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Veronica (Plantaginaceae) and Schoenoplectus have a unique chemotaxonomic and phytochemical importance and are widely
utilized in Turkish and Traditional Chinese Herbal Medicine (TCM) for treating tonics, in�uenza, diuretics, expectorants,
restoratives, and respiratory diseases, and both are very useful in treating infectious and metabolic disorders as well. �is study
evaluates two medicinal plant species, Veronica biloba and Schoenoplectus triqueter (L.) Palla; extraction was performed through
Soxhlet and maceration methods as well as determination of free and bound phenolics. Evaluated biological screening of (extracts
and phenolics) angiotensin-I converting enzyme (ACE), Type-II diabetes (α-glucosidase and α-amylase), and antioxidants
potential was performed using modi�ed assays.�e angiotensin-I converting enzyme (ACE) 50% inhibition potential in Veronica
biloba was found at IC50� 210.68 μg/mL and in Schoenoplectus triqueter (L.) Palla at IC50� 229.40 µg/mL, respectively. Meanwhile
Type-II diabetes with α-amylase 50% inhibition shown by bound phenolics ofVeronica biloba at IC50� 219.66 µg/mL and its water
extract at IC50�110.09 µg/mL possesses higher potential, and α-glucosidase potential by free phenolics was found to be active at
IC50� 469.56 µg/mL, while water and ethyl acetate extracts showed higher potential, IC50� 78.65 µg/mL and IC50� 97.03 µg/mL,
than the standard acarbose, recorded lower. In case of amylase, α-glucosidase showed IC50� 88.73 μg/mL. Our results showed that
both plants possess a direct relationship with the increase in the concentration of extracts and inhibited very strongly angiotensin-
I converting enzyme (ACE) and Type-II diabetes (α-glucosidase and α-amylase). �e properties of enzyme hindrance may be
associated with phenolic compounds and rich phenolic plant antioxidant potential provides a route to the elucidation of natural
antihypertension and antidiabetes.

1. Introduction

Natural products are God-gifted, such as extracts from
plants that possess a variety of biologically active com-
pounds, and their puri�cation, characterization, and isola-
tion are very helpful for synthesizing a novel drug with
chemical diversity to cure a number of health-related dis-
eases utilized as pure compounds or standard extracts [1, 2].
Approximately 10–20% of plants in pharmaceutical studies
were revealed positively for harmful diseases including
cancer [3]. �e extracts from medicinal plants contain

several bioactive compounds, and each of them is respon-
sible for any speci�c bioactivity [4]. According to ecological
studies, synthetic drugs have several side e¡ects, while drug
or standard extract from medicinal plants shows high and
e¡ective results with no or few side e¡ects and is more
preferred [5–7]. �e Veronica (Plantaginaceae) genus has 79
popular species in a total of 450, and 26 are endemic species
present in both temperate and hemisphere regions [8, 9].
�is genus has a unique chemotaxonomic and phyto-
chemical importance and is widely utilized in Turkish and
Traditional Chinese Herbal Medicine (TCM) for treating
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tonics, influenza, diuretics, expectorants, restoratives, and
respiratory diseases [10]. Previously, we have determined a
strong antibacterial and antifungal potential of Veronica
biloba extracts [11] as well as phytochemicals and antioxi-
dants comparable with standard acarbose potential [12]. (e
family Cyperaceae mostly possesses fibrous halophytic
plants; one genus of this family is Schoenoplectus present in
the river territories of Pakistan, India, Africa, Morocco, and
Spain at the extreme Mediterranean [13, 14]; about 49
compounds are extracted from the specie of Schoenoplectus
lacustris and evaluated for eutrophic spots; a bioindicator
was tested on algae green Selenastrum capricornutum and
showed positive potential in comparison with copper sul-
phate, algaecide [15]. Cyperaceae contains 4231 chromo-
somes found in only 16% of its species which are helpful for
biological activities [16]. Previously, we have reported that
Schoenoplectus triqueter (L.) Palla extracts possess potential
against both bacterial strains, Gram-positive and Gram-
negative, as well as antioxidant potential [17, 18]. Type-II
diabetes mellitus represents more than 90% of all elicit
diabetes in both developing and developed countries.
Around 382 million individuals are viewed as living with
diabetes from one side of the planet to the other, and sci-
entific predictions reveal that the number will increase to
around 471 million individuals by 2035 [19]. Postprandial
hyperglycemia has been embroiled in the advancement of
insulin opposition [20], being quite possibly the earliest
marker of glucose homeostasis liberation [21]. Furthermore,
hypertension, cardiovascular illness, and diabetic neuropa-
thy are linked to this issue [22, 23]. A hyperglycemia
therapeutic prevention is carried out by the inhibition of key
enzymes such as alpha-amylase and alpha-glucosidase,
which are involved in the hydrolysis of carbohydrates and
disaccharides to diminish the absorption of glucose. Some
commonly available drugs such as miglitol and acarbose are
efficient to decrease the glucose level in the blood, but they
possess severe long-term side effects; therfore, its uses are
very low [24, 25]. According to Bakriset al. [26], hyper-
tension arises mainly due to long-term diabetes and may
lead to severe chronic renal failure, a cardiovascular disease
[26]. In phenomena of ACE, an important Zn-Metal-
lopeptidase enzyme plays a role in breaking and conversion
of bradykinin (vasoconstrictor, vasodilator) and angioten-
sin-I to angiotensin-II. In therapeutics, the efficient inhi-
bition of ACE (angiotensin-I converting enzyme) is much
preferred, which helps in lowering hypertension in normal
and hyperglycemic diabetic persons [27]. In medicinal
plants, mainly phytochemicals (such as phenolics) show
antihypertension and antidiabetes potential [28, 29]. (e
ongoing hyperglycemia in diabetes stimulates oxidative
pressure on organs and tissues [24], which might be con-
strained by cell reinforcement. Interest in natural antioxi-
dants is presently growing [30–33]. Phenolic compounds
address enormous gathering of biologically active phyto-
chemicals which are present in practically all restorative and
food plants, as a result of their extremely high environmental
pertinence in plant life forms [34–39]. Due to fewer side
effects and the high importance of natural antioxidants,
phenolics, and phytochemicals, this study evaluates two

medicinal plant species, Veronica biloba and Schoenoplectus
triqueter (L.) Palla; extraction was performed through
Soxhlet and maceration methods as well as determination of
free and bound phenolics and investigation of inhibitory
activity of phenolic-rich extracts on key enzymes involved in
hypertension and diabetes, that is, α-amylase, α-glucosidase,
and ACE.

2. Materials and Methods

2.1. Identification and Collection of Plants. (e two different
medicinal plant species, Schoenoplectus triqueter (L.) Palla
and Veronica biloba, were confirmed from various botanical
flora databases of plants, a comparison of literature survey,
and a botanical export of Government Post Graduate
College Mardan, Faculty of Botany. Professor Muhammad
Israr confirmed voucher specimen of Veronica biloba (ID:
19-VB.PMI-PGCM) and Schoenoplectus triqueter (ID: 22-
ST.PMI-PGCM). (e specie Veronica biloba (A-VB) plant
used in the project was the whole plant selected. Fresh whole
plants in their floweringstage were collected from Sang-e-
mar mar, near Par Hoti District Mardan andalso from Surkh
Dheri, Rustam, Mardan. (e plant collection was done
during themonth of February–March. Healthy plants are
collected from a fertile land. Whilespecies Schoenoplectus
triqueter (L.)Palla (B-ST), only stem part collected in the
month of January-February, locations;East 72° 4′ 49″ and
North 34° 21′38″ coordinates from river areas of Katlan-
gAsia Mardan 23200 Khyber Pakhtunkhwa Pakistan..

2.2.DryingandGrindingof thePlant. After collection of both
plant species, A-VB and B-ST were introduced for surface
cleaning first by tap water and then by distilled water slowly
for the removal of any small particles of mud and other dust
on surface. With the help of scissors and knives, plants were
separately cut into smaller pieces and kept in a dust-free
protective environment to avoid contamination for 3 weeks
without exposure to any light at room temperature. After
complete drying of both species, they were ground via a
normal grinder to increase the surface area and obtain
uniform size particles for a better extraction process in less
time with a high yield.

2.3. Extractions

2.3.1. Soxhlet Extraction. (e Soxhlet hot continuous
method of extraction was followed according to reports
[11, 12, 17, 18] for both plants. At first, two sterilized porous
bags were manually prepared, in which each possesses 20 gm
by weight of the fully powdered plant. 250ml ethanol was
placed in the Soxhlet round bottom (R.B) flask lower section.
In the second, porous cellulose bags were kept in the Soxhlet
thimble chamber upper section. Additionally, water outflow
and inflow were provided to the upper condenser section for
the successive extract process and liquid condensation; a
fixed temperature in the range of 35–45°C was provided by
the Monteux heater. After 14–18 hours, a clear liquid from
the Soxhlet siphon armwas obtained without leaving residue
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in cycling. Each plant extract obtained was fractionated into
different solvents, n-hexane, dichloromethane, water, and
ethyl acetate fractions under a controllable water bath; each
dried fraction was saved and used for further biological
analysis.

2.3.2. Maceration Extraction. (e maceration method of
extraction was followed according to reports [11, 12, 17, 18]
for both plants. In this setup, two sterilized Pyrex-glass jars
were used, in which each possesses 30 gm by weight of the
fully powdered plant; a solvent of 300mL ethanol for suc-
cessive extractions was used. At room temperature in shade
placed jars for 22 days with air-tight cap, at least twice for
10–15minutes, daily shaking with stirring was performed to
transfer slowly soluble metabolites to solvent. After filtra-
tion, each plant extract obtained was fractionated into
different solvents, n-hexane, dichloromethane, water, and
ethyl acetate fractions under a controllable water bath; each
dried fraction was saved and used for further biological
analysis.

2.4. Phenolic Extractions. (e phenolic contents were
extracted according to Chu et al. [40]. Free phenolics
were extracted from ethanol fraction by filtration
(Whatman filter paper) and evaporation in rotary
(<45°C); for stability, dry extract was subjected to ly-
ophilization and then stored (<−6°C). Meanwhile bound
phenolics were extracted from the residue of free phe-
nolics and ethyl acetate fractions, with condition of room
temperature 22 ± 6°C, NaOH (M � 2) 15 mL for hydro-
lysis, pH � 2.1 ± 0.1 (adjusted by HCl), and constant
stirring of mixture for 45 minutes. (en ethyl acetate was
subjected to dryness and evaporation (<45°C) and kept
for further processing.

2.5. Determination of Total Phenolics. (e content of phe-
nolics was determined as illustrated by Singleton et al. [41].
At first, Folin-Ciocalteu’s reagent (10%, 3mL) and extracts
were taken under Na2CO3 (8%, 2mL) for oxidation and
neutralization and subjected to an incubation period (40°C,
30min). At last, the absorbance was recorded at a wave-
length of 765 nm by UV-spectrophotometer. (e standard
gallic acid was used for specified values.

2.6. Determination of Reducing Power. (e reducing power
was determined as illustrated by Oyaizu [42], which is
based on the reduction power of FeCl3 solution. At first,
K3[Fe(CN)6] (Potassium Ferricyanide) 1%, 3 mL,
Na2HPO4 (Sodium Phosphate) having M � 200mM and
pH � 6.5 ± 0.2 amount 3 mL and same amount of samples
were mixed and subjected to incubation (40°C, 20min).
Secondly, Trichloroacetic acid (TCA), C2HCl3O2 10%,
3 mL, was added and mixture was obtained at 2600 rpm/
10minute after centrifugation; clear supernatant (5 mL)
mixed with FeCl3 (Ferric Chloride) 0.1%, 1.5 mL, in
distilled water. At last, the absorbance was recorded at a

wavelength of 710 nm by UV-spectrophotometer. (e
standard ascorbic acid was used for specified values.

2.7. Total Antioxidant Potential. (e total antioxidant po-
tential was evaluated as illustrated by Sharifi Rad et al. [43],
using ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sul-
fonic acid)). First, ABTS generation was performed by
treating ABTS with Potassium Persulfate (K2S2O8); both
compositions are 6mM, and2.3mM, with duration of
12 hours at dark (to avoid decomposition). After dilution of
the extracts with ABTS (amount fixed 0.5mL+2mL) solu-
tion, at last, the absorbance was recorded at a wavelength of
730 nm by UV-spectrophotometer. (e standard trolox was
used for specified values.

2.8. Alpha-Amylase. (e α-amylase inhibitory potential
was evaluated as illustrated by Yousaf et al. [44] using a
series of phenolics (free and bound) and A-VB fraction
extract dilution in the range of 5–150 µL. First, α-amylase
(porcine pancreatic) solution, 0.5mg/mL, 500 µL buffer
(pH � 6.9 ± 0.02) of Sodium Phosphate (M� 0.02) and
Sodium Chloride (M � 0.006), was incubated for 15min at
25°C. (en, individually 1% 500 µL solution of starch was
added subsequently in the buffer (pH � 6.9± 0.02) of So-
dium Phosphate (M� 0.02) and Sodium Chloride
(M � 0.006); again the whole mix was incubated for 15min
at 25°C, for countering over, 1mL DNS (dinitrosalicyclic
acid) added. Afterward, the reaction mixture for
15minutes was transferred to a controllable water bath
(containing distilled water) at room temperature range of
22 ± 4°C. At last, for dilution, 10ml sterilized water was
added and the absorbance was recorded at a wavelength of
540 nm by UV-spectrophotometer. (e data are illustrated
in percent inhibition placed standard acarbose [45, 46].

2.9. Alpha-Glucosidase. (e α-glucosidase inhibitory po-
tential was evaluated as illustrated by Sharifi Rad. et al. [47],
using a series of phenolics (free and bound) and A-VB
fraction extract dilution in the range of 5–150 µL. First,
α-glucosidase (1.0U/mL) solution 100 µL, 500 µL buffer
(pH� 6.9± 0.02) with Sodium Phosphate (M� 0.1), was
incubated for 15min at 25°C. Second, p-Nitrophenyl-α-D-
Glucopyranoside (M� 5mM) 50 µL solutions were added
and the same incubation was repeated. At last, the absor-
bance was recorded at a wavelength of 405 nm by UV-
spectrophotometer. (e data are illustrated in percent in-
hibition placed standard acarbose [48].

2.10. Angiotensin-I Converting Enzyme Inhibition. (e ACE
(angiotensin-I converting enzyme) inhibition potential de-
termination, using the Cushman and Cheung procedure,
was followed as reported in [47]. In the first incubation
period (15minutes at 37°C), the standard ACE 50 µL and
diluted phenolics in 5–50 µL were mixed; solution was fixed
at 4mU/mL. Second, Bz–Gly–His–Leu substrate
(M� 8.33mM) supported by buffer pH 8.3 of Tris-HCl
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(M� 125mM) in a fixed amount of 150 µL was added for
initiation of the enzymatic reaction. In the second incu-
bation period (30minutes at 35°C), HCl (M� 1) was added
with amount 250 µL for countering the reaction. After bond
breaking of Gly–His ethyl acetate, 1mL was added to isolate
Bz–Gly by centrifugation and evaporation from reaction.
(e sterilized water was added for residue analysis in UV-
spectrophotometer, calibration, and absorbance recorded at
a wavelength of 228 nm. (e results were plotted as %
inhibition.

2.11. Determination of IC50. (e Median Inhibitory Con-
centration (IC50) was determined for 50% inhibition po-
tential in each case of biological activity α-amylase,
α-glucosidase, and angiotensin-I converting enzyme using
Excel, Prism, and Origin software.

3. Results and Discussion

(e extraction fractionation, phenolics (both free and bound
phenolics), ACE (angiotensin-I converting enzyme),
α-amylase, and α-glucosidase were determined in both
plants, Veronica biloba (A-VB) and Schoenoplectus triqueter
(L.) Palla (B-ST), according to the reports of
[11, 12, 17, 18, 40–48]. (e total phenolics determination
results are shown in Table 1. (e numbers of bound phe-
nolics found in species Veronica biloba, 62.02± 5.2, are
higher than those of bound phenolics found in Schoeno-
plectus triqueter, 41.6± 2.5. Meanwhile, for free phenolics,
81.34± 0.5, for Veronica biloba and those, 54.11± 1.5, for
Schoenoplectus triqueter, the results are derived with stan-
dard gallic acid mg/100 gm as mean± standard deviation
(having P significantly �< 0.05). (at closely resembles
previous literature [40, 49–52]. (e total antioxidant po-
tential or capacity results are in Table 1 and are determined
via standard mmol trolox/100 g; the species Veronica biloba
possesses higher potential in both cases of free and bound
phenolics, 12.21± 1.5 and 16.09± 1.2, than Schoenoplectus
triqueter which showed 9.8± 0.05 and 11.03± 0.1, respec-
tively, as mean having P significantly < 0.05, and the higher
antioxidant potential is due to phenol content in the plants
[24, 48]. (e reducing power determination with standard
ascorbic acid as mean± standard deviation (P significantly
�< 0.05) is presented in Table 1, with higher values recorded
in the case of free phenolics only for Veronica biloba,
14.08± 1.5, and Schoenoplectus triqueter, 9.08± 2.05. Poly-
phenols are antioxidants of the plant, which have an im-
portant function in breaking up peroxides, neutralizing and
absorbing free radicals, and extinguishing singlet and triplet
oxygen [53]. Phenolics can be found as conjugated forms or
free aglycones in different tissues with glucose as glycosides
or other moieties in almost every plant organism [54].

(e decrease in the antioxidant capacity normally occurs
by conjugation present in the phenolic backbone through
the hydroxyl groups; hence, the free radical resonance
stabilization depends on the free hydroxyl groups present on
the phenolic rings. Some lines of evidence suggest that
Veronica species possess antioxidant activity marked as

insufficient; however, limited studies claimed that few of
Veronica species show antioxidant activity [55, 56]. It was
observed that the aerial part of Veronica persica contains
Persicoside, a phenylethanoid glycoside [57–59]; however,
lots of phenylethanoid glycosides have been discovered
which possess a wide range of biological activities, con-
taining anticancer and antioxidant properties [60, 61].

(e high phenolics containing compounds like phe-
nylethanoids and flavonoids suppress the effect of Veronica
species on NO production [62]. It has been investigated that
most of the phenolic compounds discovered from Veronica
species are beneficial for human health [37, 56, 63]. (e
antioxidant activity of phenolic compounds is also valuable
for delaying or lowering the growth of inflammation [64]. In
this way, we identified that Veronica biloba and Schoeno-
plectus triqueter phenolic extracts showed reducing power in
the form of ascorbic acid equivalents (Table 1), exposing that
the phenolic extract for bounding had lower reducing power
than the free phenolic extract [65, 66].

(e therapeutic approaches toward the control or re-
duction of hypertension and hyperglycemia involve the
inhibition of carbohydrates metabolism enzymes that are
ACE (angiotensin-I converting enzyme), α-glucosidase, and
α-amylase [67–69]. (e experimental results of ACE,
α-glucosidase, and α-amylase activity of Veronica biloba and
Schoenoplectus triqueter (L.) Palla of the extracts, free and
bound phenolics, are as shown in Table 2 and Figures 1–8.

(e α-amylase inhibition activity of Veronica biloba
fraction extracts showed higher efficiency in the following
order: water (110.25 µg/mL) > ethyl
acetate>dichloromethane> acarbose>n-hexane (148.01 µg/
mL); 50% median inhibition for water fraction appeared at a
very lower concentration than standard acarbose and it is
shown in Figure 1 that in the range of 50–75 µg/mL there is a
direct relation found between inhibition and concentration;
the exception was that n-hexane fraction pushed slowly.
Meanwhile, in the case of α-glucosidase, the overall activity of
water extract was found to be >75% and the results described
the following order: water (78.65 µg/mL) > acarbose> ethyl
acetate>dichloromethane>n-hexane (149.71 µg/mL); the
50% inhibition for first sequence order appeared at 75 µg/mL
as shown in Figure 2.

(e α-amylase inhibition activity for both plants, Ve-
ronica biloba and Schoenoplectus triqueter, and free and
bound phenolics in comparison are shown in Figures 3 and
4, respectively; in both plant species, bound phenolics
showed 50% activity, while Veronica biloba (219.66/mL)
potential was noticed to be higher and more potent with
change in concentration. In the case of α-glucosidase in-
hibition, free phenolics were active for Veronica biloba,
50%� 469.56 µg/mL, and Schoenoplectus triqueter, 50%�

673.05 µg/mL, significantly having P � < 0.05, as shown in
Figures 5 and 6. Dose-depending antihypertensive activities
of both species extracts (bound and free phenolics) are
carried out via ACE inhibition in both plants. Bound
phenolics showed greater efficiency than free phenolics.

Phenolics of Veronica biloba 50%= 210.68 µg/
mL > Schoenoplectus triqueter 50% = 229.40 μg/mL as
shown in Figures 7 and 8 and Table 2; in both cases, free
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Table 1: (e total antioxidants and phenolics potential in medicinal plants A-VB and B-ST.

Samples extracts Total phenolics Total antioxidants Reducing power
Bound phenolic(A-VB) 62.02± 5.2 12.21± 1.5 10.66± 2.0
Bound phenolic(B-ST) 41.6± 2.5 9.8± 0.05 7.2± 1.5
Free phenolic(A-VB) 81.34± 0.5 16.09± 1.2 14.08± 1.5
Free phenolic(B-ST) 54.11± 1.5 11.03± 0.1 9.08± 2.05
(e statistical data in triplicate (n� 3) are represented as mean± standard deviation (having P � < 0.05); total antioxidant equivalent is determined via trolox
standard, and reducing power equivalent is determined via ascorbic acid standard. (A-VB)�Veronica biloba; (B-ST)� Schoenoplectus triqueter (L.) Palla.

Table 2: Inhibitory potential of medicinal plants A-VB and B-ST.

Extracts
50% median inhibitory potential

(IC50 µg/mL)
ACE α-amy α-glu

Bound phenolic(A-VB) 210.68 219.66 608.31
Bound phenolic(B-ST) 229.40 741.19 >749.35
Free phenolic(A-VB) 249.05 573.39 469.56
Free phenolic(B-ST) 319.59 >749.52 673.05
Water(A-VB) — 110.25 78.65
Ethyl acetate(A-VB) — 121.09 97.03
n-Hexane(A-VB) — 148.01 >149.71
Dichloromethane(A-VB) — 123.68 139.93
Acarbose — 138.79 88.73
(e statistical data in triplicate (n� 3) are represented as mean± standard
deviation (having P � < 0.05), calculated by software. (A-VB)�Veronica
biloba; (B-ST)� Schoenoplectus triqueter (L.) Palla; ACE� angiotensin-I
converting enzyme; α-amy� α-amylase; α-glu� α-glucosidase.
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phenolics were lower. However, previous studies showed
that phytochemicals have lower α-amylase inhibition than
α-glucosidase inhibition [49, 50, 70, 71]. (e antidiabetic
and acarbose possess excess α-amylase inhibition which
would avoid the side effects [72].(us, plant phenolics with
high α-glucosidase and mild α-amylase inhibitory activities
have been suggested as suitable substitutes for the clinician
to the analogous synthetic inhibitors [67]. Moreover, the
antihypertensive potential of phenolic extracts has also
been examined through the inhibition of ACE. As shown in

Figures 7 and 8, both extracts exhibited a high ACE in-
hibitory activity in adose-dependent manner. In specific,
bounded phenolic extracts (P< 0.05) had very high
inhibiting activity on enzymes compared to free phenolic
extracts. Further studies on the physical structure of human
ACE have given us evidence of the presence of a group of
amino acids in the protein molecule cysteine (cysteine is
responsible for the formation of disulfide bridges [69]. (at
is why ACE controlling activity of Veronica persica may be
because of the interactions between (bound and free)
phenolics and disulfide (cysteines which are oxidized) that
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Figure 4: α-Amylase median inhibitory potential of Schoenoplectus
triqueter phenolics.
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Figure 5: α-Glucosidase median inhibitory potential of Veronica
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are located over the surfaces of macromolecules respon-
sible for functional and structural changes which are in
turn associated with enzymes stopping [69]. Our results
support the greater α-glucosidase, α-amylase, and ACE
reducing activities as shown in Figures 1–8 with bounded
extract of phenolics in comparison with the unbounded
phenolic extract. (e main reason may be associated with
the higher water loving of bound phenolics, which are
greatly in the form of glycosides. Compared to the free
phenolics which are mainly in the form of a-glycones,
enzymes (ACE and alpha-amylase) are active in medium
containing water, which are inhibitors directing toward
positive mean; it increases the interaction between in-
hibitors and enzymes; the interaction effects of bonded
phenolics are greater compared to unbounded phenolics.
(ese studies revealed the inhibition activity of phenolic
compounds which might be involved in bridges, that is,
disulfide bridges located on the outer layer of α-amylase,
thus the enzyme responsible for the modification of the
function and structure [68–73]. (e reason for the inhi-
bition of ACE, α-amylase, and α-glucosidase potential of
both plant species maybe is due to the direct interaction of
the phenolics with the disulfide bridges of the enzymes.
Furthermore, the activity will be confirmed with the pu-
rification of extracts and isolation of phenolics; more
consideration is required.

4. Conclusions

It is concluded that both plants, Veronica biloba and
Schoenoplectus triqueter (L.) Palla, showed a quiescent
hindrance in in vitro ACE (angiotensin-I converting en-
zyme), α-glucosidase, α-amylase, and antioxidant bioactiv-
ities and are helpful in the therapeutic investigation of
hypertension and hyperglycemia, linked to Type-II diabetes.

(e properties of enzyme hindrance may be associated with
phenolic compounds. Additional analysis and studies are
firmly suggested to clarify the basic phenolics compounds
which are moderated by free radicals; the identification and
isolation of the components chemical outfit of plants may
lead to utilization in clinical trials.
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