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Plant-based nanoparticles (NPs) have many advantages over physical and chemical methods and featured with several medicinal
and biological applications. In this study, zinc oxide NPs (ZnO-NPs) were synthesized using pomegranate peel aqueous extract,
under mild and ecofriendly conditions.�e ZnO-NPs structure, morphology, and optical properties were investigated using X-ray
di�raction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis).
Antibacterial activity against Gram-positive and Gram-negative strains were evaluated using the disk di�usion method.�e e�ect
of extract concentration (20, 30, and 40mL) on the �nal properties of NPs, as well as the NPs concentration used for antibacterial
test (50, 100, and 200mg/mL), were also studied. �e results indicate a hexagonal structure with particle size increases as extract
concentration increase (D � 18.53, 29.88, and 30.34 nm), while the optical bandgap was decreased (Eg� 2.87, 2.80, and 1.92 eV).
�e antibacterial activity of ZnO-NPs indicated high e¢ciency, similar or even higher than that of the control azithromycin, more
against S. aureus, increased with NPs concentration, and preferred when NPs prepared from high extract concentration. Such
promising physicochemical properties support the usefulness and e¢cacy of the reported bio-route for production of ZnO-NPs
and may encourage its application for large-scale production.

1. Introduction

Plant-mediated synthesis of NPs is an innovative indus-
trial technique with plenty of pro�table and ecofriendly
features [1, 2]. Green synthesis of metal and metal-oxide
NPs is one interesting issue of nanoscience, with plants
seem to be the best candidates for the large-scale appli-
cation [3]. �e use of plant extract for making such NPs is,
on the one hand, cost-e�ective, easy to be scaled up, and
environmentally benign and, on the other hand, the
resulting nanoproduct is more stable and tailored in

shapes and sizes compared to those obtained by other
organisms [3, 4].

Among metal oxide NPs, ZnO nanostructures are the
forefront of research due to their unique features and wide
applications. ZnO-NPs can be synthesized through several
ways such as chemical (sol-gen and solvothermal), physical
(evaporation-condensation and laser ablation), and bio-
logical methods. Due to the use of organic solvents and the
nature of chemical reactions that may produce harmful
chemicals for environment and human being which possibly
adsorbed on the NPs’ surface, the chemical method is not
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favored in production of NPs. Likewise, physical methods
are associated with some difficulties like the high cost and
requirement of harsh conditions such as high pressure and
temperature [5, 6]. *us, biosynthesis has increasingly be-
come a focus of research interest in this field, providing
attractive alternative to the conventional chemical and
physical methods, due to its simplicity, eco-friendliness, low
price, and considerable antimicrobial activity [3, 7]. Besides
of its simplicity, biosynthesis commonly needs no expensive
equipment or training, while it provides pure products.

It is known that the nature of biological entities (extract,
enzymes, and proteins) used to reduce, and stabilizeation of
NPs influence their end-properties, of the synthesized NPs
including their structure, shape, size, and morphology, and
thus, bioactivity. Using plants as biogenic source for bio-
synthesis of NPs, the plant type, extraction protocol, solvent
employed, and extract concentration play an important role
in the properties of the NPs, with precursor concentration
being the significant factor affecting the morphology of the
synthesized ZnO-NPs. Besides bacteria strain, the bioactivity
has been reported to also depend on concentration and
morphology of ZnO-NPs [8].

ZnO-NPs prepared using plant extracts have shown fa-
vored optical and biological properties compared with those
from conventional methods of synthesis [3, 5, 9–11]. In ad-
dition, biosynthesis of such metal-oxide NPs is one advan-
tageous method, due to the wide concern of pollution,
principally because the concept of environmental protection is
nowdeeply rooted in the expectationsof thepopulation [8, 12].

Pomegranate is a familiar, sweet tasting fruit with hard
pericarps. A fruit yields about half of its weight in juice,
which leads to a lot of peel waste [13, 14]. *e peel contains a
variety of biologically active compounds those evidently
responsible for their reported higher antibacterial properties
[13–17] than leaves and flowers.

At this point, pomegranate peelwas targeted for synthesis
of ZnO-NPs through a fabricated route. *e obtained ZnO-
NPs was fully characterized for its structural and optical
properties using FTIR, XRD, SEM, and UV-Vis techniques.
*en, the bioactivity against selected bacteria strains was
evaluated in reference to azithromycin as a standard drug
using the diffusion method.

2. Materials and Methods

2.1. Materials. All chemicals, including zinc nitrate hexa-
hydrate (Zn (NO3)2·6H2O; ≥99%), sodium hydroxide
(NaOH; 98%), and ethanol (EtOH; 99.5) were purchased
from BDH Chemical Ltd. (Pool, England, UK) and used as
received without further purification. Distilled water (DW)
was used wherever required.

2.2. Pomegranate Peel Collection. *e peels of the pome-
granate fruit (PP) were collected from a local market at
*amar city (*amar, Yemen) during the second half of
summer season, 2021. *e fruit originally comes from
Saadah farms, Saadah governorate, Yemen, and freshly
sales within two-to-three weeks of harvesting. To remove

the dust particles, the peels were washed thoroughly
four-to-five times with tap water, then by DW three
times. *e clean peels were left to dry at room tem-
perature for three weeks. After that, the dried peels were
ground to fine powder with the help of electrical grinder.

2.3. Preparation of Aqueous Extract. Typically, 15 g of PP dry
powder were mixed with 200mL DW to prepare the extract
(termed PPE). *e mixture was stirred at room temperature
(24±2°C) for 30min during which the color of the media was
changed from colorless to yellow. Subsequently, the solution
temperature was increased and left at boiling for 5min, then
cooled to room temperature, filtered withWhatman No. 2 filter
paper and used freshly as obtained for the synthesis of the target
ZnO-NPs.

2.4. Biosynthesis of ZnO-NPs. To 25mL aqueous solution of
Zn (NO3)2·6H2O (5 g, 0.67M), 10mL of NaOH aqueous
solution (1.5 g, 3.75M) was added slowly over about 5min,
followed by dropwise addition of 20mL of freshly prepared
PPE. Upon completion of addition, the mixture was stirred
at room temperature for 90min, then filtered. *e obtained
precipitate was thoroughly and sequentially washed with
ethanol and DW and left to dry at room temperature for
48 h. After that, the dry powder was annealed at 200°C for 3 h
to obtain ZnO (termed Z20). *e same protocol was applied
to prepare Z30 and Z40 in which the volumes of the extract
used (i.e., PPE) were 30 and 40mL, respectively. *e overall
scheme for biosynthesis of ZnO-NPs and its bioactivity are
summarized in Figure 1.

2.5. Biological Studies

2.5.1. Antibacterial Test. *e in vitro antibacterial activity
of the synthesized ZnO-NPs (Z20, Z30, and Z40) was
evaluated by screening against Gram-positive (Staphy-
lococcus aureus (S. aureus)) and Gram-negative
(Escherichia coli (E.coli)) bacteria using the disk-diffu-
sion method as described in the literature [18] and in
reference to Azithromycin (AzM) standard drug. *e test
bacteria were kind gifts from Al-Jarfi medical Lab
(*amar city, Yemen). *e media, nutrient agar (Hi-
media, Mumbai, India) was prepared in accordance with
the manufacturer’s recommendation. Hence, freshly
bacteria suspension was made to an inoculum density
equivalent to 0.05 McFarland (1.5 ×108 CFU (colony-
forming unit)/mL)). *e agar plates were inoculated with
the test bacteria with the aid of sterilized swabs. *e
ZnO-NPs were suspended by sonication in DW to obtain
50, 100, and 200mg/mL concentrations and used for
antibacterial tests [5]. Sterile filter paper disks with di-
ameters of 6 mm were fabricated and immersed in the
NPs suspensions. Similarly, disks of AzM and DW were
also prepared and used as positive and negative controls,
respectively. *e paper disks were placed aseptically on
the surface of bacterially seeded Petri dishes and incu-
bated at 37°C for 21–22 h. *e zone of inhibition (ZOI)
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was determined by measuring the diameter of the in-
hibition area in mm [19, 20].

2.5.2. Hemolytic Assay. *e biosafe nature of the synthesized
biogenic ZnO-NPs was assessed using the hemolytic assay
against human red blood cells (RBC), following a method de-
scribed elsewhere [21] with slight modification. Briefly, fresh
bloodwas collected fromhealthy individuals with a sterile needle
(a 25-year-old male volunteer with an O-positive-blood group)
after the provision of informed consent. *e blood was then
dispersed in EDTA-containing tubes to prevent clotting, and
RBCs were isolated by centrifugation (1mL blood) at 4000 rpm
for 10min, followed by careful removal of supernatant and
washing the pellet with normal saline solution (NS; 0.9 w/v%
sodium chloride, pH 4.5–7.0; Pharmaceutical Solutions In-
dustry, Jeddah, Saudi Arabia). Erythrocyte suspension was then
prepared in NS to obtain 2% cell suspension. Test samples of
ZnO-NPs were prepared in NS to final concentrations of
3.12–200μg/mL. To previously marked test tubes containing
0.5mL of the cell’s suspension, 0.5mL of each test samples, NS
(negative control), and DW (positive control) were added,
immediately transferred into 37°C incubator, and left for 60min.
After incubation, the solutions were centrifuged at 4000 rpm for
10min and the separated supernatant was photometrically
measured for the released free hemoglobin at 540nm.

*e hemolytic activity was calculated using the following
formula (Equation (1):

% hemolysis �
AS − AN

AP − AN

  × 100, (1)

where AS, AN, and AP are the absorbance of the test sample
(ZnO-NPs), negative control (NS), and positive control
(DW), respectively.

2.6. Characterization. *e diffraction patterns of ZnO-NPs
were obtained using an XD-2 X-ray diffractometer (Beijing

Purkinje General Instrument Co., Ltd., Beijing, China), with
CuKα1 radiation of λ� 1.54 Å, in the 2θ range of 10 to 80 and
scanning rate of 0.02min−1. *e electronic spectra were
recorded on a U-3900 UV-Vis spectrophotometer (Hitachi,
Tokyo, Japan), over wavelength range of 200–900 nm at
room temperature. Electron micrographs were obtained for
NP sputter coated with gold samples, using a JSM-6360 LV
SEM (Jeol Ltd., Tokyo, Japan). FTIR spectra were measured
on a Nicolet iS10 FTIR spectrometer from*ermo Scientific
(Madison, WI, USA), equipped with an attenuated total
reflection (ATR, diamond crystal) accessory, over the range
of 650–4000 cm−1, with 32 scans per spectrum and 4 cm−1

scanning resolution at room temperature.
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Figure 1: biosynthesis route of ZnO-NPs using pomegranate peel extract, characterization methods, and bioactivity.
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Figure 2: FTIR pattern of the synthesized PPE-mediated ZnO-
NPs.
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3. Results

3.1. Structural Characterization

3.1.1. FTIR Analysis. Figure 2 represents the FTIR spectra of
the PPE-mediated ZnO-NPs (Z20, Z30, and Z40). *e
spectra are accompanied with indicative peaks of the ob-
tained NPs and traced capping agents from pomegranate peels.
*e broadband on the range 3070–3550 cm−1, in which at least
three peaks were identifiable at 3396, 3278, and 3169 cm−1 and
more clearly in the spectrum of the Z40 sample was attributed to
various v (OH) and v (NHn) groups, including Zn-OH, free and
H-bonding water-OH [22, 23], alcohols, and amides that pos-
sibly are a part of NPs-stabilizing compounds, and the capping
agents. *e peaks at 1675 and 1627 cm−1 assigned to C�O and
C�C stretching bands of flavonoids and amides in the extract
[24] are weak, suggesting their contribution in ZnO-NPs sta-
bilization. *ese bands were highly overlapped with C-C ab-
sorbance around 1590 cm−1 and being almost invisible in the
spectra of Z20 and Z30, possibly due to their sourced low
contents. Absorption at 1590, 1591, and 1551cm−1 in Z20, Z30,
andZ40, respectively, is associatedwithC-C stretching band and
its high intensity may indicate its abundance due to reduction of
alkenes involved in the production of ZnO-NPs [24, 25]. Besides,
the bands at 1396 and 1336 cm−1 may characterize C-N
stretching or CH and OH bending vibrations of aromatic
structures. Hence, it is reported that the amide group, amino,
carbonyl group, and polyphenolic compounds in the PPE are a
part of redox reaction, dispersion, capping, and stabilizers in-
volved in the production of nanoparticles during the process of
synthesis [24, 26, 27]. Bands at 1019 and 929 cm−1 are ascribed to
asymmetric and symmetric stretching vibrations of C-O-O
bonds [27].

*e characteristic peaks of ZnO-NPs usually seen on the
fingerprint frequencies, i.e., below 900 cm−1.However, due to
capacity limit of theATR-FTIR instrument (4000–650 cm−1),
peaks below 650 cm−1 were, unfortunately, not reported.

Nevertheless, the spectra are incorporated with strong peaks
at 670 cm−1 which proposed the formation of ZnO-NPs [1].

3.1.2. XRD Analysis. *e XRD patterns of the synthesized
PPE-mediated ZnO-NPs are shown in Figure 3(a). *e
spectra exhibit nine diffraction peaks on the range of 2θ°
25–75 and some of these peaks are detailed in Table 1. *e
diffractograms have ascertained material purity with no
other external peaks observed, suggesting that the applied
method of synthesis is effective to obtain ZnO-NPs of high
purity. However, unidentifiable peak at 2θ° of 30.10 in Z20
profile may be due to some organics in the extract. Fur-
thermore, the analysis revealed a hexagonal phase as
compared with the database (JCPDS No. 36–1451). It is
obvious that the diffraction peaks are moderately broad and,
thus, indicating highly crystalline ZnO-NPs. According to
the literature [28, 29], the broad peak is an indication of
small and fine NPs (nanoscale crystalline particles) while the
narrow or low intensity peak signifies low crystallinity of the
NPs. As shown in Figure 3(b) and Table 1, the average
particle diameter (D) of the biosynthesized ZnO-NPs, which
calculated using the Debye–Scherrer equation (Equation (2),
were between 18.53 and 30.38 nm [30–32]. *e dislocation
density (δ) of the fabricated samples is specified using the
Williamson and Smallman’s relation (Equation (3)) [33, 34].

D �
kλ

βcos θ
, (2)

δ �
1

D
2, (3)

where D is the crystallite size, k is a constant denotes the
shape factor (0.94), λ is the diffraction wavelength of CuKα
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Figure 3: (a) X-ray diffraction (XRD) pattern of the synthesized ZnO NPs (Z20, Z30, and Z40); inset is a magnification of the prominent
peak of (101) plane. (b) Crystallite sizes (D, nm) and dislocation (δ) vs. extract volume (20–40mL).
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(λ�1.5406 Å), β is the full width at half maximum (FWHM),
θ is the diffraction angle, and δ is the dislocation density.
Figure 3(a) (insert) represents the shifting in the peak po-
sition toward higher angle with crystallite size increase
which, in turn, reflect the effect of preparation extract
volume [35]. Other structural parameters such as d-spacing
(Å), a (Å), c (Å), c/a ratio, unit cell volume v (Å)3, the
volume of particles V (nm)3, atomic packing factor (%), and
the degree of crystal lattice distortion (R) were also com-
puted [36, 37], and the corresponding values are gathered in
Table 2.

3.1.3. SEM Analysis. Figure 4 shows the SEMmicrograph of
the synthesized ZnO-NPs (Z20, Z30, and Z40) in which the
ZnO were mainly composed of nanoplatelets with an overall
quite dense morphology.*e nanosheets’ thickness could be
estimated to a tenth of nm; however, the thicker sheets may
consist of several sheets aggregated to form the nanoplate
network [27], with irregular NPs having almost spherical
shapes [5]. Such aggregation and flaky agglomeration could
be due to a high surface energy of the NPs and also perhaps
due to densification of the narrow space between NPs [38]. A
similar morphology of ZnO-NPs was also reported by a
number of researchers [11, 39]. It seems that the aggregation,
as well as the flake thicknesses, become less for ZnO-NPs
produced at lower extract concentrations and this may
explain the decreased bioactivity on the same order, i.e.,
antibacterial activity order Z20>Z30>Z40.

3.1.4. UV-Vis Analysis. Figure 5 shows the UV-Vis spectra
of the ZnO-NPs prepared with various PPE concentrations
(Z20, Z30, and Z3). *e spectra revealed characteristic
maximum absorbances at 370, 375, and 378 nm, respectively,
indicating quantum size effects [38]. *e bandgap energy
(Eg) as calculated from Tauc’s plotting for the direct allowed
transition, described by Equation (3) [40–42], was found at
2.87, 2.80, and 1.92 eV, respectively for ZnO-NPs (Z20, Z30,
and Z40) prepared using different extract volumes (20, 30,
and 40mL) (Figures 5(b)–5(d))).*is denotes that the ex-
tract volume has an impact on the resulting bandgap of the
synthesized ZnO-NPs, i.e., with PPE extract volume in-
crease, the Eg decreased.

αh] � C(h] − Eg)
n
. (4)

Typically, the Eg depends on the structure, size, and
shape of the nanoparticles and, therefore, the employment of
different extract volume can adjust such properties. By in-
creasing PPE volume, a red shift in the optical bandgap is
observed. Such an effect is obviously the result of the organic
compounds amount differences present in the extract.
According to the literature [13], the PPE is rich with phe-
nolic compounds that may drive production of the ZnO-NPs
which further affected by the extract volume used, i.e., the
magnitude of phytocompounds.

3.2. Antibacterial Activity of ZnO-NPs. *e antibacterial
activity of the biosynthesized ZnO-NPs was tested against

Table 1: Structural parameters of ZnO-NPs.

Samples 2-*eta d-spacing FWHM (deg) Planes (hkl) Crystallite sizes (D, nm) Average (D, nm) Average dislocation (lines/m2)
(1015)

Z20

31.801 2.811 0.566 100 14.59

18.534 2.91
34.539 2.594 0.381 002 21.83
36.339 2.470 0.475 101 17.60
47.423 1.915 0.703 102 12.34
56.700 1.622 0.343 110 26.31

Z30

32.141 2.854 0.344 100 24.03

29.878 1.12
34.321 2.610 0.157 002 52.96
36.680 2.448 0.340 101 24.62
47.979 1.894 0.405 102 21.47
57.039 1.613 0.426 110 21.22

Z40

32.279 2.771 0.340 100 24.33

30.378 1.08
34.939 2.565 0.294 002 28.32
36.780 2.441 0.390 101 21.46
47.535 1.911 0.139 102 62.45
57.081 1.612 0.590 110 15.33

Table 2: Geometric parameters of ZnO-NPs as computed from XRD.

Samples
Lattice parameters

(Å) (c/a)
ratio

Volumes of unit cell
(Å3)

Volumes of particles, V
(nm)3

Atomic packing
factor (%)

Degrees of crystal lattice
distortion

(R)a b c
Z20 3.246 3.246 5.199 1.602 47.44 3331.85 75.4582 1.019559
Z30 3.265 3.265 5.204 1.600 48.04 13958.3 75.82696 1.024541
Z40 3.216 3.216 5.222 1.620 46.77 14670.9 74.43153 1.005687
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both Gram-positive (S. aureus) and Gram-negative (E. coli)
bacteria using the disk-diffusion method. For this, three
different concentrations 50, 100, and 200mg/mL of the
biosynthesized ZnO-NPs (Z20, Z30, and Z40) were prepared
and used for antibacterial activity studies in comparison to
AzM as a standard drug. *e resulting zones of inhibition
(ZOI) are summarized in Table 3, and selected images of
inhibition plates are given in Figure 6. It was observed that
all the tested ZnO-NPs have an inhibitory effect against
S. aureus and E. coli similar to or higher than the AzM
standard drug. *e ZOI was higher against the Gram-
positive bacteria (S. aureus) compared to Gram-negative
bacteria (E. coli). *is might be due to the fact that Gram-
positive bacteria are less susceptible to antibacterial potency
than Gram-negative bacteria, perhaps this is a result of their
different cell wall structures [43].

In the Gram-positive strain, peptidoglycan is thick while
being thinner in the Gram-negative strain, but contains an
outer membrane consisting of lipopolysaccharides that
provides the bacteria resistance to prepared ZnO and makes
them less susceptible [44].*e antibacterial potency of ZnO-
NPs against microorganisms depends on cell wall integrity
[43, 45]. *e results indicate that the use of pomegranate peel
extract-mediated synthesis of ZnO nanoparticles can be

more efficient against Gram-positive bacteria and Gram-
negative bacteria. *is may be due to the existence of the
higher number of phenolic compounds. Moreover, the re-
sults illustrated that the prepared samples have a strong
antibacterial activity against both the strains compared to
Azithromycin.

It is obvious that the ZOI is low for ZnO-NPs prepared
using Z40, the case that can be attributed to the higher
particle sizes of Z40 (30.34 nm) compared to those of Z20
(18.53 nm) and Z30 (29.88 nm). *e highest antibacterial
activity for the lower particle sizes, e.g., Z20, is due to their
smaller size (18.53 nm) which, in turn, means increased
active surface area that further facilitates ease interaction
with the bacterial wall [40]. With the increase in ZnO-NPs
concentration from 50 to 200mg/mL, a gradual increase in
the bacterial inhibition was also observed, supporting the
concentration-dependence activity of the NPs [46, 47].

*e bioactivity of NPs could be attributed to various
factors such as chemical composition, particle size and
shape, concentration, surface charge, and exposure time.*e
destructive action of ZnO-NPs on microorganisms could be
due to one or simultaneous mechanisms: (i) attachment of
NPs to a bacterial surface [46], hence the following stepwise
events were proposed to be involved in adsorption of NPs on

(a) (b)

(c)

Figure 4: Scanning electron microscope (SEM) image of ZnO-NPs. (a) Z20; (b) Z30; (c) Z40.
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the bacterial surface facilitated by surface potential, dis-
tortion of cell morphology, NPs penetration into cells,
membrane damage due to structural and functional inter-
ruption, and leakage of cellular components, thus func-
tionality loss [9, 47, 48]; (ii) Zn2+ release from ZnO-NPs
which, up on penetration into the cell, can inhibit several
bacterial activities including transports, metabolisms, and
enzyme functions, leading to cell death; (iii) ZnO activity as a
result of the formation of reactive oxygen species (ROS)
which leads to oxidative stress and subsequent cell damage
[49]. An illustration of the proposed mechanism is given in
Figure 7.

3.3. Biocompatibility of ZnO-NPs with Human Erythrocytes.
Biocompatibility of ZnO-NPs was assessed using in vitro
hemolysis assay at different concentrations 3.12–200 μg/mL,
against RBCs and in reference to NS andDW as negative and
positive controls [21], respectively. Hemolysis is generally
based on measuring hemoglobin released from RBC after
sample-induced cell lysis. Figure 8 illustrates the averaged
data obtained from the two experiments. As can be seen, the
toxicity of ZnO-NPs at the evaluated highest concentration
(200 μg/mL) was 17.4%, which agreed with the previous
reports [11, 50]. *e hemolysis effect at 3.12 and 6.25 μg/mL
were around 4.6 and 7.5%, increased to 16.8% for 25 μg/mL
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Figure 5: Absorption spectra of ZnO nanoparticles (a) and determination of Eg (b, c, and d).

Table 3: Antibacterial activity of ZnO-NPs using the zone of inhibition method compared to Azithromycin standard drug.

Samples Bacteria
Zone of inhibition (ZOI; diameter in mm)± standard deviation (SD) at various concentrations

ZnO-NPs concentration (mg/mL)
Azithromycin (control)

50mg/mL 100mg/mL 200mg/mL

Z20 S. aureus 27± 1.25 31± 1.75 32± 1.25 28± 0.25
E. coli 22± 1.05 26± 0.25 27± 1.25 23± 0.25

Z30 S. aureus 29± 2.00 26± 1.75 34± 1.50 28± 0.50
E. coli 22± 0.25 23± 0.25 25± 2.25 23± 0.25

Z40 S. aureus 13± 0.50 15± 0.25 17± 0.00 28± 0.25
E. coli 12± 0.25 15± 0.50 16± 0.75 23± 0.50
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above which no significant differences could be observed up
to 200 μg/mL. Basically, substances with hemolysis <2% is
standardized as nonhemolytic, 2–5% slightly hemolytic
while >5% hemolytic [21]. *e obtained values at low
concentrations revealed low toxicity and are in agreement
with the literature [50] stated that ZnO-NPs concentration
lower than 5% is nontoxic, being slightly hemolytic under
5–40 μg/mL while hemolytic at> 40 μg/mL. Muhammad et
at. [11], have reported a 21.8% hemolytic for ZnO-NPs at a
concentration of 200 μg/mL, however researchers have de-
tected no hemolysis at concentrations below 5 μg/mL.
Meanwhile, the hemolytic effect of ZnO-NPs has been re-
ported to be concentration-dependent [11, 50], other factors
including test conditions (medium, cells, and positive and
negative controls), parameters (sample concentration and
incubation time), and the substance nature (biogenic source,
particle shape, and size) have to be analyzed as well to
elucidate slight differences among studies [51].

4. Conclusion

In this study, ZnO-NPs were biosynthesized using pomegranate
peel aqueous extract. *e resultant NPs, obtained from various
extract concentrations (20, 30, and 40mL), were characterized
for their structural, optical, and morphological properties using
FTIR, SEM, XRD, and UV-Vis. *e method resulted in a
hexagonal crystallite, with averaged diameters of 18.53, 29.88,
and 30.34nm and optical bandgaps of 2.87, 2.80 and 1.92 eV,
respectively. *e antibacterial activity of this as-obtained ZnO-
NPs at concentrations of 50, 100, and 200mg/mL, examined on
S. aureus and E. coli and compared with AzM standard drug,
revealed comparable activity to that of AzM, higher when
particle size is low, and more efficient against Gram-positive
(S. aureus) bacteria than Gram-negative (E. coli) and at higher
ZnO-NPs concentration. Hence, it could be concluded that
pomegranate peel extract is a good candidate for biosynthesis of
ZnO-NPs and the utilized green method is effective in the

production of ZnO-NPs with a tailorable particle size and
morphology.
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