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e degradation modes and characteristics of di�erent pesticides were introduced. In addition, this paper also describes the
degradation mechanism of di�erent pesticides, classi�es, and summarizes the methods of degradation products identi�cation. For
the sake of human life health and better biological environment, we should have a familiar knowledge of the natural degradation of
pesticides and understand the photo-hydrolysis and its in�uencing factors (temperature, pH, light, etc.).rough the degradation
mechanism and in�uencing factors, the degradation time could be accelerated and it also provides a theoretical basis and basic
support for the treatment of pesticide residues in the future.

1. Introduction

Pesticide, as a chemical synthetic substance or a natural
substance from the other bionts, used to prevent, destroy or
control diseases, insects, grasses, and other harmful or-
ganisms that endanger agriculture, forestry plants and their
products, and purposefully regulate the growth and devel-
opment of plants and insects. As an important agricultural
means of production, the primarily function of pesticides is
to ensure crop yield, quality, and safety. ey are divided
into several major types depending on their control objects,
such as insecticide, fungicide, acaricide, herbicide, nemati-
cide, and plant growth regulator. e development and
application of pesticides had played a very important role in
promoting the harvest of agricultural food crops. However,
excessive dependence on pesticides and irrational use of
pesticides had a certain negative impact on agricultural
production. With the mass production and widespread use
of pesticides, the application of pesticides inevitably causes
residues and pollution in the environment and has caused a

widespread concern in countries around the world [1–4].
Pesticides must be residual when used, these residues will
have incalculable implications for food, the environment,
biomes, and even humans. e ecological e�ects of pesticide
residues and the fate of these residues in the environment are
urgently needed to be solved for both the scienti�c com-
munity and the general public. erefore, it is necessary for
us to explore the photolysis, hydrolysis mechanism, and
identi�cation method of pesticide degradation mode to
provide a theoretical basis and technical support for mul-
titudinous pesticide detection technology and residue so-
lution in the future.

ere are many reasons for causing and a�ecting pes-
ticide residues. e properties of pesticides, environmental
factors, and the application methods of pesticides are the
main factors a�ecting pesticide residues. e pollution of
pesticides to the water environment mainly come from (I)
direct application to the water environment; (II) migration
of pesticides applied to the farmland with rainwater or ir-
rigation water; (III) discharge of wastewater from pesticide
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production and processing enterprises; (IV) during the use
of pesticides, the droplets, or dust particles migrating with
the wind and settle into the water body and the cleaning of
the application tools and instruments. For example, some
pesticides were found in the water environment with ex-
tensive agricultural activity [5, 6]. Furthermore, many
pesticides were found in urban streams [7], lakes [8–11],
underground water [12], and rivers [13–16]. After the
pesticides were applied, some of them adhered to the plant
body, or part infiltrated into the body of the plant, and the
other part was scattered on the soil or evaporates, dissipates
into the air, or flows into the lake with rainwater and
farmland drainage, thereby polluting the water body. Pes-
ticide residues mainly enter the human body through the
atmosphere, water, soil and food, and cause various chronic
or acute diseases.

Both photolysis and hydrolysis are important ways in the
degradation of pesticides in the environment. Hydrolysis is a
hydrolysis reaction of pesticides because there are chemical
structures in the pesticide molecules that can be hydrolyzed,
such as ester bonds, ether bonds, amide bonds, cyano group,
and acyl chloride group. Photolysis of pesticides is a process
in which a pesticide molecule gets light radiation energy, and
light energy is converted into a molecular bond of the
compound to break the bond and generate an internal re-
action. Pesticide molecules must absorb a certain wavelength
of light energy in an excited state in order to carry out a
photochemical reaction. Due to the structural properties of
the pesticide itself, most pesticides are very sensitive to
photolysis. In the past few decades, a large number of studies
have been conducted on the photolysis of pesticides and the
effects of organic and inorganic constituents in natural
world on the degradation of pesticides in water [17–33].

In this paper, the literature on pesticide degradation in
recent years is reviewed, the degradation methods of pho-
tolysis and hydrolysis are introduced, the degradation
mechanism of pesticides is discussed, and the identification
methods of degradation products are summarized. Finally,
this review provides some useful data and recommendations
for future research that will be urgently needed to inform
pesticide users, developers, and governmental regulators as
well as will have a more thorough reference point from
which the future of these widely applied pesticides can be
determined.

2. Types and Characteristics of Pesticides

Pesticides are divided into several major types depending on
their control objects, such as insecticides, fungicides, acar-
icides, herbicides, nematicides, and plant growth regulators.
Insecticides were agents that control the chemical or bio-
logical sources of insects. Insecticides could control insects
which may be due to killing the insect or otherwise pre-
venting it from engaging in a considered destructive be-
havior. Historically, humans have had long experience using
pesticides [34, 35]. Compared with insecticides, fungicides
have a short development history. It was not until 1807 that
the first practical chemical used for disease control, the first
fungicide, was discovered [36, 37]. In recent years, the

development of Strobilurin fungicides was remarkable. )e
mechanism of action was to block electron transmission,
inhibit mitochondrial respiration, and inhibit fungal growth
[38]. Ammoniacides have been developed due to the eco-
nomic losses caused by the rampant reproduction of her-
bivorous mites affecting fruits, cotton, and vegetables.
Today, to achieve the goal of drug resistance, most of the new
acaricides can be classified as mitochondrial respiratory
inhibitors, growth inhibitors, and neurotoxins [39, 40].
Herbicides act on large numbers of metabolic functions and
energy transfer sites in plant cells [41]. )e first commercial
synthetic herbicide was created in the 1940s [42]. Herbicides
are divided into three categories: the first, biochemical
pathways and physiological processes related to photosyn-
thesis; the second, inhibit bioconstruction or assemble into
biopolymers; and the third, other modes of action [43]. Plant
parasitic nematodes cause huge economic losses to agri-
culture around the world annually [44]. Compounds con-
trolling nematodes began synthesis only in the 19th century
[45, 46]. Plant hormones play regulatory roles in growth and
development, while synthetic chemicals with similar phys-
iological activities, or compounds capable of otherwise
modifying plant growth, are called plant growth regulators
[47]. Plant growth regulators play a mainly active regulatory
role in plant development and affect the balance of plant
body hormones generally [48].

3. Pesticide Degradation Mode

)e degradation mode of pesticides in the environment is
divided into biological degradation and nonbiological
degradation. Nonbiological degradation is also divided into
hydrolysis and photolysis.

3.1. Hydrolysis. Hydrolysis reactions are important pro-
cesses when many pesticides are degraded. Because of ad-
sorption catalytic reactions, pesticide hydrolysis is faster in
soil than in soil-free systems. )is is more significant for the
degradation of chlorotriazine herbicides and organophos-
phate insecticides [49]. We take organophosphorus insec-
ticides as an example. Its hydrolysis reaction can occur by
homogenization machine production. Water and hydroxide
ions participate as nucleophiles in bimolecular nucleophilic
replacement reactions. Iron and aluminum oxides as well as
different clays can increase the hydrolysis rates by providing
the surface positions of the nucleophiles and the hydrolysis
reactions. Despite much speculation about the hydrolysis
mechanisms, there is still uncertainty [50, 51].

3.2. Photolysis. )e light-induced chemical reactions of
pesticides on the surface of the atmosphere, water bodies, or
objects (e.g., plants and soil) are an important non-
biodegradation pathway of pesticides and has a significant
impact on pesticide residues, efficacy, toxicity, and the en-
vironment. Photocatalytic degradation is a relatively cheap
and effective degradation method and has good potential
[52–55]. Photodegradation requires absorption of light
energy and only pesticides that absorbed light above 285 nm
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could be decomposed by natural sunlight. )erefore, pho-
tocatalytic degradation experiments are usually carried out
under high intensity light. Pesticides absorbed light radia-
tion and produced hydroxyl, superoxide, and ozone radicals,
which ultimately lead to degradation products. Photo-
catalytic degradation reactions might be isomerization,
substitution, or oxidation. )e reaction type is affected by
the physical properties of pesticides, environmental factors,
reactants, and so on [56, 57]. Photocatalytic degradation
reactions generally required photocatalysts. )e ideal ma-
terial for photocatalysts should have high photoactivity,
photocorrosion resistance, chemical inertia, low cost, and
low environmental toxicity in the near ultraviolet and visible
regions of the electromagnetic spectrum [58]. Titanium
dioxide and zinc oxide were the main catalysts in photo-
catalytic reaction experiments [59–62]. However, recent
research using semiconductors as catalysts has emerged [63].

3.3. Biodegradation. Biodegradation has the advantages of
efficiency, economy, flexibility, wide range of degradation
objects, stable degradation ability, and no secondary pollution
to the environment [64]. )e main reactions involved in
microbial degradation include hydrolysis, oxidation, alkyl-
ation, and dealkylation [65]. Biodegradationmight be thought
of as the transformation of a complex substance into one or
more simpler substances by biological machinery, through the
production of enzymes that broke a chemical bond, and the
degradation of large compounds into small ones, rendering
them inactive. In addition to degrading enzymes, biodegra-
dation could also be influenced by environmental factors,
including the soil type, water content, temperature, and pH
[66–68]. )e role of oxygen in pesticide biodegradation was
complex; for example, as an oxygenase substrate involved in
biodegradation reactions. If oxygen was sufficient, the end
products of degradation will be carbon dioxide, water, sulfate,
nitrate, phosphate, chloride ions, etc. If oxygen was insuffi-
cient, anoxic conditions can stimulate the activity of potential
anaerobic microorganisms, which may directly or indirectly
affect the transformation of pesticides [69].

3.4. Factors Affecting the Degradation. )e factors affecting
pesticide degradation in the water environment and soil
were generally related to the nature of soil and water itself,
such as water soil pH, temperature, soil water content, soil
organic matter content, and different soil types (the actual
essence was related to the organic matter content) [70, 71].
Some influencing factors were related to the nature of the
pesticide itself; for example, the effectiveness of pesticides on
soil pests was also the main factor affecting the pesticide
degradation in the soil. )ere were other environmental
factors, such as other soil phenomena (adsorption) and
environmental exposure of nontarget organisms [72].

4. Pesticide Degradation Mechanism

4.1. Insecticide. In the study of nonbiodegradation of in-
secticides in nature (soil or water), the experimenter will
explore the consistency of hydrolyzed photolysis products

through comparative experiments and will compare the
effects of natural light and man-made radiation sources on
photolysis. )e main photolysis mechanism of insecticide
was ester group breaking (Figure 1(a)) [73, 74]. However, the
photolysis pathway of pesticides was not only the breaking of
the ester group. )ere were many kinds of pesticides with
different components. Some pesticides have only one deg-
radation pathway, some have two, and some even have a
variety of degradation pathways. For example, the photolysis
of the organophosphorus insecticides-ethyl parathion,
methyl parathion, and phenylthiophosphorus in water and
soil was found to include oxidation, hydrolysis, isomeriza-
tion, and reduction (Figures 1(b)–1(d)) [75]. Pesticide hy-
drolysis was also the same. In the experiment of hydrolysis of
chlorpyrifos (O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl)
phosphorothioate), nucleophilic attack was done by water of
ethoxy carbon degradation products (Figures 1(e) and 1(f ))
[76]. )e effect of environmental factors on the photolysis
and hydrolysis of pesticides was also a subject worthy of
study. It was found that three insecticides were stable under
acidic conditions. Dealkylation occurred in a neutral me-
dium. In the alkaline medium, the ether bond broke to form
phenol derivatives and dialkyl phosphoric acid
(Figures 1(g)–1(j)) [77].

4.2. Fungicide. Like insecticides, the degradation pathways
of fungicides were diverse. When the main degradation
reaction occurs, it will be accompanied by parallel reactions.
For example, the main photoproducts of azoxystrobin
fungicides were produced by ether bond breaking. )e
secondary photolysis products might be due to demethy-
lation. Photoisomerization and cleavage of acrylate double
bonds were parallel pathways of degradation (Figures 2(a)–
2(e)) [78]. For the degradation of fungicides, the researchers
also considered the influence of environmental factors on
the reaction. For example, the common humus in soil, acid-
base environment, and the effect of micellar medium on
degradation.)e research showed that humus as the oxidant
extracts electrons or hydrogen atoms from bactericides to
form oxidation products. In the acidic environment, the
disulfide bond and carbon-nitrogen bond in bactericide
were destroyed, and there will be byproducts in the absence
of metal tin ions. In nonionic micelles, the loss of the ethyl
ester group and the opening of a dihydrocarbon ring will be
inhibited. In the alkaline hydrolysis of benzoic acid and
benzyl fungicides, the degradation mechanism was inferred
to be a carboxyl fracture (Figures 2(f)–2(k)) [79–82].

4.3. Acaricide. For acaricides with a relatively complex
structure, its degradation pathway also has many routes. For
example, the photolysis pathway of abamectin, an acaricide
composed of two colorless homologs with the same mac-
rolide structure included oxygenation, demethylation, and
isomerization (Figures 3(a) and 3(b)) [83]. In order to
understand the degradation of acaricides under different
conditions, the experimenters will design the degradation of
acaricide under different light conditions in different so-
lutions to master the possible different degradation
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mechanisms. For example, in the study of photolysis of non-
naphthoquine, it was found that the degradation mechanism
was the cleavage of ether bond between quinazoline and the
phenyl ring system, the oxidation of a tert-butyl substituent
and the oxidation of the heterocyclic part of a quinazoline
ring (Figures 3(c)–3(e)) [84]. Even if the possible degra-
dation mechanism was mastered, the renewal of acaricides
was changing with each passing day. )is means that it is
very important to study the degradation of the new
mechanism. In the study of a new benzoyl acetamide
acaricide cyflumetofen (CYF), it was found that the elec-
trophilic group carbon atoms on the CYF were found to be
easily damaged by a nucleophilic attack, producing a hy-
drolysate 1. When the carbon-carbon single bond breaks, it
binds with an amino group to produce hydrolysate 2
(Figures 3(f ) and 3(g)) [85].

4.4. Herbicide. In the study of herbicide degradation,
photolysis and hydrolysis were also studied by changing the
light. It was found that Sulfuron could cause the sulfonyl
group to fall off under neutral and alkaline conditions.
Photooxidation and photoisomerization were the main re-
actions of triketone herbicides (Figure 4(a)) [86, 87]. Of
course, herbicides were mostly organic, and their degra-
dation reactions were complex and changeable, and there
were many degradation products. )ere were nine photol-
ysis products of ketene herbicides. It was conceivable that
there were many photolysis pathways, including isomeri-
zation and cracking of the oxime ether bond, cracking of
dechlorinated isopropyl group, sulfoxide, and oxidative

cracking of the dechlorinated epoxy group (Figures 4(b) and
4(c)) [88]. Water molecules play an indispensable role in the
hydrolysis of herbicides. )ey often attack compounds as
nucleophiles, as do other types of pesticides. For example,
the hydrolysis of sulfonyl herbicides. )e hydrolysis
mechanism was similar to the nucleophilic substitution
reaction in which water molecules attack carbon groups
from the aryl or heterocyclic side (Figure 4(d)) [89].

4.5. Nematicide. )emost of degradation products detected
in the degradation of nematicides were sulfoxides and
sulfones because sulfur ions or methyl groups would un-
dergo oxidative desulfurization and sulfur oxidation. )e
degradation of amine (4-methylisopropyl phosphoramide)
nematicide and thiazole phosphorus were taken as an ex-
ample (Figure 5) [90, 91]. It has also been shown above that
titanium dioxide often participates in photolysis as a pho-
tocatalyst. )e photolysis of fenamiphos nematicide has two
steps under the action of catalyst, the first was oxidation and
the second was mineralization [92].

4.6. Plant Growth Regulator. Photoisomerization often oc-
curs under photolysis and plant growth regulators are no
exception. )e photolysis mechanism of gibberellin A3
derivatives was photoinduced aromatization of a ring
(Figures 6(a) and 6(b)) [93]. Generally, the degradation of
plant growth regulators is also needed to be considered as
the influence of environmental factors. In the study of the
degradation of methyl phosphonate (MPN), the effects of
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different environmental factors on its degradation were
compared. It was found that the degradationmechanismwas
that electron transfer produces free radicals, reacts with
oxygen to form peroxy radicals, and finally decomposes into

hydroxyl radicals to attack methyl in MPN (Figure 6(c))
[94]. )e degradation of plant growth regulators also in-
volved many ways. For example, the photolysis pathway of
malehydrazine included carbon-carbon double bond
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transfer site, ketone group, and amino group cleavage
(Figure 6(d)) [95].

5. Identification Methods

In recent years, the methods and techniques for quantitative
and qualitative analysis of pesticides were constantly
updated. )e critical methods and techniques were very
useful for the residue analysis of pesticides and the identi-
fication of degradation products, degradation mechanism,
and reaction pathway of the pesticides. Many technologies,
such as gas chromatography-mass spectrometry (GC-MS/
MS) [96–98], liquid chromatography-mass spectrometry
(HPLC-MS/MS) [99–102], ultraperformance liquid chro-
matography-quadrupole-time-of-flight mass spectrometry
(UPLC-Q-TOF-MS) [103–109], ultraperformance liquid
chromatography-orbitrap mass spectrometry (UPLC-
Orbitrap MS/MS) [110–114], and high-resolution mass
spectrometry (UPLC-HRMS) [115–117] were used to sep-
arate the degradation products and identify the structure of
products. So far, the high-resolution mass spectrometry
combined with UPLC is increasingly used in the qualitative
screening and degradation mechanism of pesticide metab-
olites, for its high-resolution ensures high sensitivity, ac-
curacy, and high specificity required for complex sample
analysis. )rough these techniques, the degradation
mechanisms and reaction pathways of many pesticides in the
environment were identified. Pesticide may undergo phys-
ical and chemical processes in the soil. )erefore, a com-
bination of physical and chemical unit processes was
required and actually employed to ensure the removal of

pesticide residues and byproducts from the environment.
)e mode and mechanism of chemical degradation were
closely related to the molecular structure of pesticides.
Generally, pesticides with functional groups such as hal-
oalkyl, amide, amine, carbamate, epoxy, cyano, phosphate,
and sulfate were easily hydrolyzed.

5.1. High-Performance Liquid Chromatography.
High-performance liquid chromatography (HPLC) used a
liquid as the mobile phase and high pressure infusion sys-
tem. Single solvent or mixed solvent with different polarities
and buffer were pumped into the chromatographic column.
After being separated in the column, the sample was de-
tected by the detector. High-performance liquid chroma-
tography was used to study the degradation rate of
fenpyroximate in apples, oranges, and grapes. )e classical
QuEChERS method was used for pretreatment. )e C18
column was used for separation and HPLC-PDA was used
for detection [118].

5.2. Liquid Chromatography-Mass Spectrometry. Liquid
chromatography-mass spectrometry (LC-MS). Pesticide
residues were mainly detected by liquid chromatography
tandem mass spectrometry, high performance liquid chro-
matography tandem mass spectrometry, and ultrahigh liq-
uid chromatography tandem mass spectrometry.

Of course, in the experiment, the experimental method
was not single and unchanging. )ere will be different
methods in sample extraction, such as ultrasonic extraction,
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solid phase extraction, and so on. For example, ultrasonic
extraction and HPLC-APCI-MS were used to determine
antifouling pesticides and their degradation products in the
sea. Solid phase extraction combined with liquid chroma-
tography-mass spectrometry was used to determine ben-
zophenone, carbazine, and their degradation products in
water samples [119, 120]. However, overly complex exper-
imental methods will consume a lot of human, material, and
financial resources. Liquid chromatography tandem mass
spectrometry was used to determine pesticides and their
degradation products [121, 122]. With the development of
science and technology, the identification and determination
experiments of pesticides were constantly innovated. In the
experiment of studying the photo-hydrolysis and degrada-
tion products of neonicotine insecticides, the absorbance of
each neonicotine was determined by spectrophotometer,
and the reaction products were determined by UPLC-MS/
MS. )ere are also technologies such as ultrahigh liquid
chromatography time of flight mass spectrometry (UPLC-
Q-TOF-MS) and high-resolution mass spectrometry
(UPLC-HRMS) to separate degradation products and
identify the structure of products [123–125].

5.3. Gas Chromatography and Gas Chromatography-Mass
Spectrometry. Gas chromatography was a chromatographic
separation and analysis method using a gas as mobile phase.
)e vaporized sample was carried into the column by the
carrier gas. )e molecular forces of each component were
different and the outflow time was different, so that the
components were separated from each other. In pesticide
degradation experiments, solid phase microextraction was
often used to treat samples, regardless of the final detection
method. )is was the case in the experiment of studying the
degradation residues of amitraz, which was treated by solid-
phase microextraction and detected by gas chromatography
ion trap detector (GC-ITD) [126].

In terms of gas chromatography-mass spectrometry,
mass spectrometry has a unique ability to identify unknown
compounds with extremely high sensitivity, making GC-MS
one of the most powerful tools for separating and detecting
complex compounds. Sometimes, the toxicity of degradation
products will also be determined in the experiment because
it is impossible to distinguish whether the degradation
products of pesticides are still toxic. For example, the dis-
appearance of methyl organophosphorus, toxic phosphorus,
and malathion in aqueous solution and the formation of
photodegradation products were detected by gas chroma-
tography-mass spectrometry (GC-MS). )e toxicity was
determined by FIA-ache-TLS bioassay [127].

5.4. Other Methods. Isotope labeling was a method to un-
derstand the detailed process of chemical reactions by
tracing compounds labeled by tracer elements. Carbon el-
ements were used as tracer elements in pesticide degradation
product recognition. Pesticide degradation research
methods using carbon 13 and carbon 14 isotope markers
have emerged and have gradually been widely used. )is
technique could be readily seen in studies of the degradation

pathways and the identification of the degradation products
of multiple pesticides [128, 129].

6. Concluding Remarks

Mentioned in this article are the different types of pesticide
and its effects on human health and biological environment.
Not only that, but also for pesticide degradation model,
different kinds of pesticide degradation mechanisms and
methods to identify degraded products are mentioned.

In today’s world, the widespread use of pesticides and
pesticide residues did become a hot topic. For the health of
human life and better biological environment, degradation
of pesticide in nature should be familiar with the cognitive
method and understand the photolysis hydrolysis and
influencing factors (temperature, pH, light, etc.). )rough
the degradation mechanism and influencing factors, the
degradation time could be accelerated, and the theoretical
basis and basic support for pesticide residues could be
provided in the future. In this paper, the biodegradation of
pesticides was not described too much, mainly focusing on
the photolysis and hydrolysis of pesticides. However, in
recent years, there were more and more research studies on
the biodegradation of pesticides. In the future development,
the biodegradation of pesticides is also crucial to the de-
velopment of pesticide degradation residues.

)e identification method of pesticide degradation
products was also mentioned in this paper. )rough con-
sulting data, the author found that high-performance liquid
chromatography-mass spectrometry was mostly used in
research experiments, mainly because of its advantages of
high efficiency, high sensitivity, and wide application. With
the development of technology, identification methods
would be gradually updated, including UPLC-Q-TOF-MS
and ultraperformance liquid chromatography-orbitrap mass
spectrometry (UPLC-Orbitrap MS/MS).
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