

Research Article

Determination of 20 Neonicotinoid Insecticides and Their Metabolites in Infant Foods by a Modified QuEChERS Method Combined with HPLC-MS/MS

Liqiang Guo,¹ Kai Li¹,¹ Jinling Zhang,¹ Guoning Tian,¹ Ke Wang,² and Yajing Li¹

¹Comprehensive Technical Service Center of Weifang Customs, Weifang 261041, China ²Shijiazhuang Center for Disease Control and Prevention, Shijia Zhuang 050011, China

Correspondence should be addressed to Kai Li; likai1022@icloud.com

Received 9 August 2022; Revised 26 September 2022; Accepted 28 September 2022; Published 5 October 2022

Academic Editor: Maurice Millet

Copyright © 2022 Liqiang Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A rapid, effective, and reliable method for the simultaneous detection of 20 neonicotinoids and their metabolites in infant foods has been developed using liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To improve the accuracy and precision of the method, different extraction solvents, extraction methods, and adsorbents were evaluated to achieve a better recovery and clean-up effect. Under optimized conditions, the samples were extracted with acetic acid acidified acetonitrile/ethyl acetate by ultrasonication, and then were cleaned with reduced graphene oxide@Fe₃O₄ (rGO@Fe₃O₄) and primary and secondary amine (PSA) through a QuEChERS step. A matrix-matched calibration method was applied for quantification. Relative standard deviations were all <15% for intraday and interday precision. The values of limit of detection and limit of quantification were ranging from $0.02-0.35 \,\mu g \cdot kg^{-1}$ and $0.1-1.0 \,\mu g \cdot kg^{-1}$, respectively. The presented method was applied to the analysis of real samples.

1. Introduction

Neonicotinoids generally contain three chemical structures: N-cyanoamidines, N-nitroguanidines, and nitromethylenes [1]. They are often applied as seed treatments, soil application, and foliar spraying to translocate to all plant organs and thus avoid insect damage [1-3]. Since their invention in the mid-1990s, neonicotinoids have quickly become widely used, accounting for 25% of the world's pesticide market [4]. Even though neonicotinoids provide positive results from a pest control perspective, their residues' adverse ecological, environmental, and public health effects in pollen, nectar, crops, fruits, and vegetables should also be reviewed. Recent studies have indicated that neonicotinoids can affect the acetylcholine levels of honey bees, resulting in paralysis, loss of orientation and flight ability, and possibly even death [5, 6]. Due to their systemic mode of action, approximately 73% of pollen and honey collected from beehives contained at least one neonicotinoid [7]. Furthermore, neonicotinoids

are highly stable in water and soil and cannot be washed off before consumption, potentially endangering human health [3, 8-10]. A lack of toxicological data makes it difficult to fully assess how neonicotinoids affect human health. Still, mammalian studies have shown that neonicotinoids can severely damage the central nervous system and adversely affect reproduction [10-16]. It is worth noting that some neonicotinoid metabolites are even more toxic than their parent compounds [10, 15–17]. With the widespread use of toxic neonicotinoids and their cumulative effects, their deleterious effects on infant brain development deserve special attention [18]. An FDA dietary study clearly stated that considerable levels of neonicotinoids were detected about 6-31% frequency among commercial infant foods [19]. Therefore, it is critical to establish reliable analytical methods to detect neonicotinoids and their metabolites in commercialized infant food.

Several analytical methodologies are commonly employed to detect neonicotinoid residues in food. These

include high-performance liquid chromatography with ultraviolet detection (HPLC-UV) [20–23], high-performance liquid chromatography-mass spectrometry (HPLC-MS) [24–27], ion chromatography (IC) [28], gas chromatography (GC) [29], capillary electrophoresis (CE) [30–32], and nonchromatographic methods [33–37]. Overall, among these methods, HPLC-MS is the most commonly used, based on its reliability, sensitivity, and selectivity. While instrument performance is positively correlated with the accuracy of the results, sample pretreatment techniques have a much more major impact. It is no exaggeration to say that the performance of the analytical instrument will be determined by whether or not it can be fully utilized.

Although numerous studies have been conducted on neonicotinoid residues in adult foods, little attention has been paid to infant foods. This article aimed to develop a simple, rapid, and efficient QuEChERS method combined with HPLC-MS/MS to detect neonicotinoids as well as their metabolites in infant foods. As far as we know, the present study is the first to simultaneous determination of 20 neonicotinoid insecticides and their metabolites in infant foods. Various conditions for sample pretreatment, chromatographic separations, and mass spectrometric detection were investigated and optimized. This established method was further validated and applied to real samples.

2. Materials and Methods

2.1. Materials and Chemicals. The analytical standards of 20 neonicotinoids and their metabolites, including IMI (≥99.8%), CYC (≥92.7%), THX (≥99.0%), CLO (≥99.8%), and FLO (≥99.0%), were purchased from Dr. Ehrenstorfer Gmbh (Germany); 5-OH-IMI (≥99.7%), DN (≥99.0%), UF (≥99.0%), and TFNG (≥99.7%) from A ChemTek (USA); 6-CHL (≥99.0%), ACE (≥99.2%), DM-ACE (≥99.5%), THA (≥99.4%), IMIT (≥98.0%), DM-CLO (≥98.2%), and DNT (≥99.9%) from Tan-Mo Technology (China); SUL (≥99.0%) and TFNA-AM (≥99.8%) from CATO Research Chemicals (USA); IM-1-4 (≥98.0%) AltaScientific (China). Sorbents, such as neutral alumina (Alumina-N) was obtained from Kermel (China); graphitized carbon black (GCB), C18 (ODS), primary and secondary amine (PSA), and aminopropyl (-NH₂) from Biocomma (China); silica mesoporous SBA-15 (Pore size 6-13 nm), and reduced graphene oxide@ Fe₃O₄ (rGO@Fe₃O₄) from XFNANO (China); multi-walled carbon nanotubes (MWCNT) (≥99%) from Tanfeng Tech (China); Captiva EMR-Lipid from Agilent (USA). HPLC grade formic acid, acetonitrile, acetic acid, methanol, and ethyl acetate were acquired from Merk (USA). Deionized water was produced using a Milli-Q purification system (Millipore, USA). Infant foods, including vegetable and fruit cookies, grain rice cereals, and vegetable purees, were sourced from a local supermarket.

2.2. Standard Solutions. Individual standard solutions of 20 neonicotinoids and their metabolites were prepared by separately dissolving the technical grade materials in methanol. Mixed standard solutions containing each target

compound for this study were prepared in a mixture of appropriate amounts of the individual stock solutions with 10% aqueous acetonitrile (containing 0.1% formic acid). A series of working solutions (mixed standard solutions and matrix-matched standard solutions) were prepared at the concentration of 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, and 150 ug·L⁻¹. All the stock and working standard solutions were stored at -20° C until further use.

2.3. Sample Preparation. The representative sample's aliquot (4.0 g, wet weight) was initially weighed and transferred into a 50 mL polypropylene centrifuge tube. Then, it was dissolved with 4 mL of deionized water and extracted with 20 mL of acetonitrile/ethyl acetate acidiified with 0.1% acetic acid (50/50, v/v). Each extraction process should be vortexed for 30 s and ultrasonicated for 10 min and then centrifuged at 5000 rpm for 10 min. Subsequently, 10 mL of the upper extract was collected, transferred into a 15 mL glass tube and concentrated to dryness under a gentle stream of nitrogen. The residues were then redissolved with 1 mL of 10% aqueous acetonitrile (containing 0.1% formic acid) and treated with 40 mg PSA, 30 mg rGO@Fe₃O₄ powder, vortexed 1 min. Take the upper transparent layer to pass through a 0.22 um nylon membrane for HPLC-MS/MS analysis.

2.4. LC-MS/MS Analysis. A 2040C HPLC (Shimadzu, Japan) coupled with an 8045 triple quadrupole mass spectrometer (Shimadzu, Japan) was used for sample analysis. Chromatographic separation was performed at 30° C on an InertSustain AQ-C18 column (2.1 mm × 100 mm, 3.0 um, Shimadzu, Japan), in which the mobile phase consisted of 5 mM ammonium acetate and 0.1% formic acid in water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The following gradient program was developed by applying 5 uL injection volume and 0.3 mL/min flow rate. Starting with 0–10% B in 0.2 min, 10–35% B in 2.8 min, 35–75% B in 4 min, re-equilibration at 10% B for 0.5 min, and held at 10% B in 4.5 min.

The MS/MS detection was performed in multiple reaction monitoring (MRM) mode with positive ESI. Data collection was monitored using the LabSolution Insight software (5.91), and the optimized source parameters were as follows:

Interface voltage of 4 kV Desolvation line temperature of 250°C Heat block temperature of 400°C Nebulizer gas (nitrogen) flow at 3 L/min Drying gas (air) flow at 10 L/min Heating gas (nitrogen) flow at 10 L/min

3. Results and Discussion

3.1. Optimization of HPLC-MS/MS Conditions. Multiresidue insecticides detection in complex matrices requires effective chromatographic separation and sensitive

TABLE 1: Mass spectrometry parameters for the analysis of 20 neonicotinoids and their metabolites.

Analytes	Precursor ions (m/z)	Product ions (m/z)	CE (V)	Retention time (min)
IMI	256.1	209.1*, 175.1	-14, -17	6.25
5-OH-IMI	272.1	225.1*, 134.1	-15, -41	5.42
6-CHL	158.0	122.0*, 51.1	-21, -36	6.74
NTP	271.1	126.0*, 225.0	-26, -16	4.77
ACE	223.1	126.1*, 56.1	-22, -15	6.40
DM-ACE	209.1	126.0*, 90.1	-17, -33	5.95
IM-1-4	157.1	126.1*, 73.0	-15, -44	1.82
THA	253.0	126.1*, 99.0	-20, -43	7.09
IMIT	262.0	181.1*, 122.1	-17, -30	6.43
CYC	323.1	151.1*, 276.1	-22, -15	5.56
THX	292.0	211.1*, 181.1	-11, -23	5.41
CLO	250.0	169.0*, 131.9	-10, -14	5.91
DM-CLO	236.0	132.0*, 113.0	-13, -26	5.63
DNT	203.1	129.1*, 113.1	-12, -10	3.75
DN	158.1	102.1*, 57.1	-17, -25	1.51
UF	159.1	102.1*, 67.1	-13, -18	2.12
SUL	278.1	174.0*, 154.0	-8, -28	7.15
FLO	230.1	203.0*, 173.8	-16, -19	7.29
TFNG	249.0	148.0*, 128.0	-33, -35	4.74
TFNA-AM	191.0	98.1*, 73.1	-30, -31	3.93

*Quantitation ion.

mass spectrometric detection. In this regard, instrument parameters should be optimized to enhance selectivity and sensitivity.

It was found that the signals of the 20 neonicotinoid insecticides were more than five times higher in the ESI positive ion mode compared to the ESI negative ion mode. Therefore, the protonated molecular ion $(M + H)^+$ was determined for each analyte and used as a precursor ion. A pair of product ions with the highest abundance and stability was selected for confirmation, while the ion with the highest intensity was used for quantification. The optimized MS [2] parameters are shown in Table 1.

The column type, mobile phase, and gradient elution program are the main factors influencing chromatographic separation. Neonicotinoids are stable and hydrophilic under acidic conditions [38]. Therefore, adding formic acid to the mobile phase will improve the corresponding intensity of the target peaks. As such, a water- and acid-resistant column, InertSustain AQ-C18, was chosen. Then, three sizes of columns ((a) $2.1 \text{ mm} \times 100 \text{ mm};$ $2.1 \text{ mm} \times 50 \text{ mm};$ (b) (c)2.1 mm × 150 mm) were tested for separation efficiency of the neonicotinoids. According to the results, the retention time of (a) was too short, causing the neonicotinoids to barely separate from the impurities. In (c), the retention time is too long, which is time-consuming. Alternative (b) satisfies both separation efficiency and time-saving requirements and is preferred. In addition, the influence of the mobile phase composition on the mass spectrometry signal is evaluated. It was found that adding a small amount of ammonium acetate to the aqueous acidic mobile phase could greatly enhance neonicotinoids signals and decrease noises. And for the organic mobile phase in terms of sensitivity, acetonitrile provides sharper peaks and a higher signal-to-noise ratio

than methanol. Altogether, a InertSustain AQ-C18 $(2.1 \text{ mm} \times 100 \text{ mm})$ column plus mobile phases (A $(H_2O + 0.1\% \text{ formic acid} + 5 \text{ mM} \text{ ammonium acetate})$ and B (acetonitrile + 0.1% formic acid)) were employed for chromatographic separation.

3.2. Optimization of the Extraction Solvent. Three different solvents and six solvent combinations were examined to obtain satisfactory recoveries of 20 neonicotinoids and their metabolites in vegetable and fruit cookies. The experiment was conducted as described in the sample preparation section, but without a cleanup step. The average recoveries of 20 neonicotinoids obtained with methanol ranged from 27%-70%. As for acetonitrile, they were from 41%-85%. Ethyl acetate provides the data of 20%-99%. Thus, it seems that acetonitrile and ethyl acetate are better than methanol for most of the analyte. To further select the best extraction solvent, six different combinations were experimented. The combination of solvents improved the analytes' recovery compared to a single solvent, especially the acetonitrile/ ethyl acetate mixture. In total, the average recovery of the 20 neonicotinoids at acetonitrile/ethyl acetate (V/V) = 1:1 varied from 47% to 91%, with relatively favorable results. It is worth mentioning that adding acid to the extraction solvent improves the analytes' recovery. With 0.1% addition, acetic acid was more effective than formic acid (about 8.2% or more for 6-CHL, IM-1-4, THX, and TFNG). Finally, a solvent mixture (acetonitrile/ ethyl acetate (V:V) = 1:1) with the addition of 0.01% acetic acid was used as the extraction method to perform the analysis.

3.3. Optimization of the Extraction Method. In this study, under the conditions of acetonitrile-ethyl acetate (1:1, v/v) (with 0.01% acetic acid) as an extractant, the effects of different extraction method (vortex, oscillation, and ultrasonic) were compared. The results reveal that vortex and

ultrasonic were superior to oscillation of the three preparation procedures. To accomplish a relatively good extraction, two minutes of vortexing and ten minutes of sonicating were sufficient and extending the extraction duration did not increase the recovery of neonicotinoids. In terms of multisample processing, the ultrasonic extraction method appears to be more favorable. After ten minutes of sonication, the average recovery of the 20 neonicotinoid insecticides ranged from 52% to 92%.

3.4. Evaluation of Different Sorbents for Dispersive Solid-Phase Extraction Clean-Up in the QuEChERS Method. Developing a simultaneous multiclass residue analysis approach requires the extraction and cleaning of pesticides with various physicochemical properties under the same conditions. For this purpose, a modified QuEChERS approach was used in this work since the SPE method could not identify both 20 neonicotinoids and their metabolites simultaneously. Given the breadth of available sorbents as alternatives to the clean-up step, this study examined the adsorption capability of nine commonly used sorbents (including alumina-N, GCB, C18, PSA, -NH₂, EMR-Lipid, rGO@Fe₃O₄, MWCNT, and SBA-15) for 20 neonicotinoids and their metabolites. It was found that GCB, MWCNT, and SBA-15 were not suitable for the clean-up sorbent because of the severe adsorption of certain neonicotinoid insecticides. The average recoveries of 20 analytes in blank vegetable and fruit cookies after being treated with 50 mg of the rest six sorbents (alumina-N, C18, PSA, -NH₂, EMR-Lipid, and rGO@Fe₃O₄) were calculated. Clearly, rGO@Fe₃O₄ shows the best clean-up effect for all the 20 analytes and provides recoveries from 83%-103%. It is, however, not very practical to use rGO@Fe₃O₄ alone for pigment purification, and the addition of PSA can overcome this difficulty. Using PSA plus rGO@Fe₃O₄, the mass sensitivity of 20 analytes to be measured was improved by 15%. Different doses (20 mg, 30 mg, 40 mg, 50 mg, and 60 mg) were compared based on the color shades of vegetable and fruit cookie extracts (1 mL) after the PSA treatment. With an increasing dosage of PSA, the color of the solution became lighter, and once the dosage reached 40 mg, it was no longer changing. As a result, the PSA amount was set to 40 mg, and various dosage of rGO@ Fe₃O₄ (20 mg, 30 mg, 40 mg, 50 mg, and 60 mg) were added to form a clean-up combination to optimize the purification method. Once the rGO@Fe₃O₄ amount was increased from 20 mg to 30 mg, there was a slight increase in the recoveries of the 20 analytes. In comparison, increasing the amount from 30 mg to 60 mg resulted in an insignificant difference. In summary, $PSA + rGO@Fe_3O_4$ (40 mg + 30 mg) was chosen as the sorbent for the QuEChERS method, and the average recoveries of the 20 analytes ranged between 78% and 99%.

3.5. Matrix Effects (ME). The slope of the solvent calibration curve and the matrix-matched blank extract calibration curve were used to determine the ME, according to the equation: ME (%) = ((the slope of the matrix-matched calibration curve – the slope of the solvent standard calibration

curve)/the slope of the solvent standard calibration curve) × 100. This study evaluated the matrix effects of 20 neonicotinoids and their metabolites in three common infant foods (vegetable and fruit cookies, grain rice cereals, and vegetable purees). Based on the results, the highest ME value was assigned to grain rice cereals, followed by cookies and then the purees. By and large, most insecticides demonstrated strong matrix enhancement (>25%), with IMIT and DN even exceeding 200%. In order to compensate ME, matrix-matched calibration standards were used for quantification.

3.6. Linearity, Limit of Detection (LOD), and Limit of Quantification (LOQ). A matrix-matched standard solution (grain rice cereals) was used to test the linearity of each insecticide. Calibration curves were constructed by plotting the insecticide/IS peak area ratios against the concentration of the corresponding calibration standards at several different levels (0.1–150 ug·L⁻¹) (6 replicates per level). For all 20 analytes, regression lines with coefficient of determination (r^2) above 0.99 were obtained. LODs and LOQs of the present method correspond to the signal-to-noise ratios of 3 and 10, respectively.

3.7. Accuracy and Precision. A recovery rate experiment was conducted to test the method's accuracy. Blank samples were spiked with two levels (1.0 and $10 \,\mu g \cdot kg^{-1}$) following 6 replications to determine the recovery rate. The method's precision was calculated as the relative standard deviation (RSD) of the six samples spiked at three concentration levels. As can be seen in Table 2, the intraday average recovery of all pesticides ranges from 64%~108% (vegetable and fruit cookies), 72%~105% (grain rice cereals), and 71%~107% (vegetable purees), with LOD $(0.02-0.35 \,\mu \text{g} \cdot \text{kg}^{-1})$ and LOQ $(0.1-1.0 \,\mu g \cdot k g^{-1})$. The interday recoveries were from 69%~ 106% (vegetable and fruit cookies), 71%~107% (grain rice cereals), and 71%~103% (vegetable purees) (Table 3). Good repeatability is demonstrated with RSD<15.0% for all analytes (Tables 2 and 3). The results mentioned above indicate the method's simplicity, efficiency, and reliability, as it can be used to identify 20 neonicotinoids and their metabolites in infant foods simultaneously.

3.8. Analysis of Real Samples. Although China does not yet have a national standard detection method for neonicotinoid pesticides in infant foods, the national standard method for neonicotinoid pesticides in fruits and vegetables (GB/T 20769–2008) would be an ideal control method for comparison with ours [39]. The established method and GB/ T 20769–2008 method were applied to test fifteen samples of infant foods collected from local supermarkets (5 kinds of cookies, 5 kinds of cereals, and 5 kinds of purees) in order to ascertain the accuracy of the method. Both methods have detected acetamiprid in one cookie sample and thiamethoxam in one puree sample. As shown in Table 4, each sample was tested 6 replicates, no significant difference can be found between the results of the two methods. This

	Vegetable and fruit cookies				(Grain rie	ce cereals		Vegetable purees				
Analytes	1.0 μg·k	$1.0\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$10\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$1.0\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$10 \mu \mathrm{g} \cdot \mathrm{kg}^{-1}$		$1.0\mu\mathrm{g\cdot kg^{-1}}$		$10\mu\mathrm{g\cdot kg^{-1}}$	
7 mary tes	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	
IMI	74	12.7	98	5.2	81	7.3	100	6.9	83	9.3	97	5.7	
5-OH- IMI	79	6.5	78	12.2	78	8.6	86	9.7	80	11.9	86	9.7	
6-CHL	75	7.3	104	3.9	69	13.1	86	11.6	71	12.7	84	6.8	
NTP	76	11.2	97	7.5	78	10.1	87	8.2	81	8.5	83	8.5	
ACE	64	8.4	90	3.5	80	6.8	82	9.5	84	6.1	81	9.5	
DM- ACE	76	11.3	100	7.2	91	8.4	75	7.6	89	7.2	75	10.3	
IM-1-4	77	13.3	83	4.5	73	9.7	72	14.6	81	11.3	77	10.0	
THA	76	11.2	86	6.6	88	9.2	100	8.5	90	9.5	92	9.0	
IMIT	70	11.9	94	6.5	74	10.2	105	9.9	80	11.1	101	6.3	
CYC	80	10.6	93	7.4	84	10.1	104	6.8	91	6.3	101	8.2	
THX	76	10.6	73	11.0	88	10.1	76	7.5	95	8.7	78	13.0	
CLO	70	13.4	99	7.0	80	11.8	105	8.5	82	10.9	107	4.2	
DM- CLO	76	11.7	101	5.2	89	5.1	72	11.2	92	10.9	72	14.1	
DNT	84	8.9	73	8.5	72	10.2	73	6.8	78	9.4	77	10.6	
DN	82	10.1	91	7.3	81	11.1	82	11.1	83	9.0	72	14.1	
UF	64	14.6	88	10.0	77	8.1	99	7.6	84	8.9	101	5.2	
SUL	79	8.1	76	7.3	79	4.5	73	12.2	75	11.0	89	6.5	
FLO	73	13.3	97	5.6	85	8.7	98	9.4	94	6.3	83	6.3	
TFNG	73	6.0	108	6.1	75	6.8	88	9.2	83	8.9	82	7.2	
TFNA- AM	70	13.7	71	10.2	84	3.6	79	9.9	88	9.4	88	12.3	

TABLE 3: Recovery	y rates of all target	compounds spiked	in three differen	t matrices at two d	lifferent concentrations	(interday $n = 6$).
-------------------	-----------------------	------------------	-------------------	---------------------	--------------------------	----------------------

Analytes	Vege	l fruit cookie	(Grain rie	ce cereals	Vegetable purees						
	$1.0\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$10\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		1.0 µg∙k	$1.0\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$10\mu\mathrm{g\cdot kg^{-1}}$		$1.0\mu\mathrm{g}\cdot\mathrm{kg}^{-1}$		$10 \mu \mathrm{g \cdot kg^{-1}}$
1 mary tes	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
IMI	72	12.7	100	6.4	78	9.8	95	7.8	83	9.2	94	8.3
5-OH- IMI	79	9.7	76	9.1	79	8.5	89	7.9	80	8.6	86	8.3
6-CHL	82	11.6	103	6.0	71	10.8	87	9.3	73	10.3	85	6.9
NTP	78	8.9	97	6.4	78	10.1	85	8.8	82	9.4	81	9.5
ACE	70	12.5	85	7.6	84	7.7	83	7.9	90	9.2	80	10.2
DM- ACE	77	9.5	106	6.0	90	7.6	78	9.2	93	8.1	75	9.1
IM-1-4	74	9.6	86	7.1	73	10.2	74	10.9	76	11.0	81	9.9
THA	77	10.3	86	7.5	89	9.8	99	7.0	94	7.5	96	7.7
IMIT	72	9.7	92	6.7	74	8.1	107	7.3	75	9.9	103	6.6
CYC	83	12.1	92	7.3	83	8.7	103	8.1	86	8.2	102	7.5
THX	75	9.1	75	9.4	84	8.4	78	9.2	90	8.8	80	9.5
CLO	69	11.3	98	6.7	81	10.0	103	7.2	87	9.3	103	7.3
DM- CLO	82	9.7	97	6.3	91	7.4	74	10.2	93	10.1	71	11.8
DNT	84	9.6	75	10.4	73	10.8	73	10.5	79	9.6	73	10.0
DN	80	11.0	94	6.3	80	8.7	81	10.6	86	8.3	74	10.4
UF	70	10.9	88	6.7	81	9.6	98	7.7	85	12.0	98	7.6
SUL	81	7.9	73	8.2	75	9.6	73	11.5	77	9.3	85	7.8
FLO	71	9.7	97	6.1	90	9.1	91	8.3	92	6.8	87	8.8
TFNG	73	9.3	102	6.2	75	8.8	85	9.4	80	10.6	83	9.0
TFNA- AM	74	10.4	73	8.2	86	7.2	82	9.1	87	8.3	84	9.6

Matrixes/analytes	Methods			Samples	(µg/kg)	Average velues (ug/kg)	DSD (%)		
		S1	S2	S3	S4	S5	S6	Average values (µg/kg)	KSD (%)
Cookies/ACE	GB/T 20769-2008	4.76	4.66	4.56	4.66	4.61	4.55	4.63	1.68
	Proposed method	4.76	4.63	4.49	4.57	4.66	4.41	4.59	2.71
Cereals/THX	GB/T 20769-2008	5.37	5.36	5.41	5.30	5.62	5.69	5.46	2.86
	Proposed method	5.57	5.64	5.56	5.35	5.69	5.65	5.58	2.17

TABLE 4: Results of neonicotinoids determination in infant foods measured by the GB method and proposed method.

indicates our method's sensitivity and stability are good and that it can be used for the real sample detection.

4. Conclusion

A modified QuEChERS method was developed to simultaneously determine 20 neonicotinoids and their metabolites in infant foods. Nine commonly used sorbents were evaluated for their impact on ME. We found that rGO@Fe₃O₄ hardly interacts with neonicotinoids, but it does a good job of adsorbing impurities in the matrix. When combined with PSA, mass spectrometry is significantly more sensitive, as pigment interference is eliminated. After optimizing the mass spectrometry parameters, extraction solvent, and extraction method, the present method was able to produce good recovery and precision for all target compounds. Due to the preconcentration step and the complete purification of samples, the LOD of our method is able to reach the ppt level. It is important to note, however, that some fruits, vegetables, and rice contain neonicotinoids, which may cause pesticide residues during processing into infant foods. It is likely that this is the reason why neonicotinoids are always at the ppb level when real samples are analyzed. The developed method was applied for real sample determination, and some neonicotinoid pesticides were found to be detectable, implying that safety test for infant foods should be taken seriously.

Data Availability

All data generated or analyzed during this study are included in this published article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Consent

Informed consent is not applicable.

Disclosure

An earlier version of this manuscript has been presented as preprint in Research Square [40].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Liqiang Guo and Kai Li contributed equally to this work. Project management was done by Kai Li; experiment and analysis were done by Liqiang Guo, Jinling Zhang, Guoning Tian, Ke Wang, and Yajing Li; writing manuscript was done by Kai Li; revising was done by Kai Li; final approval was done by all the authors.

Acknowledgments

This work was financially supported by General Administration of Customs P. R. China, grant number (2020HK201 and 2021HK200) and Weifang Science and Technology Development Foundation, grant number 2020ZJ1323.

References

- P. Jeschke, R. Nauen, M. Schindler, and A. Elbert, "Overview of the status and global strategy for neonicotinoids," *Journal of Agricultural and Food Chemistry*, vol. 59, no. 7, pp. 2897– 2908, 2011.
- [2] A. Elbert, M. Haas, B. Springer, W. Thielert, and R. Nauen, "Applied aspects of neonicotinoid uses in crop protection," *Pest Management Science*, vol. 64, no. 11, pp. 1099–1105, 2008.
- [3] J.-M. Bonmatin, C. Giorio, V. Girolami et al., "Environmental fate and exposure; neonicotinoids and fipronil," *Environmental Science and Pollution Research*, vol. 22, no. 1, pp. 35–67, 2015.
- [4] C. Bass, I. Denholm, M. S. Williamson, and R. Nauen, "The global status of insect resistance to neonicotinoid insecticides," *Pesticide Biochemistry and Physiology*, vol. 121, pp. 78–87, 2015.
- [5] L. Chensheng, K. M. Warchol, and R. A. Callahan, "In situ replication of honey bee colony collapse disorder," *Bulletin of Insectology*, vol. 65, pp. 99–106, 2012.
- [6] T. Blacquiere, G. Smagghe, C. A. M. van Gestel, and V. Mommaerts, "Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment," *Ecotoxicology*, vol. 21, no. 4, pp. 973–992, 2012.
- [7] C. A. Lu, C.-H. Chang, L. Tao, and M. Chen, "Distributions of neonicotinoid insecticides in the commonwealth of Massachusetts: a temporal and spatial variation analysis for pollen and honey samples," *Environmental Chemistry*, vol. 13, no. 1, pp. 4–11, 2016.
- [8] D. Goulson, "REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides," *Journal of Applied Ecology*, vol. 50, no. 4, pp. 977–987, 2013.
- [9] A. M. Cimino, A. L. Boyles, K. A. Thayer, and M. J. Perry, "Effects of neonicotinoid pesticide exposure on human health: a systematic review," *Environmental Health Perspectives*, vol. 125, no. 2, pp. 155–162, 2017.

- [10] M. Chen, L. Tao, J. McLean, and C. Lu, "Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures," *Journal of Agricultural and Food Chemistry*, vol. 62, no. 26, pp. 6082–6090, 2014.
- [11] M. B. Abou-Donia, L. B. Goldstein, S. Bullman et al., "Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure," *Journal of Toxicology and Environmental Health, Part A*, vol. 71, no. 2, pp. 119–130, 2008.
- [12] D. Gibbons, C. Morrissey, and P. Mineau, "A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife," *Environmental Science and Pollution Research*, vol. 22, no. 1, pp. 103–118, 2015.
- [13] Y.-H. Gu, Y. Li, X. F. Huang et al., "Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development *in vitro*," *PLoS One*, vol. 8, no. 7, Article ID e70112, 2013.
- [14] J. Kimura-Kuroda, Y. Komuta, Y. Kuroda, M. Hayashi, and H. Kawano, "Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats," *PLoS One*, vol. 7, no. 2, Article ID e32432, 2012.
- [15] N. Simon-Delso, V. Amaral-Rogers, L. P. Belzunces et al., "Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites," *Environmental Science* & *Pollution Research*, vol. 22, no. 1, pp. 5–34, 2015.
- [16] M. Tomizawa, "Neonicotinoids and derivatives: effects in mammalian cells and mice," *Journal of Pesticide Science*, vol. 29, no. 3, pp. 177–183, 2004.
- [17] D. Goulson, E. Nicholls, C. Botías, and E. L. Rotheray, "Bee declines driven by combined stress from parasites, pesticides, and lack of flowers," *Science*, vol. 347, no. 6229, Article ID 1255957, 2015.
- [18] W. Han, Y. Tian, and X. Shen, "Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview," *Chemosphere*, vol. 192, pp. 59–65, 2018.
- [19] Food U and Administration D F D A, Silver Spring, https:// www.fda.gov/, 2015.
- [20] V. Mahdavi, Z. Garshasbi, M. M. Farimani, M. Farhadpour, and H. Y. Aboul-Enein, "Health risk assessment of neonicotinoid insecticide residues in pistachio using a QuEChERSbased method in combination with HPLC-UV," *Biomedical Chromatography: Biomedical Chromatography*, vol. 34, no. 3, Article ID e4747, 2020.
- [21] M. A. Farajzadeh, M. Bamorowat, and M. R. A. Mogaddam, "Ringer tablet-based ionic liquid phase microextraction: application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples," *Talanta*, vol. 160, pp. 211–216, 2016.
- [22] J. Vichapong, R. Burakham, and S. Srijaranai, "Alternative liquid–liquid microextraction as cleanup for determination of neonicotinoid pesticides prior HPLC analysis," *Chromatographia*, vol. 79, no. 5-6, pp. 285–291, 2016.
- [23] M. A. Farajzadeh, M. R. Afshar Mogaddam, and A. A. Alizadeh, "Determination of neonicotinoid insecticide residues in edible oils by water-induced homogeneous liquid-liquid extraction and dispersive liquid-liquid extraction followed by high performance liquid chromatography-diode array detection," *RSC Advances*, vol. 5, no. 95, pp. 77501–77507, 2015.
- [24] L. Lachat and G. T. Glauser, "Development and validation of an ultra-sensitive UHPLC–MS/MS method for neonicotinoid

analysis in milk," *Journal of Agricultural and Food Chemistry*, vol. 66, no. 32, pp. 8639–8646, 2018.

- [25] A. Suganthi, K. Bhuvaneswari, and M. Ramya, "Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS," *Food Chemistry*, vol. 241, pp. 275–280, 2018.
- [26] S. Valverde, M. Ibanez, J. L. Bernal, M. J. Nozal, F. Hernandez, and J. Bernal, "Development and validation of ultra high performance-liquid chromatography-tandem mass spectrometry based methods for the determination of neonicotinoid insecticides in honey," *Food Chemistry*, vol. 266, pp. 215–222, 2018.
- [27] F. Tian, C. Qiao, J. Luo et al., "Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS," *Food Chemistry*, vol. 333, Article ID 127468, 2020.
- [28] N. Muhammad, F. Wang, Q. Subhani et al., "Comprehensive two-dimensional ion chromatography (2D-IC) coupled to a post-column photochemical fluorescence detection system for determination of neonicotinoids (imidacloprid and clothianidin) in food samples," *RSC Advances*, vol. 8, no. 17, pp. 9277–9286, 2018.
- [29] A.-Y. Ko, M. M. Rahman, A. Abd El-Aty et al., "Development of a simple extraction and oxidation procedure for the residue analysis of imidacloprid and its metabolites in lettuce using gas chromatography," *Food Chemistry*, vol. 148, pp. 402–409, 2014.
- [30] L. Sánchez-Hernández, D. Hernandez-Dominguez, J. Bernal, C. NeusuB, M. T. Martin, and J. L. Bernal, "Capillary electrophoresis-mass spectrometry as a new approach to analyze neonicotinoid insecticides," *Journal of Chromatography A*, vol. 1359, pp. 317–324, 2014.
- [31] S. Zhang, X. Yang, X. Yin, C. Wang, and Z. Wang, "Dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples," *Food Chemistry*, vol. 133, no. 2, pp. 544–550, 2012.
- [32] G. H. Chen, J. Sun, Y. J. Dai, and M. Dong, "Determination of nicotinyl pesticide residues in vegetables by micellar electrokinetic capillary chromatography with quantum dot indirect laser-induced fluorescence," *Electrophoresis*, vol. 33, no. 14, pp. 2192–2196, 2012.
- [33] A. E. F. Oliveira, G. B. Bettio, and A. C. Pereira, "An electrochemical sensor based on electropolymerization of β -cyclodextrin and reduced graphene oxide on a glassy carbon electrode for determination of neonicotinoids," *Electroanalysis*, vol. 30, no. 9, pp. 1918–1928, 2018.
- [34] E. Watanabe, T. Yamasaki, Y. Hirakawa, A. Harada, S. Iwasa, and S. Miyake, "Organic solvent-free immunoassay for quantitative detection of neonicotinoid acetamiprid residues in agricultural products," *Analytical Methods*, vol. 10, no. 26, pp. 3162–3169, 2018.
- [35] J. Jiménez-López, P. Ortega-Barrales, and A. Ruiz-Medina, "A photochemically induced fluorescence based flow-through optosensor for screening of nitenpyram residues in cruciferous vegetables," *Food Additives and Contaminants: Part A*, vol. 35, no. 5, pp. 941–949, 2018.
- [36] J. Guo, Y. Li, L. Wang et al., "Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots," *Analytical and Bioanalytical Chemistry*, vol. 408, no. 2, pp. 557–566, 2016.
- [37] W. Wijaya, S. Pang, T. P. Labuza, and L. He, "Rapid detection of acetamiprid in foods using Surface-Enhanced Raman

Spectroscopy (SERS)," *Journal of Food Science*, vol. 79, no. 4, pp. T743–T747, 2014.

- [38] V. Guzsvany, J. Canadi, and F. Gaál, "NMR study of the influence of pH on the persistence of some neonicotinoids in water," *Acta Chimica Slovenica*, vol. 53, pp. 52–57, 2007.
- [39] S. Aqsiq, "general administration of quality supervision inspection and quarantine of the people's republic of China and standardization administration of the people's republic of China. GB/T. Determination of 450 pesticides and related chemicals residues in fruits and vegetables. LC-MS-MS method," *Chinese Standards*, 2008.
- [40] K. L. Liqiang Guo, J. Zhang, G. Tian, W. Ke, and Y. Le, "Determination of 20 Neonicotinoid Insecticides and Their Metabolites in Infant Foods by a Modified QuEChERS Method Combined with HPLC-MS/MS," *Research Square*, 2022.