
Retraction
Retracted: On Second Gourava Invariant for q-Apex Trees

Journal of Chemistry

Received 12 December 2023; Accepted 12 December 2023; Published 13 December 2023

Copyright © 2023 Journal of Chemistry. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi, as publisher,
following an investigation undertaken by the publisher [1].
Tis investigation has uncovered evidence of systematic
manipulation of the publication and peer-review process.
We cannot, therefore, vouch for the reliability or integrity of
this article.

Please note that this notice is intended solely to alert
readers that the peer-review process of this article has been
compromised.

Wiley and Hindawi regret that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our Research Integrity and Research
Publishing teams and anonymous and named external re-
searchers and research integrity experts for contributing to
this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] Y. Wang, S. Kanwal, M. Liaqat, A. Aslam, and U. Bashir, “On
Second Gourava Invariant for q-Apex Trees,” Journal of
Chemistry, vol. 2022, Article ID 7513770, 7 pages, 2022.

Hindawi
Journal of Chemistry
Volume 2023, Article ID 9857463, 1 page
https://doi.org/10.1155/2023/9857463

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9857463


RE
TR
AC
TE
DResearch Article

On Second Gourava Invariant for q-Apex Trees

Ying Wang,1,2 Salma Kanwal ,3 Maria Liaqat,3 Adnan Aslam ,4 and Uzma Bashir3

1Software Engineering Institute of Guangzhou, 510990 Guangzhou, China
2Institute of Computing Science and Technology, Guangzhou University, 510006 Guangzhou, China
3Lahore College for Women University, Lahore, Pakistan
4University of Engineering and Technology, Lahore (RCET) 54000, Pakistan

Correspondence should be addressed to Salma Kanwal; salma.kanwal055@gmail.com

Received 26 January 2022; Accepted 3 March 2022; Published 21 March 2022

Academic Editor: Haidar Ali

Copyright © 2022 Ying Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a simple connected graph. The second Gourava index of graph G is defined as GO2ðGÞ =∑θϑ∈EðGÞðdðθÞ + dðϑÞÞdðθÞdðϑÞ
where dðθÞ denotes the degree of vertex θ. If removal of a vertex of G forms a tree, then G is called an apex tree. Let L ⊂ VðGÞ with
∣L ∣ = q. If removal of L from VðGÞ forms a tree and any other subset of VðGÞ whose cardinality is less than ∣L ∣ does not form a
tree, then G is known as q-apex tree. In this paper, we have calculated upper bound for 2nd Gourava index with respect to q-apex
trees.

1. Introduction

Topological index is basic tool in chemical modeling. In
molecular graph, atoms are considered as vertices and chem-
ical bonds as edges. Short graph is a combination of vertices
and edges. First topological index was Wiener index intro-
duced by Wiener in 1947 to compare the boiling points of
few alkane isomers. He observed that this index is highly
correlated with the boiling point of alkanes. Later study on
QSAR manifested that this index is also helpful to correlate
with other quantities like density, critical point, and surface
tension. The mathematical formula of this index is

W Gð Þ = 〠
θ,ϑf g

dG θ, ϑð Þ, ð1Þ

where dGðθ, ϑÞ denotes the distance between the vertices θ
and ϑ in G. The detailed study about this invariant is given
in [1]. Among degree-based topological indices, the most
studied indices are first Zagreb index and second Zagreb
index [2]. The first Zagreb index is defined as the sum of
square of degrees of all the vertices of a graph, where in sec-
ond Zagreb index, we take the sum of product of degrees of
all those vertices of graph which are linked by an edge. For
more information about these chemical invariants, see [3].

The first and second Gourava indices were presented by
Kulli in 2017 [4]. These indices are defined as

GO1 Gð Þ = 〠
θϑ∈E Gð Þ

d θð Þ + d ϑð Þ + d θð Þd ϑð Þ½ �, ð2Þ

GO2 Gð Þ = 〠
θϑ∈E Gð Þ

d θð Þ + d ϑð Þ½ � d θð Þd ϑð Þð Þ: ð3Þ

A topological index is a numerical number associated
with a molecular graph which has significant applications
in chemical graph theory, because it is used as a molecular
descriptor to investigate physical as well as chemical proper-
ties of chemical structure. Therefore, it is a powerful tech-
nique in avoiding high cost and long-term laboratory
experiments. There are more than 3,000 topological invari-
ants registered till now. Most of these indices have their
applications in chemical graph theory. In these molecular
descriptors, Gourava and hyper-Gourava invariants are used
to find out the physical and chemical properties (such as
entropy, acentric factor, and DHAVP) of octane isomers.
The first and second Gourava invariants are highly correlated
with entropy and acentric factors, respectively.

All graphs considered in our study are simple and con-
nected. Let G be a simple graph with vertex set V and edge
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set E. For a graph G, the degree of a vertex θ is defined as the
number of edges attached to it. The smallest degree of a ver-
tex in G is denoted by δðGÞ. The vertex in a graph whose
degree is one is known as pendent vertex. The neighborhood
of a vertex θ is the set containing all nodes attached with θ,
denoted by NðθÞ. There are two types of neighborhood,
open neighborhood and closed neighborhood. If NðθÞ
includes all the other nodes except θ, then it is called open
neighborhood but if it includes the node θ, then it is called
closed neighborhood. Closed neighborhood of θ is defined
as N½θ� =NðθÞ ∪ θ. If we remove one vertex (say) θ from G
, then the resulting graph is denoted by G − θ. If we remove
subset (say) X ′ ⊂V of vertex set of graph G, then the
obtained graph is denoted by G − X ′. In molecular graph
theory, an acyclic connected graph having order λ is known
as tree and is denoted by T∗

λ . A tree with order λ is said to be
star if central node has degree λ − 1 while all other nodes are
pendent. In other way, a complete bipartite graph κ1,λ−1 is
called a star of order λ. Let G1 and G2 be two vertex disjoint
graphs then their join is denoted by G1 +G2 having vertex
set as a union of their vertex sets, and the edge set contains
all the edges of G1 and G2 and all those edges obtained by
linking each node of G1 with each node of G2.

Ali et al. [5] investigated second and third modified
Zagreb invariants for T-sum graph operation. Using the
obtained results, they computed the second and third mod-
ified Zagreb of certain well-known chemical structures like
alkanes. Cao et al. [6] give an exact formulas for the upper
bounds of modified first Zagreb connection index and sec-
ond Zagreb connection index for several binary graph oper-
ations like corona, Cartesian, and lexicographic product.
Using the obtained closed formulas, they computed these
invariants for several well-known graphs. In [7], the Gour-
ava index for several graph operations is presented.

In molecular graph theory, apex graphs play a significant
role, which can be elucidated as if removal of single vertex or
subset of vertex set from a graph G yields a planar graph,
then the graph G is known as apex graph [8]. Embedding
of apex graphs having face width three are characterized in
[9]. By using the same idea, one can explain the apex and
q-apex trees. If we remove a vertex from G and the resulting
graph is a tree, then that G is called an apex tree [10]. Simi-
larly, if we remove a subset (say) X ′ of vertex set of cardinal-
ity q from G and it results in a tree, then G is known as q
-apex tree, provided that the removal of any other subset
of vertex set whose cardinality is less than q does not form
a tree [10]. A tree is known as trivial apex tree or 0-apex tree.

Therefore, a non-trivial apex tree is one which is not a
tree itself but it can be converted into a tree by removing a
single or number of vertices. In short, 1-apex tree is a graph
which can be made a tree by removing single vertex as
shown in Figure 1 (2-apex tree can be converted into a tree
by removing 2 vertices as shown in Figure 2) and so on. In
fact, apex trees are quasitrees which were introduced by Xu
et al. [11]. Xu et al. [12] determined bounds on harary indi-
ces in case of apex trees. In 2018, Akhter et al. determined k
-apex trees with extremal first reformulated Zagreb
index [13].

2. Upper Bound of GO2 for q-Apex Trees

Let λ ≥ 3, q ≥ 1, and T∗ðλÞ, and T∗
q ðλÞ denotes the set of all

no-trivial apex trees and q-apex trees on λ vertices,
respectively.

Lemma 1. Let T∗ be a tree of order λ, and then

GO2 T∗ð Þ ≤ λ − 1ð Þ2λ ð4Þ

with equality holds if and only if T∗ = Sλ.

Proof. Since T∗ is a tree, it follows that for any edge θϑ ∈ E
ðT∗Þ, we have NðθÞ ∩NðϑÞ =∅. Hence, dT∗ðθÞ + dT∗ðϑÞ = ∣
NðθÞ ∣ + ∣NðϑÞ ∣ ≤λ. Now, using the value of dT∗ðθÞ + dT∗ðϑ
Þ in the definition of second Gourava index, we get

GO2 T∗ð Þ = 〠
θϑ∈E T∗ð Þ

d θð Þ + d ϑð Þð Þd θð Þd ϑð Þ ≤ λ 〠
θϑ∈E T∗ð Þ

d θð Þd ϑð Þ ≤ λ λ − 1ð Þ2:

ð5Þ

Example 2. Let BS ða, bÞ be bistar graph obtained by joining
the apex vertices of two star graph K1,a and K1,b on different
vertices with a, b ≥ 1, and Sλ,a be the graph obtained by join-
ing a − 1 pendent edges to the end vertex of path Pλ−a+1.
Figure 3 depicts the graphs of BSð4, 4Þ and S∗10, respectively.
By definition of second Gourava index, we have GO2ðS∗10Þ
= 810 >GO2ðBSð4, 4ÞÞ = 490. In Table 1, we have computed
the second Gourava index of some classes of trees on 8 ver-
tices. Observe that GO2ðS∗8 Þ has the maximum value among
all other trees.

Lemma 3. Let u′, v′ ∈ VðGÞ be two nonadjacent vertices of G,
and then

GO2 G + u′v′
� �

> GO2 Gð Þ: ð6Þ

l1

Figure 1: 1-apex tree.
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GO2 Gð Þ = 〠
θϑ∈E Gð Þ

d θð Þ + d ϑð Þ½ �d θð Þd ϑð Þ,

GO2 G + u′v′
� �

= 〠
θϑ∈E Gð Þ

d θð Þ + d ϑð Þ½ �d θð Þd ϑð Þ

+ d u′
� �

+ d v′
� �h i

d u′
� �

d v′
� �

:

ð7Þ

Since dðu′Þ, dðv′Þ > 0, it follows that GO2ðG + u′v′Þ >
GO2ðGÞ.

Lemma 4. Let G ∈ T∗ðλÞ with maximum GO2 value, and let
x′ ∈ VðGÞ be an apex vertex, and then

δ Gð Þ = 2, ð8Þ

d x′
� �

= λ − 1: ð9Þ

Proof.

(1) Suppose δðGÞ = 1 and y′ is a leaf node in G, then x
′y′ is not an edge in G and G + x′y′ ∈ T∗ðλÞ. Then,
by Lemma 3, GO2ðG + x′y′Þ >GO2ðGÞ is a contra-
diction. Next, we prove that δðGÞ > 2 is not possible.
Suppose dðθÞ ≥ 3 for all θ ∈ VðGÞ, then for any θ ∈
VðGÞ, the degree of all vertices in G − θ is greater
or equal to two. This implies that G − θ is not a tree.
Hence, δðGÞ = 2.

(2) Suppose dðx′Þ < ðλ − 1Þ, then there exists a vertex y
′ ∈ VðGÞ with x′y′ ∉ EG. Now, G + x′y′ ∈ T∗ðλÞ
and GO2ðG + x′y′Þ > GO2ðGÞ are a contradiction.
Hence, dðx′Þ = ðλ − 1Þ.

Lemma 5. Let G1 and G2 be two graphs on disjoint vertex sets
with ∣VðG1Þ ∣ = π1, ∣VðG2Þ ∣ = π2, ∣EðG1Þ ∣ = ϖ1, and jEðG2

Þj = ϖ2. Then,

GO2 G1 + G2ð Þ =GO2 G1ð Þ +GO2 G2ð Þ + 4π2M2 G1ð Þ
+ 4π1M2 G2ð Þ + 3π2

2M1 G1ð Þ + 3π1
2M1 G2ð Þ

+ 2π2
3ϖ1 + 2π1

3ϖ2 + F G1ð Þπ2 + F G2ð Þπ1

+ 2M1 G1ð Þϖ2 + 2M1 G2ð Þϖ1 + π1π2 M1 G1ð Þ½
+M1 G2ð Þ� + 8ϖ1ϖ2 π1 + π2½ � + 4π1π2 ϖ1π2½
+ ϖ2π1� + 2π1π2 ϖ1π1 + ϖ2π2½ � + π1

2π2
2 π1 + π2½ �:

ð10Þ

Proof. By definition of second Gourava index,

GO2 G1 +G2ð Þ = 〠
θϑ∈E G1+G2ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð ÞÀ Á

:

ð11Þ

Now, using the definition of joint of two graphs having
disjoint vertex sets, we get

GO2 G1 +G2ð Þ = 〠
θϑ∈E G1ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð Þ

+ 〠
θϑ∈E G2ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð Þ

+ 〠
θϑ;θ∈V G1ð Þ,ϑ∈V G2ð Þf g

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð Þ:

ð12Þ

Let

A1 = 〠
θϑ∈E G1ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð ÞÀ Á

,

B1= 〠
θϑ∈E G2ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð ÞÀ Á

,

C1= 〠
θϑ∈ θϑ;θ∈V G1ð Þ,ϑ∈V G2ð Þf g

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð ÞÀ Á

:

ð13Þ

Now, using the fact dG1+G2
ðθÞ =

dG1
ðθÞ + π2 ; θ ∈ VðG1Þ

dG2
ðθÞ + π1 ; ϑ ∈ VðG2Þ

 
the value of A1 can be computed

l'2 l'3

l'1 l'5

l'4

Figure 2: 2-apex tree.
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as

A1 = 〠
θϑ∈E G1ð Þ

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð Þ

= 〠
θϑ∈E G1ð Þ

dG1
θð Þ + dG1

ϑð Þ + 2π2
Â Ã

dG1
θð Þ + π2

À Á
dG1

ϑð Þ + π2
À Á

= 〠
θϑ∈E G1ð Þ

dG1
2 θð ÞdG1

ϑð Þ + dG1
θð Þ2π2 + dG1

θð ÞdG1
ϑð Þπ2

Â
+ dG1

θð Þπ2
2 + dG1

2 ϑð ÞdG1
θð Þ + dG1

θð ÞdG1
ϑð Þπ2 + dG1

2 ϑð Þπ2

+ dG1
θð Þπ2

2 + 2π2dG1
θð ÞdG1

ϑð Þ + 2π2
2dG1

θð Þ + 2π2
2dG1

ϑð Þ + 2π2
Ã

= 〠
θϑ∈E G1ð Þ

dG1
2 θð ÞdG1

ϑð Þ + dG1
2 ϑð ÞdG1

θð ÞÂ Ã
+ π2 〠

θϑ∈E G1ð Þ
dG1

2 θð Þ + dG1
2 ϑð ÞÂ Ã

+ 4π2 〠
θϑ∈E G1ð Þ

dG1
θð ÞdG1

ϑð ÞÂ Ã
+ 3π2

2 dG1
θð Þ + dG1

ϑð ÞÂ Ã
+ 2π2

3 〠
θϑ∈E G1ð Þ

:

ð14Þ

Similarly,

B1 =GO2 G2ð Þ + π1F G2ð Þ + 4π1M2 G2ð Þ + 3π1
2M1 G2ð Þ + 2π1

3ϖ2:

ð15Þ

The value of C1 can be calculated as

C1 = 〠
θϑ∈ θϑ;θ∈V G1ð Þ,ϑ∈V G2ð Þf g

dG1+G2
θð Þ + dG1+G2

ϑð ÞÂ Ã
dG1+G2

θð ÞdG1+G2
ϑð ÞÀ Á

= 〠
θ∈V G1ð Þ,ϑ∈V G2ð Þ

dG1
θð Þ + π2 + dG2

ϑð Þ + π1
Â Ã

dG1
θð Þ + π2

À Á
dG2

ϑð Þ + π1
À ÁÀ Á

= 〠
θ∈V G1ð Þ,ϑ∈V G2ð Þ

dG1
2 θð ÞdG2

ϑð ÞÂ
+ dG1

2 θð Þπ1 + dG2
ϑð ÞdG1

θð Þπ2

+ dG1
θð Þπ2π1 + dG1

θð ÞdG2
2 ϑð Þ + dG1

θð ÞdG2
ϑð Þπ1 + dG2

2 ϑð Þπ2

+ dG2
ϑð Þπ1π2 + dG1

θð ÞdG2
ϑð Þπ1 + dG1

θð Þπ1
2 + dG2

ϑð Þπ1π2 + π1
2π2

+ dG1
θð ÞdG2

ϑð Þπ2 + dG1
θð Þπ1π2 + dG2

ϑð Þπ2
2 + π1π2

2 = 2M1 G1ð Þϖ2

+ 2M1 G2ð Þϖ1 + π1π2 M1 G1ð Þ +M1 G2ð Þ½ � + 8ϖ1ϖ2 π1 + π2½ �
+ 4π1π2 ϖ1π2 + ϖ2π1½ � + 2π1π2 ϖ1π1 + ϖ2π2½ � + π1

2π2
2 π1 + π2½ �:

ð16Þ

Now, using the values of A1, B1, and C1 in Equation (2),
we get

GO2 G1 + G2ð Þ =GO2 G1ð Þ +GO2 G2ð Þ + 4π2M2 G1ð Þ + 4π1M2 G2ð Þ
+ 3π2

2M1 G1ð Þ + 3π1
2M1 G2ð Þ + 2π2

3ϖ1 + 2π1
3ϖ2

+ F G1ð Þπ2 + F G2ð Þπ1 + 2M1 G1ð Þϖ2 + 2M1 G2ð Þϖ1
+ π1π2 M1 G1ð Þ +M1 G2ð Þ½ � + 8ϖ1ϖ2 π1 + π2½ �
+ 4π1π2 ϖ1π2 + ϖ2π1½ � + 2π1π2 ϖ1π1 + ϖ2π2½ �
+ π1

2π2
2 π1 + π2½ �:

ð17Þ

Theorem 6. Let G ∈ T∗ðλÞ and λ ≥ 5, and then

GO2 Gð Þ ≤ 6λ3 − 14λ2 + 2λ + 6, ð18Þ

with equality holds if G = κ1 + Sλ−1.

Proof. Let G ∈ T∗ðλÞ with maximum GO2 value. By Lemma
4, we have G = κ1 + T∗

λ−1. Let the cardinality of vertex sets
of κ1 and T∗

λ−1 be ρ1 and ρ2 where cardinality of their edge
sets is ς1 and ς2, respectively. Now by, using Lemma 1., we

𝛼1

𝛼2

𝛼3

𝛼4

𝛼5 𝛼6

𝛼7

𝛼8

𝛼9

𝛼10

T
⁎

S
⁎

10

𝛼1

𝛼2

𝛼3

𝛼4

𝛼5

𝛼6 𝛼7

𝛼8

𝛼9

𝛼10

Figure 3: Trees of order 10:

Table 1: GO2ðT∗Þ of certain trees T∗ of order 8.

T∗ GO2 T∗ð Þ
S8 392
BS 5, 1ð Þ 312
BS 4, 2ð Þ 264
BS 3, 3ð Þ 248
S8,5 212
S8,4 146
S8,3 108

4 Journal of Chemistry
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have

GO2 κ1 + T∗
λ−1ð Þ =GO2 κ1ð Þ +GO2 T∗

λ−1ð Þ + 4ρ2M2 κ1ð Þ
+ 4ρ1M2 T∗

λ−1ð Þ + 3ρ22M1 κ1ð Þ + 3ρ12M1 T∗
λ−1ð Þ

+ 2ρ23ς1 + 2ρ13ς2 + F κ1ð Þρ2 + F T∗
λ−1ð Þρ1

+ 2M1 κ1ð Þς2 + 2M1 T∗
λ−1ð Þς1 + ρ1ρ2 M1 κ1ð Þ½

+M1 T∗
λ−1ð Þ� + 8ς1ς2 ρ1 + ρ2½ � + 4ρ1ρ2 ς1ρ2 + ς2ρ1½ �

+ 2ρ1ρ2 ς1ρ1 + ς2ρ2½ � + ρ1
2ρ2

2 ρ1 + ρ2½ � ≤ λ − 1ð Þ2 λ + 3ð Þ
+ 7 λ2 − 3λ + 2
À Á

+ 3λ3 − 12λ2 + 15λ − 6
À Á

+ λ3 − 6λ2 + 15λ − 14
À

+ λ3 − 2λ2 + λ
À

= 6λ3 − 14λ2 + 2λ + 6:

ð19Þ

Example 7. Let G1 = κ1 + S6−1, G2 = κ1 + T∗
5 as depicted in

Figure 4 and G3 be 1 -apex tree of order 6 as shown in
Figure 5. Then, the values of second Gourava index of these
1-apex trees are GO2ðG1Þ = 810, GO2ðG1Þ = 720, and GO2ð
G1Þ = 214. Table 2 depicts the values second Gourava index
of some graphs in the class of 1-apex trees of order 8.
Observe that GO2 of κ1 + S7 is maximum among all other
graphs.

Theorem 8. Let q ≥ 2, λ ≥ 5, and G ∈ T∗
q ðλÞ, and then

GO2 Gð Þ ≤ q + q2
À Á

λ − 1ð Þ3 + λ + qð Þ λ − 1ð Þ λ q + 1ð Þ2 − q + 1ð Þ3À Á
ð20Þ

with equality holds if G = κq + Sλ−q

Proof. We prove it by induction the value of q. For q = 1, the
result follows from Theorem 6. Suppose the result is true for
q − 1 apex trees, let G ∈ T∗

q ðλÞ with maximum GO2 and Vq

⊂VðGÞ be the set of q-apex vertices. Since GO2ðG + u′v′Þ
> GO2ðGÞ for any nonadjacent edges u′, v′ ∈ VðGÞ, it fol-
lows that Vq is a clique in G. Hence, dðu′Þ = λ − 1 for all u
′ ∈ Vq, and the number of edges m′ of the graph G is

m′ = 1
2 q2 + q
À Á

+ q + 1ð Þλ − q + 1ð Þ2: ð21Þ

Let x′ be an apex vertex and Vq−1 =Vq − x′. Observe
that dðx′Þ = λ − 1 and G − x′ are an ðq − 1Þ-apex tree. Then,

GO2 G − x′
� �

= 〠
θϑ∈E G−x′Þ dG θð Þ − 1 + dG ϑð Þ − 1ð Þ dG θð Þ − 1ð Þðð

ðdGðϑÞ − 1ÞÞ = 〠
θϑ∈EðG−x′Þ

½ðdGðθÞ + dGðϑÞ − 2ÞðdGðθÞdGðϑÞ −

dGðθÞ − dGðϑÞ + 1Þ� = 〠
θϑ∈EðG−x′Þ

½d2GðθÞdGðϑÞ − ðd2GðθÞ − dGðθÞ

dGðϑÞ + dGðθÞ + dGðθÞd2GðϑÞ − dGðθÞdGðϑÞ − d2GðϑÞ + dGðϑÞ

− 2dGðθÞdGðϑÞ + 2dGðθÞ + 2dGðϑÞ − 2� = 〠
θϑ∈EðG−x′Þ

½d2GðθÞdGð

ϑÞ + dGðθÞd2GðϑÞ� − 〠
θϑ∈EðG−x′Þ

ðd2GðθÞ + d2GðϑÞÞ − 4 〠
θϑ∈EðG−x′Þ

ðdG

𝜉

Figure 4: 1-apex tree.

k1 + S5 k1 + T5
⁎

Figure 5: 1-apex tree.

Table 2: GO2 value of some 1-apex trees of order 8.

κ1 + T∗
λ−1ð Þ GO2 κ1 + T∗

λ−1ð Þ
� �

κ1 + S7 2198

κ1 + BS 4, 1ð Þ 1962

κ1 + S7,4 1758

κ1 + S7,3 1634

κ1 + BS 3, 2ð Þ 1277

k2 + S3

2 – apex tree

Figure 6: 1-apex tree.

Table 3: GO2 values of some 2-apex trees on 9 vertices.

κ2 + T∗
λ−2ð Þ GO2 κ2 + T∗

λ−2ð Þ
� �

κ2 + S7 7824
κ2 + BS 4, 1ð Þ 7344
κ2 + S7,4 7108
κ2 + S7,3 6712
κ2 + BS 3, 2ð Þ 6684
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ðθÞdGðϑÞÞ + 3 〠
θϑ∈EðG−x′Þ

ðdGðθÞ + dGðϑÞÞ − 〠
θϑ∈EðG−x′Þ

=

〠
θϑ∈EðG−x′Þ

½d2GðθÞdGðϑÞ + dGðθÞd2GðϑÞ� − 〠
θϑ∈EðG−x′Þ

ðd2GðθÞ + d2Gð

ϑÞÞ + 〠
x′θ∈EðGÞ

½ðλ − 1Þ2dGðθÞ + ðλ − 1Þd2GðθÞ� − 〠
x′θ∈EðGÞ

½ðλ − 1Þ2 +

d2GðθÞ� − 〠
x′θ∈EðGÞ

½ðλ − 1Þ2dGðθÞ + ðλ − 1Þd2GðθÞ� + 〠
x′θ∈EðGÞ

½

ðλ − 1Þ2 + d2GðθÞ� − 4 〠
θϑ∈EðG−x′Þ

ðdGðθÞdGðϑÞÞ + 3 〠
θϑ∈EðG−x′Þ

ðdGð

θÞ + dGðϑÞÞ − 4 〠
x′θ∈EðGÞ

ðλ − 1ÞdGðθÞ + 3 〠
x′θ∈EðGÞ

ððλ − 1Þ + dGðθÞÞ

+ 4 〠
x′θ∈EðGÞ

ðλ − 1ÞdGðθÞ − 3 〠
x′θ∈EðGÞ

ððλ − 1Þ + dGðθÞÞ − 2ðm′ − λ

+ 1Þ = 〠
θϑ∈EðGÞ

½d2GðθÞdGðϑÞ + dGðθÞd2GðϑÞ� − 〠
θϑ∈EðGÞ

ðd2GðθÞ +

d2GðϑÞÞ − 4 〠
θϑ∈EðGÞ

ðdGðθÞdGðϑÞÞ + 3 〠
θϑ∈EðGÞ

ðdGðθÞ + dGðϑÞÞ −

〠
x′θ∈EðGÞ

½ðλ − 1Þ2dGðθÞ + ðλ − 1Þd2GðθÞ� + 〠
x′θ∈EðGÞ

½ðλ − 1Þ2 + d2Gðθ

Þ� + 4 〠
x′θ∈EðGÞ

ðλ − 1ÞdGðθÞ − 3 〠
x′θ∈EðGÞ

ððλ − 1Þ + dGðθÞÞ − 2ðm′ −

λ + 1Þ:
ð22Þ

GO2 G − x′
� �

=GO2 Gð Þ − F Gð Þ − 4M2 Gð Þ

+ 3M1ðGÞ − ðλ − 1Þ2ð 〠
θ∈VðG−x′Þ

ðdGðθÞÞ + ðλ − 1Þ − ðλ − 1Þ −

ðλ − 1ÞÞ½ 〠
θ∈VðG−x′Þ

d2GðθÞ + ðλ − 1Þ2 − ðλ − 1Þ2� + ðλ − 1Þ3 + ½

〠
θ∈VðG−x′Þ

d2G ðθÞ + ðλ − 1Þ2 − ðλ − 1Þ2� + 4ðλ − 1Þð 〠
θ∈VðG−x′Þ

ðdGð

θÞÞ + ðλ − 1Þ − ðλ − 1ÞÞ − 3ðλ − 1Þ2 − 3ð 〠
θ∈VðG−x′Þ

ðdGðθÞÞ + ð

λ − 1Þ − ðλ − 1ÞÞ − 2ðm′ − λ + 1Þ =GO2ðGÞ − FðGÞ − 4M2ðG

Þ + 3M1ðGÞ − ðλ − 1Þ2ð 〠
θ∈VðGÞ

ðdGðθÞÞ − ðλ − 1ÞÞ − ðλ − 1Þ½

〠
θ∈VðGÞ

d2GðθÞ − ðλ − 1Þ2� + ðλ − 1Þ3½ 〠
θ∈VðGÞ

d2GðθÞ − ðλ − 1Þ2� + 4

ðλ − 1Þð 〠
θ∈VðGÞ

ðdGðθÞÞðλ − 1ÞÞ − 3ðλ − 1Þ2 − 3ð 〠
θ∈VðG−x′Þ

ðdGðθ

ÞÞ − ðλ − 1ÞÞ − 2ðm′ − λ + 1Þ = GO2ðGÞ − FðGÞ − 4M2ðGÞ +
3M1ðGÞ − ðλ − 1Þ2ð2m′ − λ + 1Þ − ðλ − 1Þ½M1ðGÞ − ðλ − 1Þ2�
+ ðλ − 1Þ3 + ½M1ðGÞ − ðλ − 1Þ2� + 4ðλ − 1Þ ð2m′ − λ + 1Þ − 3
ðλ − 1Þ2 − 3ð2m′ − λ + 1Þ − 2ðm′ − λ + 1Þ =GO2ðGÞ − FðGÞ
− 4M2ðGÞ +M1ðGÞ ð5 − λÞ + 3ðλ − 1Þ3 − 8ðλ − 1Þ2 + 8m′λ

− 16m′ + 5λ − 5 − 2 ðλ − 1Þ2m′: Hence, we get

GO2 Gð Þ = GO2 G − x′
� �

+ F Gð Þ + 4M2 Gð Þ λ − 5ð ÞM1 Gð Þ − 3 λ − 1ð Þ3

+ 8 λ − 1ð Þ2 − 8m′λ + 16m′ − 5λ + 5 + 2 λ − 1ð Þ2m′:
ð24Þ

Since GO2ðG − x′Þ = ðq2 − qÞðλ − 1Þ3 + ðλ − q − 1Þðλ + q
− 2Þðq2λ − 2qÞ and for q ≥ 2,λ ≥ 5, we have

M1 Gð Þ ≤ q + 1ð Þ λ2 − 2λ + 1
À Á

+ λ q + 1ð Þ2 − q + 1ð Þ3, ð25Þ

M2 Gð Þ ≤ 1
2 q2 + q
À Á

λ2 − 2λ + 1
À Á

+ λ − 1ð Þ λ q + 1ð Þ2 − q + 1ð Þ3À Á
,

ð26Þ

F Gð Þ ≤ q + 1ð Þ λ3 − 3λ2 + 3λ − 1
À Á

+ λ q + 1ð Þ3À
− q + 1ð Þ4m′

= 1
2 q2 + q
À Á

+ q + 1ð Þλ − q + 1ð Þ2:
ð27Þ

Using all the values in the above equation, we get

GO2 Gð Þ ≤ q2 − q
À Á

λ − 1ð Þ3 + λ − q − 1ð Þ λ + q − 2ð Þ q2λ − 2q
À Á

+ q + 1ð Þ λ3 − 3λ2 + 3λ − 1
À Á

+ λ q + 1ð Þ3 − q + 1ð Þ4À
+ 4 1

2 q2 + q
À Á

λ2 − 2λ + 1
À Á

+ λ − 1ð Þ λ q + 1ð Þ2 − q + 1ð Þ3À Á� �
+ λ − 5ð Þ q + 1ð Þ λ2 − 2λ + 1

À Á
+ λ q + 1ð Þ2 − q + 1ð Þ3 − 3 λ − 1ð Þ3

+ 8 λ − 1ð Þ2 − 8λ 1
2 q2 + q
À Á

+ q + 1ð Þλ − q + 1ð Þ2
� �

+ 16 1
2 q2 + q
À Á

+ q + 1ð Þλ − q + 1ð Þ2
� �

− 5λ + 5 + 2 λ − 1ð Þ2 1
2 q2 + q
À Á

+ q + 1ð Þλ − q + 1ð Þ2
� �

:

ð28Þ

After simplification, we have

GO2 Gð Þ ≤ q + q2
À Á

λ − 1ð Þ3 + λ + qð Þ λ − 1ð Þ λ q + 1ð Þ2 − q + 1ð Þ3À Á
ð29Þ

Example 9. Let G1 and G2 = κ2 + S5−2 be 2 -apex trees of order
5 as shown in Figure 6. Then, GO2ðG1Þ = 224 and GO2ðG2
Þ = 888. Table 3 depicts the values of some 2 apex trees on
9 vertices. Observe that GO2 value of κ2 + S7 is the maxi-
mum among all others.

3. Conclusion

In our present discussion, we have determined the maximum
value of secondGourava invariant for q-apex trees. In future, it
would be interesting to find the same results for those chemi-
cal invariants which are not investigated till now.
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