 0.5 100 34 66
SA, bits number in both similar natural compounds and VXG; SB, bits number in the similar natural compounds but not in VXG; SC, bits number in VXG
but not in the similar natural compounds.
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fractional polar surface area (MFPSA) [72]. *e study
was adapted to select the most similar 40 metabolites
(Figure 3).

2.3. Docking Studies. Computer-aided drug design applies
various techniques to optimize natural products into po-
tentially active against certain biological targets [44, 45]. A
molecular docking technique was applied for 40 VXG
similar compounds against SARS-CoV-2 helicase (PDB ID:
5RMM). *e binding modes and affinities of these com-
pounds were examined.

*e target protein was downloaded from Protein Data
Bank (http://www.pdb.org), and Molecular Operating En-
vironment (MOE .14) was used for the docking analysis. *e
docking process was validated by the re-docking of VXG
inside the active pocket of the helicase protein. *e root
mean square deviation (RMSD) between the re-docked and
the co-crystallized conformers was 0.74A, which confirms
the validity of the docking protocol (Figure 4).

Out of the examined 40 compounds, 26 displayed
correct binding modes as well as good free energies. *e
promising compounds are as follows: (+)-methyl-
pseudoephedrine (48), (1R,2S)-ephedrine (57), (1R,2S)-N-
methylephedrine (58), (1R,2S)-norephedrine (59), (3S)-2,2-

dimethyl-3,5-dihydroxy-8-hydroxymethyl-3,4-dihydro-2H,
6H-benzo[1,2-b5,4-b′]dipyran-6-one (80), 2-(4-(pyrrolidin-
1-yl)phenyl)acetic acid (84), (4S,5R)-ephedroxane (85), 1-
phenylpropane-1,2-dione (195), 2-methoxycinnamaldehyde
(245), 2-methoxycinnamic acid (246), 2-methoxybenzoic acid
(364), 3′-o-acetylhamaudol (374), 3′-o-propionylhamaudol
(388), (R)-2-((R)-5-oxopyrrolidin-3-yl)-2-phenylacetic acid
(405), (Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-
pyran-2-one (533), 6,7-dihydroxy-2-(2-phenylethyl)-5,6,7,8-
tetrahydrochromone (539), 7-demethylsuberosin (610),
8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahy-
drochromone (637), 3-((R)-hydroxy ((S)-1-methylpiperidin-
2-yl)methyl)phenol (816), (R)-((S)-1-methylpiperidin-2-yl)
(phenyl)methanol (817), 3-((1R,2S)-2-(dimethylamino)-1-
hydroxypropyl)phenol (818), (R)-4-(1-Hydroxy-2-(methyl-
amino)ethyl)-7,7-dimethyl-5,6,7,8-tetrahydronaphthalen-1-ol
(5153),(R)-4-(1-hydroxy-2-(methylamino)ethyl)-8,8-di-
methyl-6,7,8,9-tetrahydro-5H-benzo [7]annulen-1-ol (5155),
(R)-2-ethyl-4-(1-hydroxy-2-(methylamino)ethyl)phenol
(5159), (R)-2-((1S,2S,5S)-2-benzyl-5-hydroxy-4-methyl-
cyclohex-3-en-1-yl)propane-1,2-diol (5168), and (1S,4R,
5S)-4-benzyl-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-
en-1-ol (5169).

*e docking scores of the experienced ligands are pre-
dicted and summarized in Table 3. *e binding modes of the
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Figure 2: Molecular similarity of the examined compounds and VXG.
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tested ligands inside the active site of the target protein were
depicted. *e binding poses of the top five compounds with
the highest energy scores as well as the most perfect modes
were selected for detailed discussion as representative
examples.

Starting with the binding interactions and orientation of
the co-crystallized ligand (VXG) inside the active SARS-
CoV-2 helicase (PDB ID: 5RMM), it revealed a binding
affinity value of −19.37 kcal/mol. It showed a characteristic
four hydrogen bonding interactions through carboxylate
moiety of pyrrolidine ring with the essential amino acids
SER486, ASN516, and ASN177. In addition, two hydro-
phobic interactions were formed between pyrrolidine ring
and amino acid residues HIS554 and TYR515 (Figure 5).

*e results of docking studies showed that the tested
ligands have orientations and binding interactions similar

to that ofVXG against SARS-CoV-2 helicase.*ree- and two-
dimensional representations of binding modes of the most
potent derivatives 533, 637, 84, 195, and 364 inside the active
site of the target protein are depicted in Figures 6–10.

Compound 533 exhibited an interesting binding
mode similar to that of the co-crystallized ligand against
SARS-CoV-2 helicase with a docking score of
−17.10 kcal/mol. It keeps the hydrogen bonding inter-
actions with the essential amino acids SER486, ASN516,
and ASN177. Also, it formed two additional hydrogen
bonds with ASN179 and SER485 residues. Furthermore,
compound 533 was incorporated in two hydrophobic
interactions with amino acid residues HIS554 and
TYR515 (Figure 6).

For compound 637, the binding affinity was −18.85 kcal/
mol. Such compound exhibited the best binding mode into

Table 2: Molecular descriptors of the examined 40 compounds and VXG.

Comp. ALogp M. Wt HBA HBD Rotatable bonds Rings Aromatic rings MFPSA Minimum distance
VXG 0.71 233.26 3 1 2 2 1 0.237
405 0.62 219.24 3 2 3 2 1 0.307 0.357
84 2.12 205.25 3 1 3 2 1 0.187 0.446
816 2.1 221.3 3 2 2 2 1 0.181 0.454
433 1.69 178.19 3 1 3 1 1 0.239 0.529
100 1.09 149.19 2 1 2 1 1 0.252 0.531
342 2.76 204.22 3 1 2 2 1 0.224 0.541
533 1.97 274.27 5 1 4 2 1 0.229 0.552
818 1.53 195.26 3 2 3 1 1 0.187 0.553
364 1.44 152.15 3 1 2 1 1 0.285 0.555
246 1.91 178.19 3 1 3 1 1 0.24 0.559
59 0.8 151.21 2 2 2 1 1 0.264 0.56
64 0.8 151.21 2 2 2 1 1 0.264 0.56
539 1.57 286.32 4 2 3 3 1 0.239 0.564
150 1.54 178.19 3 2 2 1 1 0.3 0.568
85 2.03 191.23 2 0 1 2 1 0.143 0.575
398 1.81 164.2 2 1 3 1 1 0.202 0.596
195 1.45 148.16 2 0 2 1 1 0.21 0.597
57 1.23 165.23 2 2 3 1 1 0.165 0.614
65 1.23 165.23 2 2 3 1 1 0.165 0.614
817 2.34 205.3 2 1 2 2 1 0.102 0.648
5168 2.17 276.37 3 3 4 2 1 0.198 0.672
5153 2.59 249.35 3 3 3 2 1 0.181 0.678
5159 1.56 195.26 3 3 4 1 1 0.231 0.691
118 2.22 203.28 2 0 0 2 1 0.122 0.695
374 2.4 317.36 4 2 2 3 1 0.244 0.706
245 1.93 162.19 2 0 3 1 1 0.143 0.713
48 1.77 179.26 2 1 3 1 1 0.105 0.715
58 1.77 179.26 2 1 3 1 1 0.105 0.715
114 2.2 194.23 3 0 4 1 1 0.157 0.731
610 3.51 230.26 3 1 2 2 1 0.192 0.738
388 2.01 333.36 5 2 3 3 1 0.264 0.743
5169 3.05 260.37 2 2 3 2 1 0.136 0.76
260 1.93 164.2 2 0 4 1 1 0.141 0.765
91 2.99 188.22 2 0 1 2 1 0.131 0.769
102 2.99 188.22 2 0 1 2 1 0.131 0.769
280 1.98 177.24 2 0 1 2 1 0.062 0.775
5155 3.04 263.38 3 3 3 2 1 0.171 0.782
637 1.37 336.77 5 3 3 3 1 0.282 0.784
208 2.16 191.27 2 0 1 2 1 0.057 0.795
80 0.9 292.28 6 3 1 3 1 0.337 0.81
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Figure 4: (a) 3D and (b) 2D superimposition of the re-docked conformer of VXG over the co-crystallized one with an RMSD value of
0.74A.

Table 3: ∆G (in kcal/mole) of the most similar 40 compounds to VXG.

Compound Name ∆G (kcal/mole)
48 (+)-Methylpseudoephedrine −15.92
57 (1R,2S)-Ephedrine −15.64
58 (1R,2S)-N-methylephedrine −15.24
59 (1R,2S)-Norephedrine −14.29
64 (1S,2S)-Norpseudoephedrine −13.65
65 (1S,2S)-Pseudoephedrine −11.66
80 (3S)-2,2-Dimethyl-3,5-dihydroxy-8-hydroxymethyl-3,4-dihydro-2H,6H-benzo[1,2-b5,4-b′]dipyran-6-one −14.27
84 2-(4-(Pyrrolidin-1-yl) phenyl) acetic acid −15.46
85 (4S,5R)-Ephedroxane −14.01
91 (E)-3-Butylidene phthalide −13.31
100 (S)-Cathinone −12.6
102 (Z)-3-Butylidene phthalide −13.9
114 1-(2,4-Dimethoxyphenyl)-1-propanone −13.53
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Table 3: Continued.

Compound Name ∆G (kcal/mole)
118 1,3,6,6-Tetramethyl-6,7-dihydroisoquinolin-8(5H)-one −12.41
150 (4S,5R)-Ephedroxane −13.02
195 1-Phenylpropane-1,2-dione −11.07
208 2,3,4-Trimethyl-5-phenyloxazolidine −13.76
245 2-Methoxycinnamaldehyde −14.92
246 2-Methoxycinnamic acid −14.22
260 2-Phenylethyl acetate −13.29
280 3,4-Dimethyl-5-phenyloxazolidine −13.21
342 3-Butylidene-4-hydro-phthalide −13.24
364 2-Methoxybenzoic acid −12.16
374 3′-o-Acetylhamaudol −18.21
388 3′-o-Propionylhamaudol −18.13
398 4-(4-Hydroxyphenyl)-2-butanone −12.88
405 (R)-2-((R)-5-Oxopyrrolidin-3-yl)-2-phenylacetic acid −15.74
433 4-Hydroxy-3-methoxycinnamaldehyde −13.11
533 (Z)-6-(3-Hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one −17.1
539 6,7-Dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone −18.36
610 7-Demethylsuberosin −15.48
637 8-Chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone −18.85
816 3-((R)-Hydroxy ((S)-1-methylpiperidin-2-yl)methyl)phenol −17.09
817 (R)-((S)-1-Methylpiperidin-2-yl) (phenyl)methanol −15.95
818 3-((1R,2S)-2-(Dimethylamino)-1-hydroxypropyl)phenol −15.79
5153 (R)-4-(1-Hydroxy-2-(methylamino)ethyl)-7,7-dimethyl-5,6,7,8-tetrahydronaphthalen-1-ol −17.84
5155 (R)-4-(1-Hydroxy-2-(methylamino)ethyl)-8,8-dimethyl-6,7,8,9-tetrahydro-5H-benzo[7]annulen-1-ol −16.59
5159 (R)-2-Ethyl-4-(1-hydroxy-2-(methylamino)ethyl)phenol −17.89
5168 (R)-2-((1S,2S,5S)-2-Benzyl-5-hydroxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol −18.4
5169 (1S,4R,5S)-4-Benzyl-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-ol −17.42
VXG (3S,4R)-1-Acetyl-4-phenylpyrrolidine-3-carboxylic acid −19.37

(a)

Figure 5: Continued.
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(b)

Figure 5: (a) 3D and (b) 2D of VXG docked into the active site of SARS-CoV-2 helicase.

(a)

Figure 6: Continued.
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(b)

Figure 6: (a) 3D and (b) 2D images of the docked compound 533 into the active site of SARS-CoV-2 helicase.

(a)

Figure 7: Continued.
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(b)

Figure 7: (a) 3D and (b) 2D images of the docked compound 637 into the active site of SARS-CoV-2 helicase.

(a)

(b)

Figure 8: (a) 3D and (b) 2D images of the docked compound 84 into the active site of SARS-CoV-2 helicase.
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the target protein, where it completely occupied the
protein through seven hydrogen bonding interactions
with SER486, ASN516, ASN177, SER485, and HIS554
residues. In addition, the terminal phenyl ring formed three
hydrophobic interactions with HIS554, LEU412, and ARG560
residues (Figure 7).

Concerning the binding mode of compound 84
against SARS-CoV-2 helicase, the binding energy was
−15.46 kcal/mol. *e structural similarity of that com-
pound with the co-crystallized ligand revealed the same
binding mode against the receptor, where three hydrogen

bonds were formed with SER486, ASN516, and ASN177
and three hydrophobic interactions were molded with
HIS554 and PRO408 (Figure 8).

*e binding affinity of compound 195was −11.07kcal/mol.
Such affinity was represented by four hydrogen bonds with the
key amino acids SER486, ASN516, and ASN177 and one hy-
drophobic interaction with HIS554 (Figure 9).

Finally, analyzing the binding interactions of compound
364 indicated a binding score of −12.16 kcal/mol. *e car-
boxylate moiety formed three hydrogen bonding interactions
with the key amino acids SER486, ASN516, and ASN177

(a)

(b)

Figure 9: (a) 3D and (b) 2D images of the docked compound 195 into the active site of SARS-CoV-2 helicase.
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while the phenyl ring was incorporated in hydrophobic in-
teraction with HIS55 (Figure 10).

2.4. ADMET Studies. *e likeness of any molecule to be
approved as a drug depends greatly on its pharmaco-
kinetic properties as well as its activity. Subsequently, the
investigation of the ADMETprofile of a molecule should
be considered in the early stages of drug design and

discovery to avoid the withdrawal possibility of the drug
from the pharmaceutical market [73]. *ese descriptors
identify the absorption, distribution, metabolism, ex-
cretion, as well as the toxicity of the examined com-
pound. Although, there are different in vitro experiments
that can determine the ADMET profile, in silico deter-
mination is an available and reliable tool with the profit
of being faster, cheaper, as well as and lifesaver of the
experimental animals [74].

(a)

(b)

Figure 10: (a) 3D and (b) 2D images of docked compound 364 into the active site of SARS-CoV-2 helicase.
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*e predicted ADMETprofiles of the 26 compounds that
showed correct modes of binding besides Remdesivir, the
reference drug, are shown in Table 4 and Figure 11.
Compounds 48, 58, 85, 245, 610, 816, 817, 5153, 5155, and
5169 were excluded because of their predicted strong ability
to pass the blood-brain barriers which may be combined
with a CNS toxicity. Among the excluded compounds,
compounds 48, 58, 816, 817, 5153, and 5155 were predicted
to be inhibitors against the CYP2D6 enzyme which would
cause hepatotoxicity. *e predicted intestinal absorption
and aqueous solubility of all compounds were good to
optimal.

2.5. Toxicity Studies. *e early prediction of toxicity is a
crucial step that minimizes drug failure because of toxicity in
the development stage or the clinical trials [75]. In silico
prediction of toxicity is a credible approach that plays an
essential role in drug design and discovery of lead com-
pounds because in vitro and in vivo approaches are usually
controlled by strict ethical regulations, time, and availability
of resources [76], whereas the in silico prediction is based on
a structure-activity relationship toxicology. *e software
compares the essential structural descriptors of the

examined compounds with a huge library of hundreds of
thousands of reported safe and toxic compounds [77]
(Supporting data (available here)). Discovery studio 4.0
software was employed to predict the toxicity profile of the
selected compounds after the ADMET study against 7
models. *e applied models are FDA rat carcinogenicity
[78, 79], mouse carcinogenic potency (TD50) [80], rat
maximum tolerated dose (MTD) [81, 82], rat oral LD50 [83],
rat chronic LOAEL [84, 85], ocular irritancy, and skin
irritancy [86]. According to the obtained results (Table 5),
compounds 80, 388, and 539 were eliminated due to the
predicted high carcinogenic potency.

2.6. Molecular Dynamics (MD) Simulations. Despite the
ability of molecular docking studies to expect the mode of
binding of a compound inside a specific protein correctly, it
has a serious defect that it deals with the protein as a rigid
unit. Resultantly, it does not compute the conformational
changes that happen in the protein because of ligand binding
[87]. On the contrary, the MD simulations can adequately
describe the behavior of a protein at the atomic level in full
detail and at very accurate temporal resolution [88]. In
accordance, the MD simulations have the advantage of being
able to predict the conformational changes that occurred in
the protein after ligand binding [89]. Furthermore, MD
simulation studies can effectively compute various factors
related to the energy of the protein-ligand complex for a
determined time. Subsequently, it accurately describes the
binding mode, stability, and flexibility of the ligand inside
the target protein [90].

*e first successful MD simulation experiment of a
protein (bovine pancreatic trypsin inhibitor) was published
in Nature in 1977 [91]. Fortunately, because of the recently
introduced supercomputer hardware, especially the ad-
vanced graphics processing units, MD simulation experi-
ments became much more accessible, powerful, and
accurate [92].

In the MD simulation study, the forces on every atom of
the examined ligand-protein complex are computed at every
ultra-short time interval according to the basics of the “force
field” [93]. *e computed force field can be utilized to
describe the position and velocity of atoms at each time
interval.*e force field is a physical expression that describes
the functional potential energy of atoms. *e force field is
calculated based on Newton’s laws of motion considering
bonded interactions (bonds, angles, and dihedrals) in ad-
dition to nonbonded interactions (van der Waals potentials
and Coulomb potentials) between all atoms of the complex.
*is step is repeated billions of times to produce the atomic
trajectories for a specific time interval [94].

Several MD simulation studies were employed to in-
vestigate the stability and mimic the dynamic of compound
533, (Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-
pyran-2-one, that exhibited the best docking score inside
SARS-CoV-2 helicase for 100 ns.

First, the interaction of a ligand inside the active site of a
protein leads to some changes in the structure of that protein
[95]. In consequence, the dynamics and the conformational

Table 4: ADMET profile of the 26 compounds with the best
docking scores.

Comp. BBB levela HIAb Aqc CYP2D6d PPBe

48 1 0 4 T F
57 2 0 4 F F
58 1 0 4 T F
59 3 0 4 F F
80 3 0 3 F F
84 2 0 3 F T
85 1 0 3 F F
195 2 0 3 F T
245 1 0 3 F T
246 2 0 3 F T
364 2 0 4 F T
374 2 0 3 F F
388 3 0 3 F F
405 3 0 4 F F
533 3 0 3 F T
539 3 0 3 F T
610 1 0 3 F T
637 3 0 3 F T
816 2 0 3 T F
817 1 0 3 T F
818 2 0 4 F F
5153 2 0 3 T T
5155 2 0 3 T T
5159 3 0 4 F F
5168 2 0 4 F T
5169 1 0 3 F T
Simeprevir 4 3 2 F T
aBBB, ability to pass the blood-brain barrier, 1 is high, 2 is medium, 3 is low,
and 4 is very low; bHIA, human intestinal absorption level, 0 is good, 1 is
moderate, 2 is poor, and 3 is very poor; cAq, aqueous solubility level, 0 is
extremely low, 1 is very low, 2 is low, 3 is good, and 4 is optimal; dCYP2D6,
inhibition of CYP2D6 enzyme, T is an inhibitor and F is a noninhibitor;
ePPB, F means less than 90% and T means more than 90%.
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changes of the SARS-CoV-2 helicase-533 complex were
computed as root mean square deviation (RMSD) to detect
the stability due to binding. It is observed that the SARS-
CoV-2 helicase and 533 exhibited lower RMSD with no
major fluctuations indicating their greater stability
(Figure 12(a)). Interestingly, the SARS-CoV-2 helicase-533

complex was stable till 90 ns∼. Although the SARS-CoV-2
helicase-533 complex showed a minor fluctuation later, it
reached equilibrium again.

Second, the flexibility of SARS-CoV-2 helicase was
calculated in terms of root mean square fluctuation (RMSF)
to calculate the differences in flexibility in the SARS-CoV-2
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Figure 11: Results of the ADMET study.

Table 5: In silico toxicity profile of 15 compounds with good ADMET profile.

Comp. FDA rat carcinogenicity
(mouse-female)

TD50
(mg·kg−1·day−1)

MTD
(g·kg−1)

Rat oral LD50
(g·kg−1)

LOAEL
(g·kg−1)

Ocular
irritancy

Skin
irritancy

Simeprevir Not a carcinogen 2.0138 0.002967 0.208835 0.0021057 Mild None
57 Not a carcinogen 306.685 0.126925 0.678557 0.1091 Severe None
59 Not a carcinogen 209.013 0.130669 1.17822 0.153373 Severe None
80 Multicarcinogen 30.9654 0.320563 0.112645 0.0104398 Moderate None
84 Not a carcinogen 86.2745 0.432043 0.651537 0.0466934 Severe None
195 Not a carcinogen 734.376 0.0920234 0.80394 0.58711 Mild None
246 Not a carcinogen 896.437 0.185908 0.975783 0.0690491 Mild Mild
364 Not a carcinogen 1,152.33 0.178125 1.10017 0.269177 Mild None
388 Multicarcinogen 77.4401 0.158212 0.128576 0.0111578 Severe Mild
405 Not a carcinogen 1,019.87 0.355843 0.565566 0.0958513 Moderate None
533 Not a carcinogen 587.516 0.109002 0.765306 0.026065 Mild Mild
539 Multicarcinogen 71.1582 0.12354 0.366215 0.0229232 Severe None
637 Not a carcinogen 30.3365 0.136595 0.428434 0.0201137 Severe Mild
818 Not a carcinogen 145.39 0.355736 0.71245 0.0937066 Severe None
5159 Not a carcinogen 227.599 0.559977 0.526787 0.0808567 Severe None
5168 Not a carcinogen 128.911 0.242854 2.09646 0.0494677 Moderate Mild
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helicase-533 complex during the 100 ns of the MD simu-
lations. *e decrease of RMSF values during the MD sim-
ulation in 50–100 residue areas (Figure 12(b)) denotes that
SARS-CoV-2 residues were more rigid and stabilized after
binding to 533.

*ird, the radius of gyration (Rg) is a crucial parameter
that is linked to the protein stability according to the
change in its volume. Rg is defined as the root mean square
distance (RMSD) of a weighted mass group of atoms from their
mass center [96, 97]. *us, the calculation of Rg identifies the
dimensions as well as the compactness of the SARS-CoV-2

helicase-533 complex. *e lower degree of fluctuation
throughout the simulation period indicates the greater com-
pactness of a system. *e Rg of the SARS-CoV-2 helicase-533
complex was found to be lower than the starting period
(Figure 12(c)) displaying compactness and stability.

Fourth, the interaction between protein-ligand com-
plexes and solvents was measured by solvent accessible
surface area (SASA) over the simulation period. So, the
SASA of the SARS-CoV-2 helicase-533 complex was cal-
culated to provide the extent of the conformational changes
that occurred during binding. Interestingly, SARS-CoV-2
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Figure 12: M D simulation results: (a) RMSD values of SARS-CoV-2 helicase, 533, and SARS-CoV-2 helicase-533 complex; (b) RMSF for
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helicase featured a reduction of the surface area showing a
relatively lower SASA value than the starting period
(Figure 12(d)).

Finally, hydrogen bonding between a SARS-CoV-2
helicase-533 complex is essential to stabilize the structure.
MD simulation studies showed that the highest number of
conformations of the SARS-CoV-2 helicase formed up to
three hydrogen bonds with 533 (Figure 12(e)).

2.7. Molecular Mechanics Poisson–Boltzmann Surface Area
(MM-PBSA). In this experiment, the molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA) method was the
utilizedmethod to calculate the free binding energy of the SARS-
CoV-2 helicase-533 complex. *e MM-PBSA can evaluate the
binding between a specific receptor and a ligand through the
accurate calculation of the binding free energy of the ligand-
protein complex. *e MM-PBSA method utilizes both ther-
modynamic cycle and molecular dynamics (MD) methods to
compute the binding free energy. *e MM-PBSA calculates the
binding free energies according to the following equation:
ΔGbind.�Gcomp.− (Gprot. +Glig.).
ΔGbind. refers to the total energy difference that was

calculated as the difference between the energy at the bound-
state (Gcomp.) and the sum of energy of both protein (Gprot.)
and ligand (Glig.) before binding [98]. To compute the biding
energy accurately, two main types of energies should be
considered: first, the gas-phase interaction energy, which
consists of van der Waals and electrostatic interactions; and,
second, the solvation energy, which includes both polar and
nonpolar components [99].

*e MM-PBSA, as a tool to calculate the free binding
energies, has several advantages over other methods such as
free energy perturbation and thermodynamic integration
such as being faster, simpler, and producing consistent
results with the experimental [100].

*e binding free energy of the SARS-CoV-2 helicase-533
complex was computed at the last stable 20ns of the MD
production run at a time interval of 100ps fromMD trajectories.
*e MM/PBSA method was utilized. Also, the MmPbSaStat.py
script was employed to calculate the average free binding energy
and its standard deviation/error from the output files that were
obtained from g_mmpbsa. Compound 533, (Z)-6-(3-hydroxy-

4-methoxystyryl)-4-methoxy-2H-pyran-2-one, showed a low
binding free energy of −83kJ/mol with the SARS-CoV-2 heli-
case (Figure 13(a)).*e binding energy was stable during all the
time of examination indicating the correct binding of the SARS-
CoV-2 helicase-533 complex.

2.7.1. Free Energy Decomposition. *e total binding free
energy of the SARS-CoV-2 helicase-533 complex was
decomposed to analyze and understand the different com-
ponents of that obtained binding energy as well as to disclose
the contribution of each amino acid residue of the SARS-
CoV-2 helicase in the binding with 533. *e total binding
free energy was decomposed into per amino acid residue
contribution energy. *is experiment gives a clearer idea
about the essential amino acid residues that have favorable
contributions to the binding process. It was found that THR-
115, PHE-145, PRO-172, TYR-149, and LEU-411 residues of
the protein contributed higher than −2 kJ/mol binding
energy and thus they are crucial residues in the binding with
533 (Figure 13(b)).

3. Methods

3.1. Molecular Similarity. Discovery studio 4.0 software was
used [101, 102] (see Section 3 in Supplementary data).

3.2. Fingerprints Studies. Discovery studio 4.0 software was
used [103, 104] (see Section 3 in Supplementary data).

3.3. Docking Studies. Docking studies were done against the
target enzyme using Discovery studio 4.0 software [105, 106]
(see Section 3 in Supplementary data).

3.4. ADMET Analysis. Discovery studio 4.0 was used
[40, 107] (see Section 3 in Supplementary data).

3.5. Toxicity Studies. Discovery studio 4.0 software was used
[108–110] (see Section 3 in Supplementary data).
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Figure 13: MM-PBSA results of SARS-CoV-2 helicase-1552 complex.
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3.6. Molecular Dynamics Simulation. *e system was pre-
pared using the web-based CHARMM-GUI [111–113]
utilizing CHARMM36 force field [114] and NAMD 2.13
[115] package. *e TIP3P explicit solvation model was used
(see supporting data (available here)).

3.7. MM-PBSA Studies. *e g_mmpbsa package of GRO-
MACS was utilized to calculate the MM/PBSA (see sup-
porting data (available here)).

4. Conclusion

Twelve of 5956 TCM compounds were suggested to be the
potential inhibitors against SARS-CoV-2 helicase (PDB ID:
5RMM). *e compounds were selected according to
structural similarity and fingerprint studies with VXG, the
co-crystallized ligand of the target protein. *en, molecular
docking studies were carried out.*en, ADMETand toxicity
studies were preceded to select the following metabolites:
(1R,2S)-ephedrine (57), (1R,2S)-norephedrine (59), 2-(4-
(pyrrolidin-1-yl)phenyl)acetic acid (84), 1-phenylpropane-
1,2-dione (195), 2-methoxycinnamic acid (246), 2-
methoxybenzoic acid (364), (R)-2-((R)-5-oxopyrrolidin-3-
yl)-2-phenylacetic acid (405), (Z)-6-(3-hydroxy-4-methox-
ystyryl)-4-methoxy-2H-pyran-2-one (533), 8-chloro-2-(2-
phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone
(637), 3-((1R,2S)-2-(dimethylamino)-1-hydroxypropyl)
phenol (818), (R)-2-ethyl-4-(1-hydroxy-2-(methylamino)
ethyl)phenol (5159), and (R)-2-((1S,2S,5S)-2-benzyl-5-hy-
droxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol (5168).
Among them, compounds 84, 195, 364, 533, and 637
showed the best docking scores. Interestingly, compound
533, the one with the highest docking score, bonded fa-
vorably to the target protein with low energy and optimum
dynamics according to advanced MD simulation studies
over 100 ns.
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