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Fuchsine acid is one of the supramolecular dyes used inMasson’s trichrome stain and has enormous applications in histology. It is
also used in Van Gieson’s method with picric acid to show red collagen fbers and in Masson’s trichrome to show smooth muscle
in contrast to collagen. In addition to these, it has several other important applications in electronic felds and photonic devices as
an organic semiconductor. Terefore, it is of utmost importance to investigate and predict the complex molecular topology of
fuchsine acid, which serves as a foundation for the link with its physicochemical properties. In this article, the supramolecular
sheet of fuchsine acid is modeled topologically based on the edge partition, and closed formulae are derived for some of its
important irregular molecular descriptors, with the ultimate object of throwing some light on the efectiveness of the computed
molecular descriptors for QSAR and QSPR analyses.

1. Introduction

Supramolecular structures have the same relationship with
molecules as molecular structures have with atoms. Te
molecular structure is at the heart of the chemistry of many
essential industrial and biological materials, despite the fact
that atoms play an important role in chemistry paradigms.
Te chemistry of the intermolecular link, which connects
molecules together into supermolecules rather than the
covalent bond, which binds atoms together intomolecules, is
emphasized in the growing supramolecular systems para-
digm. Te chemistry of molecular assemblies and the in-
termolecular connection, the chemistry beyond the
molecule, and the chemistry of the noncovalent bond are all
examples of supramolecular chemistry. Te structure and
dynamics of a tiny molecule (known as a guest) that is not
covalently bonded to a bigger molecule (termed a host) are
studied in supramolecular chemistry. Fuchsine acid is one of
the supramolecular dyes used in Masson’s trichrome stain
and is widely used in histology. It is used in Van Gieson’s
method with picric acid to show red collagen fbers and in

Masson’s trichrome to show smooth muscle in contrast to
collagen. In addition to these, it has several other important
applications in electronic felds and photonic devices as an
organic semiconductor.

An important area of applied mathematics called graph
theory is used to model numerous real-world issues in felds
like science and technology. Tere are numerous applica-
tions of chemical graph theory in the feld of chemistry. By
adopting a visual representation (a chemical graph) of these
chemical compounds, chemical graph theory ofers a wealth
of knowledge about molecules and atoms. If every vertex in
graph G has the same degree, then the graph is regular. It is
irregular otherwise. Regular graphs are very important in
graph theory because they have many interesting mathe-
matical characteristics. Knowing how far a particular graph
deviates from being regular, or how signifcant its irregu-
larity is, is crucial for solving various applications and issues.
Numerous quantitative graph irregularity measurements
have been proposed for this purpose. Te earliest numerical
measure of graph irregularity appears to have been put out
by Von Collatz and Sinogowitz [1]. Teoretical chemistry is
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concerned with predicting the physical features of chemical
structures. In the feld of chemical sciences, chemical graph
theory plays a signifcant role. A molecular graph is
a molecule-based graph with vertices representing atoms
and edges representing bonds or links between them. Te
degree of a vertex is the number of edges that are connected
with it. In chemistry, biology, and common networks, the
quantitative topological classifcation of the irregularity of
graphs [2, 3] is becoming increasingly important for eval-
uating the structure of deterministic and arbitrary networks
and systems.

Te topology of a molecule as well as the irregularity of
the structure plays an important role in determining
quantities like enthalpy and entropy. A topological index [4]
is a numerical value that represents some important mo-
lecular structural information. In quantitative structure-
property relation (QSPR) and quantitative structure-
activity relation (QSAR) investigations, these indices are
frequently employed to represent the physicochemical
properties of chemical compounds [5–13]. One can consult
references [14–26] for more information on the topological
characterization of microstructure and nanostructure and
the importance and applicability of the molecular de-
scriptors. Topological indices include eccentric-based,
degree-based, and distance-based indices; here, we are
concerned about the degree-based topological indices
[27–30]. We considered C20H19N3HCl supramolecular
fuchsine and made the sheet by using its unit cell.

Let M be the graph, p and q be the vertices, dp and dq

represent the degree of the vertex, pq stands for the edge that
connects the vertices p and q. Te irregular topological
indices can be defned as follows:

Te Albertson index (AL) [31] is defned as follows:

AL(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (1)

Te irregularity indices IRL and IRLU [32] are defned as
follows:

IRL(M) � 􏽘
pq∈E

ln dp − lndq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

(M) � 􏽘
pq∈E

dp − dq

�����

�����

min dp − dq􏼐 􏼑
. (3)

Te total irregularity index (IRRT) [33] is defned as
follows:

IRRT(M) �
1
2

􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (4)

Te IRF(M) irregularity index, which was introduced
by Gutman [3] is defned as follows:

IRF(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (5)

Te Randic index [34] is defned as follows:

IRA(M) � 􏽘
pq∈E

dp
− 1/2

− dq
− 1/2

􏼐 􏼑
2
. (6)

Below are the defnitions of some more degree-based
irregularity topological indices [35].

IRDIF(M) � 􏽘
pq∈E

dp

dq

−
dq

dp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (7)

IRLF(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
����
dpdq

􏽱 , (8)

LA(M) � 2 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

dp + dq􏼐 􏼑
, (9)

IRDI(M) � 􏽘
pq∈E

ln 1 + dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, (10)

IRGA(M) � 􏽘
pq∈E

ln
dp + dq

2
����
dpdq

􏽱 , (11)

IRB(M) � 􏽘
pq∈E

dp
(1/2)

− dq
(1/2)

􏼐 􏼑
2
. (12)

Te above irregular topological indices are very im-
portant to describe the topology of a molecular structure for
QSPR and QSAR analyses. Here, in this paper, motivated by
the enormous applications of fuchsine acid in industry and
the importance of irregular topological indices (equations
(1)–(12)), we intend to model the supramolecular sheet of
fuchsine acid topologically based on the edge partition and
derive closed formulae for the above-mentioned irregular
molecular descriptors with the ultimate object of throwing
some light on the efectiveness of the computed molecular
descriptors for QSAR/QSPR analysis.

2. Edge Partition-Based Topological
Modeling of Fuchsine Acid

Te chemical structure of fuchsine acid is shown in Figure 1.
Te 2D graphical model of the molecular graph of fuchsine
acid is shown in Figure 2. In order to defne its molecular
graph, we defne a as the number of columns and b as the
number of rows. Te general molecular graph is denoted by
C20H19N3HCl[a, b]. As a result, the total number of vertices
is 38ab + a + b and the total number of edges is 42ab. Te
edge partition of C20H19N3HCl[a, b] established on degree
of end vertices of each edge is given in Table 1.

3. Main Results

3.1. Computation of Irregular Topological Indices of Fuchsine
Acid. In this section, we compute and derive closed for-
mulae for the Albertson index AL(M), the irregularity in-
dices IRL(M) and IRLU(M), the total irregularity index
IRRT(M), the IRF(M) irregularity index, the IRA(M)
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irregularity index, the IRDIF(M) irregularity index, the
IRLF(M) irregularity index, the LA(M) irregularity index,
the IRDI(M) irregularity index, the IRGA(M) irregularity
index, and the IRB(M) irregularity index.

3.1.1. Teorems. Let M(a, b) be the graph of 2D structure of
C20H19N3HCl[a, b] supramoelcular sheet of fuchsine, then
the irregularity indices of M(a, b) are as follows:

(1) AL(M) � 32ab + 2(a + b)

(2) IRL(M) � 16.992ab + 1.386(a + b)

(3) IRLU(M) � 30ab + 3(a + b)

(4) IRRT(M) � 16ab + a + b

(5) IRF(M) � 60ab + 6(a + b)

(6) IRA(M) � 2.556ab + 0.324(a + b)

(7) IRDIF(M) � 40.67ab + 3.668(a + b)

(8) IRLF(M) � 17.788ab + 1.493(a + b)

(9) LA(M) � 15.6ab + 1.2(a + b)

(10) IRDI(M) � 18.144ab + 0.81(a + b)

(11) IRGA(M) � 2.082ab + 0.246(a + b)

(12) IRB(M) � 7.894ab + 0.868(a + b)< listaend >

3.1.2. Proofs. Figure 2 will be used to prove all of the above
theorems. We can confrm the values from Table 1 for the
edges of M(a, b). Consider M be the graph of fuchsine acid.
Ten by using Table 1 and equations (1)–(12) we compute
the following topological indices and derive closed formulae
for them.

(1) AL(M)

Using Table 1 and (1), we estimate the value of this
index as follows:

AL(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � [14ab + 2(a + b)]|3 − 1| +[4ab − 2(a + b)]|3 − 2| +(24ab)|3 − 3|

� 28ab + 4(a + b) + 4ab − 2a − 2b + 0 � 32ab + 2a + 2b � 32ab + 2(a + b).

(13)

(2) IRL(M)

Figure 2: 2D structure of fuchsine C20H19N3HCl[1, 1].

Table 1: Te edge partition of C20H19N3HCl[a, b], established on
degree of end vertices of each edge.

(dp, dq) Frequency

(1, 3) 14ab + 2(a + b)

(2, 3) 4ab − 2(a + b)

(3, 3) 24ab

NH2
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Figure 1: Chemical structure of fuchsine acid.
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By using Table 1 and (2), we estimate the value of
this index as follows:

IRL(M) � 􏽘
pq∈E

ln dp − ln dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � [14ab + 2(a + b)]|ln 3 − ln 1| +[4ab − 2(a + b)]|ln 3 − ln 2| +(24ab)|ln 3 − ln 3|

� [14ab + 2a + 2b](1.098) +[4ab − 2a − 2b](0.405) + 0

� 15.372ab + 2.196a + 2.196b + 1.62ab − 0.81a − 0.81b � 16.992ab + 1.386(a + b).

(14)

(3) IRLU(M) By using Table 1 and (3), we estimate the value of
this index as follows:

IRLU(M) � 􏽘
pq∈E

dp − dq

�����

�����

min dp − dq􏼐 􏼑
� [12ab + 2(a + b)]

|3 − 1|

min (3, 1)
+[4ab − 2(a + b)]

|3 − 2|

min (3, 2)

+(24ab)
|3 − 3|

min (3, 3)
� (14ab + 2a + 2b)(2) +(4ab − 2a − 2b)(0.5) + 0 � 28ab

+ 4a + 4b + 2ab − a − b � 30ab + 3(a + b).

(15)

(4) IRRT(M) We compute the value of this index by using Table 1
and (4) as follow:

IRRT(M) �
1
2

􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
1
2

[14ab + 2(a + b)]|3 − 1| +
1
2

[4ab − 2(a + b)]|3 − 2| +
1
2

(24ab)|3 − 3|

� 14ab + 2a + 2b + 2ab − a − b � 16ab + a + b.

(16)

(5) IRF(M) We compute the value of this index by using Table 1
and (5) as follow:

IRF(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

� [14ab + 2(a + b)](3 − 1)
2

+[4ab − 2(a + b)](3 − 2)
2

+(24ab)(3 − 3)
2
,

� (14ab + 2a + 2b)(4) +(4ab − 2a − 2b)(1) + 0ab + 8a + 8b + 4ab − 2a − 2b,

� 60ab + 6(a + b).

(17)
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(6) IRA(M) By using Table 1 and (6), we estimate the value of
this index as follows:

IRA(M) � 􏽘
pq∈E

dp
− 1/2

− dq
− 1/2

􏼐 􏼑
2

� [14ab + 2(a + b)] (3)
− 1/2

− (2)
− 1/2

􏽨 􏽩
2

+[4ab − 2(a + b)] (3)
− 1/2

− (2)
− 1/2

􏽨 􏽩
2

+ (24ab) (3)
− 1/2

− (3)
− 1/2

􏽨 􏽩
2

� (14ab + 2a + 2b)(0.178) +(4ab − 2a − 2b)(0.016) + 0 � 2.492ab

+ 0.356a + 0.356b + 0.064ab − 0.032a − 0.032b � 2.556ab + 0.324(a + b).

(18)

(7) IRDIF(M) By using Table 1 and (7), we estimate the value of
this index as follows:

IRDIF(M) � 􏽘
pq∈E

dp

dq

−
dq

dp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

� [14ab + 2(a + b)]
3
1

−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+[4ab − 2(a + b)]

3
2

−
2
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+(24ab)

3
3

−
3
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

� (14ab + 2a + 2b)(2.667) +(4ab − 2a − 2b)(0.833) + 0,

� 37.338ab + 5.334a + 5.334b + 3.332ab − 1.666a − 1.666b,

� 40.67ab + 3.668(a + b).

(19)

(8) IRLF(M) We compute the value of this index by using Table 1
and (8) as follow:

IRLF(M) � 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
����
dpdq

􏽱 ,

· [14ab + 2(a + b)]
|3 − 1|

����
3 × 1

√ +[4ab − 2(a + b)]
|3 − 2|

����
3 × 2

√ +(24ab)
|3 − 3|

����
3 × 3

√ ,

� (14ab + 2a + 2b)(1.154) +(4ab − 2a − 2b)(0.408) + 0,

� 16.156ab + 2.309a + 2.309b + 1.632ab − 0.816a − 0.816b,

� 17.788ab + 1.493(a + b).

(20)
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(9) LA(M) We compute the value of this index by using Table 1
and (9) as follow:

LA(M) � 2 􏽘
pq∈E

dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

dp + dq􏼐 􏼑
� 2[14ab + 2(a + b)]

|3 − 1|

(3 + 1)
+ 2[(4ab − 2(a + b))]

|3 − 2|

(3 + 2)
+(24ab)

|3 − 3|

(3 + 3)

� (14ab + 2b + 2b)(1) + 2(4ab − 2a − 2b)(0.2) + 0

� 14ab + 2a + 2b + 1.6ab − 0.8a − 0.8b � 15.6ab + 1.2(a + b).

(21)

(10) IRDI(M) By using Table 1 and (10), we estimate the value of
this index as follows:

IRDI(M) � 􏽘
pq∈E

ln 1 + dp − dq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛 � [14ab + 2(a + b)]ln 1 +|3 − 1|{ } +[4ab − 2(a + b)]ln 1 +|3 − 2|{ }

+(24ab)ln 1 +|3 − 3|{ } � (14ab + 2a + 2b)(1.098) +(4ab − 2a − 2b)(0.693) + 0

� 15.372ab + 2.196a + 2.197b + 2.772ab − 1.386a − 1.386b � 18.144ab + 0.81(a + b).

(22)

(11) IRGA(M) By using Table 1 and (11), we estimate the value of
this index as follows:

IRGA(M) � 􏽘
pq∈E

ln
dp + dq

2
����
dpdq

􏽱 � [14ab + 2(a + b)]ln
3 + 1

2
����
3 × 1

√ +[4ab − 2(a + b)]ln
3 + 2

2
����
3 × 2

√ +(24ab)ln
3 + 3

2
����
3 × 3

√

� (14ab + 2a + 2b)(0.143) +(4ab − 2a − 2b)(0.020) + 0 � 2.002ab + 0.286a + 0.286b

+ 0.08ab − 0.04a − 0.04b � 2.082ab + 0.246(a + b).

(23)

(12) IRB(M) By using Table 1 and (12), we estimate the value of
this index as follows:

IRB(M) � 􏽘
pq∈E

dp
1/2

− dq
1/2

􏼐 􏼑
2

� [14ab + 2(a + b)] 31/2 − 11/2 +[4ab − 2(a + b)] 31/2 − 21/2􏼐 +(24ab) 31/2 − 31/2􏼐 􏼑
2

􏼒

� (14ab + 2a + 2b)(0.535) +(4ab − 2a − 2b)(0.101) + 0 � 7.49ab + 1.07a + 1.07b + 0.404ab

− 0.202a − 0.202b � 7.894ab + 0.868(a + b).

(24)

3.2. Numerical and Graphical Interpretation of the Derived
Formulae. Here, the numerical values of the irregularity
indices obtained for diferent values of a and b are present
in the form of Table 2 and Figure 3. It is evident from
Table 2 as well as Figure 3 that the values of all indices are
rising with an increase in the values of a, b. However, some
of the irregularity indices grow very slowly as compared to
others, as can be seen from Table 2 and Figure 3 that the

values of irregularity indices IRGA (M) and IRA (M) are
very low as compare to other indices. Te derivation of
closed formulae and numerical computation of these ir-
regularity indices of fuchsine acid is valuable not only for
QSPR/QSAR studies but also for investigation of the
physicochemical properties such as enthalpy of vapor-
ization, entropy, boiling and melting points, toxicity, re-
sistance, and so on.
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4. Conclusions

In this article, the supramolecular sheet of fuchsine acid is
modeled topologically based on the edge partition and
derived closed formulae for some of its important irregular
molecular descriptors viz. Albertson index AL(M), the total
irregularity index IRRT(M), the IRF(M) irregularity index,
the irregularity indexes IRL(M) and IRLU(M), the IRA(M)

irregularity index, the IRDIF(M) irregularity index, the
LA(M) irregularity index, the IRDI(M) irregularity index,
the IRLF(M) irregularity index, the IRGA(M) irregularity
index, and the IRB(M) irregularity index. Based on the
closed formulae, the numerical values of the irregularity
indices are obtained, and a comparative analysis of the
topological indices is performed. Te derivation of closed
formulae and numerical computation of these irregularity

indices of fuchsine acid are valuable not only for QSPR/
QSAR studies but also for the investigation of the physi-
cochemical properties such as enthalpy of vaporization,
entropy, boiling and melting points, toxicity, resistance, and
so on.
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