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Structured lipids have attracted signifcant interest in industries, such as food, pharmaceuticals, and cosmetics, because they can be
alternatives to traditional lipids. Enzymatic synthesis techniques utilizing lipases have gained attention for structured lipids synthesis
because of their site and substrate specifcity. However, most lipases discovered to date exhibit sn-1,3 regiospecifcity or nonspecifcity,
limiting the selective range of natural oils and fats that can be used as rawmaterials. In this review, we provide an overview of the current
synthesis methods and applications of structured lipids and the limitations of existing lipases in producing structured lipids. In addition,
we discuss innovative approaches, including metagenomics, and machine learning, to discover, and classify new lipases and the use of
gene editing technologies for lipase engineering.Tese eforts aim to overcome the limitations of existing lipases and expand the range of
natural oils and fats that can be used for the production of structured lipids.Terefore, this study aims to promote a better understanding
of structured lipids as a material with high-added value and provides insight into ongoing research eforts in the feld.

1. Introduction

In the food, pharmaceutical, and cosmetic industries, ma-
terials are manufactured as goods based on natural products.
However, the increasing demand for natural resources be-
cause of population upsurge, depletion of growing areas
caused by environmental degradation, and extinction of
plants caused by climate change necessitates a shift in
strategic approaches to produce materials [1, 2]. As a re-
sponse to these challenges, various new technologies have
been developed to substitute natural products and ensure
economic efciency and widespread use of rare raw mate-
rials with high-added value [3–5]. Furthermore, progress is
ongoing on the development of substitutable materials for
the three major nutrients and functional substances.

Fat, one of the three major nutrients, provides necessary
fatty acids and energy. It also plays a vital role in internal
metabolic processes as a carrier that assists in the absorption
of fat-soluble vitamins into the body [6], a precursor of
hormones and neurotransmitters needed for the mainte-
nance of body temperature, a bufering agent, and a com-
ponent of intercellular communication [7–9]. Furthermore,
microscopic levels of lipid derivatives are necessary com-
ponents of brain function [10]. In the pharmaceutical and
cosmetic sectors, lipids are also used as solvents for hy-
drophobic substances and emulsifers for the homogenous
mixing of water-soluble and fat-soluble substances [11, 12].

Structured lipids, as an alternative to conventional fats,
have been receiving attention because of their customized
functional properties and health benefts [13]. Tey can be
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synthesized through diferent methods such as chemical or
enzymatic catalyses [14]. In the synthesis of structured lipids,
chemical catalysis is generated by reactions at high tem-
peratures using catalysts such as sodium methoxide, sodium
hydroxide, and lithium hydroxide [15–17]. Tis approach
has a low-processing cost but requires a complex process,
including the formation of byproducts and their elimination.
By contrast, the production of structured lipids using bi-
ological enzymes does not lead to side reactions because of
the substrate and site specifcity necessary for the targeted
production of structured lipids. In addition, commercially
available immobilized enzymes are ecologically benign, react
at comparatively low temperatures, do not encourage side
reactions, are simple to reuse and recover, and ofer eco-
nomic benefts [18]. Recently, a manufacturing method
using biological enzymes that immobilizes diverse enzymes
has become the standard [19].

Tis review will discuss the trends of currently produced
and investigated structured lipids, the advantages and dis-
advantages of diferent synthesis methods, and the present
state of lipase excavation for the enzymatic generation of
valuable structured lipids. In addition, this review will delve
into the challenges and future prospects in the feld, hoping
that the discovery and creation of lipases for existing enzyme
production will establish the direction of future structured
lipid development through novel approaches for creating
more advanced structured lipids.

2. StructuredLipids:Definition, Properties, and
Synthesis Methods

2.1. Defnition of Structured Lipids. Structured lipids are
modifed fats and oils that are chemically or enzymatically
altered to enhance their physicochemical properties, nu-
tritional values, and functional attributes. Tese lipids have
a specifc arrangement of fatty acids on the glycerol back-
bone, which allows for designing lipids with customized
properties suitable for applications in the food, pharma-
ceutical, and cosmetic industries.

2.2. Advantages and Disadvantages of Structured Lipids

2.2.1. Advantages. Structured lipids ofer numerous ad-
vantages, such as improved physicochemical properties,
enhanced nutritional values, and customized functionality
[14, 20]. Tese advantages enable the development of lipids
with specifc melting points, viscosity, and oxidative sta-
bility, making them more suitable for various applications
[13]. By incorporating desirable fatty acids such as medium-
chain fatty acids or polyunsaturated fatty acids (PUFAs),
structured lipids can provide health benefts, such as re-
ducing the risk of cardiovascular diseases and improving
energy metabolism [21, 22]. Furthermore, structured lipids
can be engineered to demonstrate specifc functionalities,
such as enhanced emulsifcation, solubility, or bio-
availability, which are advantageous in food, pharmaceuti-
cal, and cosmetic formulations [23].

2.2.2. Disadvantages. Structured lipids also have some
disadvantages.Te synthesis of structured lipids, particularly
through enzymatic methods, can be costly because of ex-
penses related to enzyme production and purifcation [24].
Moreover, the majority of lipases employed in enzymatic
synthesis are sn-1,3 regiospecifc or nonspecifc, limiting the
ability to produce lipids with the desired fatty acid distri-
bution [25]. Finally, the complexity of structured lipid
synthesis necessitates the precise control of reaction con-
ditions and the use of various catalysts or enzymes [26].

2.3. Synthesis of Structured Lipids. Manufacturing tech-
niques of structured lipids can be chemical or enzymatic
(Figure 1). Tis section explores the principles, advantages,
and disadvantages of chemical and enzymatic synthesis
methods.

2.3.1. Chemical Synthesis of Structured Lipids. Chemical
catalysis of structured lipids primarily synthesizes lipids for
use in the chemical industry, including specifc-purpose
synthetic oils and biodiesel [27]. Production processes of
structured lipids employing chemical catalysts involving
thermal decomposition, catalytic decomposition, micro-
emulsifcation, and esterifcation reactions are characteris-
tically irreversible [28]. Furthermore, they can proceed in
a single direction, contrary to biological enzymatic reactions.
However, chemical synthesis is conducted using a strong
acid or a strong base that requires high temperatures and
energy.

In a recent study, researchers utilized chemical inter-
esterifcation (CIE) to fabricate trans-free cocoa butter al-
ternatives (CBAs) from a blend of palm kernel stearin (PKS),
coconut oil (CNO), and fully hydrogenated palm stearin
(FHPS) [29]. In another study, the same chemical inter-
esterifcation process was applied to a combination of palm
stearin (PS) and olive oil (OO), resulting in fats with various
degrees of plasticity, thus expanding the possibilities for the
commercial utilization of PS and OO [30].

Despite these successful examples, it should be noted
that chemical synthesis has improved in recent years, in-
volving environmentally friendly and efcient processes that
can be produced at low temperatures using physical
methods, including sonication and cavitation [31]. Never-
theless, the use of organic solvents for quenching chemical
catalyst reactions and considering the generation and
elimination steps of byproducts is a very unfavorable process
compared with synthetic biological engineering
methods [32].

2.3.2. Enzymatic Synthesis of Structured Lipids. Lipases (EC.
3.1.1.3) generally catalyze reversible processes that can hy-
drolyze and dehydrate condensation reactions to decompose
and synthesize bonds between carboxyl and hydroxyl groups
[33]. In addition to decomposing and synthesizing lipids,
lipases can also degrade and synthesize substrate-specifc
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compounds and can be applied in several scientifc and
industrial felds.

In lipolysis and synthesis, lipases exhibit regiospecifcity,
though most commercially available lipases display sn-1,3
nonspecifcity in lipids rather than sn-2 regiospecifcity,
which is the more desirable one. As a result, modifying the
composition and distribution of fat are difcult.

Approximately four reactions exist when synthesizing
structured lipids employing lipase as an enzyme, depending
on the substrates used in the reaction mixture. Free fatty
acids and glycerol are directly esterifed, acylglycerol is
transesterifed intramolecularly or intermolecularly, tri-
acylglyceride (TAG) is acidolyzed and transesterifed with
free fatty acids, and TAG is transesterifed to produce
monoacylglyceride (MAG) and diacylglyceride (DAG)
[34–37] (Figure 2). In each of these methods, the water
concentration, reaction temperature, and substrate are
critical parameters that determine the direction of the lipase
reaction.

Lipases, free and immobilized ones, are diferent based
on the characteristics shown in the production process of
structured lipids. First, free lipases are often inexpensive and
can lower process costs; nevertheless, they are sensitive to
extreme temperatures and pH, leading to decreased yields.
In addition, the recovery of enzymes for reuse requires an
additional complex procedure, and the activity of the re-
covered enzymes cannot be assured. By contrast, immobi-
lized lipases alleviate the problem of enzyme yield loss and
reaction stability induced by environmental changes such as

pH, temperature, and organic solvents, allowing faster en-
zyme recovery and reuse [38].

Techniques for immobilizing enzymes include adsorp-
tion in a porous material, covalent binding between the
enzyme and support, and enzyme conjugation through
cross-linking and interenzyme coupling [39]. Furthermore,
this method immobilizes enzymes through several physical
binding interactions, including van der Waals forces, hy-
drophobic interactions, hydrogen bonds, and ionic
connections [40].

Despite technological advancements, the practical use of
immobilized lipases in structured lipids is largely limited by
most lipases being sn-1,3 regiospecifc or nonspecifc [41]
(Table 1). Two illustrative examples, however, show the
potential applications of lipases. In one study, medium- and
long-chain triglycerides (MLCTs) were synthesized by in-
corporating lauric acid into faxseed oil via lipase-catalyzed
acidolysis, demonstrating improved thermo-oxidative de-
composition behavior [42]. Another study prepared struc-
tured TAGs rich in 1,3-dioleoyl-2-palmitoylglycerol (OPO)
and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) through
enzymatic acidolysis of fractionated palm stearin with free
fatty acids, presenting high product yields and the potential
for use in infant formulas [43].

Even though some lipases may extract fatty acids from
the sn-2 position of TAG, these enzymes are quite un-
common for commercial immobilized lipases. Although
specifcity and selectivity for substrates, low energy con-
sumption, and the creation of immobilized enzymes enable
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Figure 1: Scheme of chemical and enzymatic syntheses for producing structured lipids.
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reusable successive processes, the enzymatic synthesis of
structured lipids is limited(Table 2).

3. Functional Food Application of
Structured Lipids

3.1. Cocoa Butter Equivalents (CBEs). Cocoa butter is a lipid
obtained from cacao beans, and it has many commercial
applications in chocolate, drinks, and baking. Regarding
composition, cocoa butter difers from other lipids because it
contains comparatively few TAGs. Tat is, >80% of the
triglycerides that make up cocoa butter are composed of 1,3-
dipalmitoyl-2-oleoyl-glycerol (POP, 13.8%–21.8%), 1-pal-
mitoyl-2-oleoyl-3-stearoyl-rac-glycerol (POS, 26.3%–
44.8%), and 1,3-distearoyl-2-oleoyl-glycerol (SOS, 20.0%–
29.4%) with oleic acid bound to the sn-2 position [61]. Te
unique triglyceride fatty acid composition of cocoa butter
reveals remarkable physical qualities in the fnal culinary
product, including hard physical qualities at ≤25°C, soft
physical properties, and a texture that melts at ≥30°C [62].

Given these properties, cocoa butter is more expensive than
edible oils and fats. Owing to the increased international
demand and lower yields caused by environmental prob-
lems, artifcial lipid synthesis is being actively explored to
obtain raw materials.

CBE is a structured lipid with a triglyceride and fatty acid
profle comparable to cocoa butter, and it is manufactured
from inexpensive vegetable oils [63]. Recent research on
CBE synthesis has focused on POS-rich lipid synthesis,
which accounts for approximately 40% of cocoa butter’s
triglycerides [64] (Table 3). Commercial CBE POS is syn-
thesized using lipids rich in POP and SOS [71]. Palm oil
midfraction, which can be derived through the fractional
crystallization of palm olein, is the raw material of CBE for
POP [72]. Fractional crystallization of SOS from tropical
plants, including shea butter or a catalyst, is used to
produce SOS.

CBE synthesis is limited by the requirement for oleic
acid-rich lipids at the sn-2 position of the lipids. Most
commercially available lipases are sn-1,3 regiospecifc
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Figure 2: Types of lipase enzymatic synthesis processes for the synthesis of structured lipids.

Table 1: Current types and forms of immobilized enzymes manufactured commercially.

Product names Source Immobilization material Development company
Novozyme 435 Candida antarctica Resin Novozymes
Lipozyme 435 Candida antarctica Resin Novozymes
Lipozyme TL IM Termomyces lanuginosa Silica gel Novozymes
Lipozyme RM IM Rhizomucor miehei Resin Novozymes
Lipase Rd Rhizopus delemar MP 1000 Tanabe Seiyaku Co. Ltd.
Lipase QLM Alcaligenes sp. MP 1000 Meito Sangyo Co.
Lipase AK Pseudomonas fuorescens MP 1000 Amano Pharmaceutical Co.
Lipase D Rhizopus oryzae MP 1000 Amano Pharmaceutical Co.
Lipase DF Rhizopus oryzae MP 1000 Amano Pharmaceutical Co.
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enzymes because they lack sn-2 site-specifc reactions.
Terefore, a considerable diference exists between the
composition of natural cocoa butter and triglycerides, and
substituting up to 5% of cocoa butter in food with tri-
glycerides is acceptable.

3.2. Human Milk Fat Substitutes (HMFSs). Human milk fat
is the primary energy source for babies, supplying 50% of
their daily caloric intake [73], and is an essential source of
vital fatty acids and fat-soluble vitamins. Oleic acid and
palmitic acid are the main fatty acids in human milk fat,
making up approximately 40% and 25%, respectively, and
they exist as 1,3-dioleoyl-2-palmitoyl-glycerol [15]. Palmitic
acid, a hydrolyzed free fatty acid, is used as an energy source.
However, it forms an insoluble salt with the calcium and
minerals needed for the growth of newborns and excretes
them in the feces, preventing calcium absorption and
causing constipation [74].Terefore, in formulating HMFSs,
the amount and composition of palmitic acid at the sn-2
position are important.

Commercial HMFSs are synthetic lipids with fatty acid
contents and distribution comparable to human milk fat.
Terefore, it is an important raw material in synthesizing
infant food products (formula). Generally, HMFSs are
manufactured by synthesizing free fatty acids obtained from
hydrolyzing palmitic acid-rich fats and oils, tripalmitin, and
oleic acid-rich vegetable oils, such as olive oil and sunfower
oil [75]. In addition, they provide PUFAs that are important
for the development of newborns and critical fatty acids are
not found in human milk fat [76].

3.3. Trans-Free Plastic Fats. Many techniques such as
margarine and shortening were created to ensure that
vegetable fats, when used as animal fat substitutes, have the
same physical qualities and texture as animal fat [77]. Te
liquid plant fat was converted into a solid with physical
properties similar to animal fat. However, these vegetable
fats that substitute animal fats have disadvantages [78]. Te
plastic fat used in margarine is produced through

a hardening reaction involving the hydrogenation of vege-
table oils, the primary raw materials [79]. Te cis-type
double-bond chain of unsaturated fatty acids is opened,
and hydrogen is introduced during the curing process.
Transfatty acids produced at this time increase the levels of
total cholesterol and low-density lipoprotein cholesterol in
the blood while lowering the levels of benefcial high-density
lipoprotein cholesterol, causing cardiovascular and meta-
bolic diseases [80]. Because of these problems, the level of
transfatty acids in foods is closely limited, constraining the
usage of hydrogenated oils [81].

Structured lipids can be practically produced through
the enzymatic esterifcation of vegetable and solid fats to
reduce transfatty acids while maintaining their physical
qualities [82]. Saturated and unsaturated fats can be com-
pared with partially hydrogenated oils in terms of their
physical properties through esterifcation reactions that take
place in the presence of lipases. Furthermore, margarine and
shortening are produced by including helpful fatty acids,
such as conjugated linoleic acid, without structured lipids,
simply lowering transfat.

3.4. Low-Calorie Fats andMedium-Chain TAG. Te calorifc
value of fat, a high-energy source, varies depending on the
number of carbon atoms in fatty acids. Specifcally, struc-
tured lipids with short- or long-chain fatty acids can be used
as low-calorie fats. Short-chain fatty acids with 2–4 carbon
atoms have a substantially lower caloric content than typical
fat (9 kcal/g) [83]. Edible oils and fats, which are familiar
sources of essential fatty acids, are mainly composed of long-
chain fatty acids (L), which are stored in the body because of
prolonged metabolic processes [84]. By contrast, medium-
chain fatty acids (M), which include 8–12 carbon chains with
hydrophilic properties, are easily oxidized and can be rapidly
used by the body as an energy source. Unlike typical fat
metabolism, medium-chain fatty acids are delivered directly
to the liver through the hepatic portal vein and accumulate
less frequently in tissues [85]. Terefore, they are efcient
lipid substances for preventing metabolic diseases such as
obesity, diabetes, and hyperlipidemia.

Table 3: Types and triacylglyceride formulations of cocoa butter equivalent currently researched and developed.

Product name POP (%, w/w) POS (%, w/w) SOS (%, w/w) Ref.
Natural product Cocoa butter 13.8∼21.8 26.3∼44.8 20.0∼29.4 [65]

CBE research

CBE from PMF∗/PKO∗∗/PS∗∗∗ by Termomyces lanuginose
lipase 17.7 28.4 19.5 [66]

CBE from PMF by Rhizomucor miehei lipase 30.7 40.1 14.5 [67]
CBE from PO∗∗∗∗ by Rhizomucor miehei lipase 26.6 42.1 18.0 [68]

CBE from PMF by Lypozyme lipase 21 40 27 [69]

Commercialized
CBE

ILLEXAO CB 40 34.2 13.8 31.4

[70]

ILLEXAO SC 70 31.6 13.6 33.7
PALMY 50R 36.9 12.6 30.8
PALMY 20G 47.1 12.0 21.0
Coberine 507 43.8 12.9 21.7
Coberine 608 37.3 13.2 31.7
Chocovit 230 48.0 13.0 18.8
Chocovit 270 39.0 12.1 29.1

∗PMF: palm oil midfraction. ∗∗PKO: palm kernel oil. ∗∗∗PS: palm stearin. ∗∗∗∗PO: palm olein.
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In addition, several edible oils (soybean oil, corn oil, olive
oil, and canola oil) mainly comprise long-chain TAG- and
medium-chain TAG-rich edible oils through enzymatic
degradation and synthesis [86]. By reacting edible oils with
heavy chain fatty acids in the presence of sn-1,3 stereo-
specifcity lipase, other edible oils, including medium-long-
medium (MLM) and medium-long-long (MLL), can be
produced. Specifcally, the MLM culinary sustenance pro-
vides better absorption of long-chain fatty acids, particularly
essential ones, than other edible oils.

3.5. Functional Fatty Acids (PUFAs). Omega-3 fatty acids,
including docosahexaenoic acid (DHA) and eicosapentae-
noic acid (EPA), efciently improve brain and cardiovas-
cular health; gamma-linolenic acid efciently enhances skin
health and blood circulation; and conjugated linolenic acid
efciently lowers body fat [87]. As the demand for func-
tionally structured lipids containing high quantities of these
helpful fatty acids increases, several studies are being con-
ducted. By using the esterifcation process of perilla oil
containing alpha-linolenic acid, linseed oil, and fsh oils
containing EPA andDHA in conjunction with lipase, studies
have reported the synthesis of structured lipids containing
large amounts of benefcial fatty acids [88–90]. Tese are
benefcial because they are pure and contain many valuable
fatty acids. In addition, fsh oil can eliminate refusal to take it
because of its objectionable odor .

3.6. Functional Emulsifers. Emulsifers are additives that
bridge the combination of hydrophilic and hydrophobic
chemicals and are employed to ensure the stability of several
ingredients in the fnal food product. Characteristically,
emulsifers are composed of hydrophilic and hydrophobic
molecules. In general, hydrophobic molecules have a long-
chain structure similar to the molecular structure of fatty
acids. Terefore, various emulsifers use fatty acids as the
hydrophobic molecular moiety. In particular, MAG and
DAG are used in many industries as emulsifers.

Lipases employed in reconstituted lipogenesis can syn-
thesize emulsifers by linking fatty acid chains to existing
MAG, DAG, and other hydrophilic compounds with hy-
droxy groups. Te emulsifer generated in this approach can
be a multifunctional emulsifer with both hydrophilic
molecules and fatty acid functionalities. Based on previous
studies, multifunctional emulsifers include sucrose palmi-
tate, which is made of sucrose and palmitic acid, and
emulsifers that are made of fatty acids bound to ascorbic
acid and erythorbic acid (Table 4) [96, 97]. Tese emulsifers
provide functions beyond those of existing emulsifers. For
example, they possess antibacterial and antioxidant char-
acteristics. In addition, they are ecofriendly emulsifers
produced by enzymatic synthesis using natural materials
and have low toxicity to the body [98].

Moreover, whether it is possible to maintain the func-
tional features of hydrophilic and hydrophobic molecules
while performing the role of emulsifers to produce func-
tional emulsifers from structured lipids must be analyzed
and assessed. Lipases react through dehydration

condensation between hydrophilic head molecules and
hydrophobic tail molecules; however, if they possess unique
functionality at the binding site, they may lose their use-
fulness during synthesis. In addition, specifying the binding
site when there are numerous binding sites for hydrophilic
molecules other than lipids is impossible.

Briefy, structured lipids can be used in various food
applications by customizing their composition and qualities.
Tese lipids can create CBEs, HMFSs, trans-free plastic fats,
low-calorie fats, medium-chain TAGs, and functional
emulsifers. Developing these functionally structured lipids
could signifcantly afect the food industry and consumers by
providing healthier and more diverse options. Research and
innovation in this feld will continue to expand the range of
applications and benefts that structured lipids provide in
functional foods (Figure 3).

4. Future Prospects

Te market for extremophilic enzymes, such as lipases and
esterases, isolated from microorganisms in extreme condi-
tions, encompasses various applications in the food, phar-
maceutical, and environmental industries, amounting to an
enormous market size of approximately $600 million [99].
While the majority of these biocatalysts are discovered
through traditional research methods such as meta-
genomics, innovative approaches are being developed to
overcome cost and time constraints. Specifcally, data
science-based methods are being employed for classifying
and systematizing the characteristics of known lipases and
esterases and predicting the properties of new enzymes
through phylogeny [100] and artifcial intelligence and
machine learning for predicting the properties of enzymes
with specifc amino acid sequences based on their three-
dimensional (3D) structures [101]. From a genetic engi-
neering perspective, third-generation gene editing tech-
nology [102], CRISPR/Cas9, ofers a direction to address the
challenges (e.g., reversibility/irreversibility, substrate speci-
fcity, temperature, and environmental adaptability) that
existing enzymes possess through genetic manipulation
[103].

4.1. Lipase Engineering Database (LED). Lipases (EC 3.1.1.3)
and esterases (EC 3.1.1.1) can be categorized based on amino
acid sequence similarity and physiological characteristics
related to their ability to hydrolyze fats. However, classifying

Table 4: Types of functional emulsifers.

Product names Enzyme Properties Ref.
Erythorbyl
laurate

Novozyme
435

Antioxidant,
antibacterial [91]

Ascorbyl
palmitate

Novozyme
435 Antioxidant [92]

Sucrose palmitate Lipolase 100 L Nontoxicity [93]
Sucrose laurate Lipolase 100 L Antibacterial [93]
Fructose oleate Lipozyme Nontoxicity [94]

Lauric arginate Novozyme
435 Antibacterial [95]
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lipases accurately requires relying more than just on se-
quence similarity. Te LED (https://led.biocatnet.de/) was
developed to systematically organize information on lipases’
sequences, structures, and functions and related proteins
sharing the same α/β hydrolase fold. In particular, all lipases
of the α/β hydrolase family consist of a catalytic triad and an
oxyanion hole-containing core domain, a lid domain that
protects the active site, a domain that supports the afnity of
the active site, and an N- or C-terminal domain [104, 105].
Tese structural features can be utilized to classify lipases. In
the latest version of the LED (ver. 4.1.0), 283,672 sequences
and 1,590 structures have been categorized into 13 super-
families. Although the LED remains a valuable tool for lipase
classifcation, it requires regular database management and
updates.

In addition to databases such as LED, various methods
are employed to identify and classify the amino acid se-
quences of new lipases.Tese methods include metagenomic
screening and reconstructing ancestral sequence approaches
[106, 107]; however, these methods often involve costly and
time-consuming validation processes. To overcome these
drawbacks, automated tools for systematic classifcation are
needed, typically relying on sequence similarity search tools
such as BLAST. Te functionality of these tools is limited by
the quality of the search algorithm and the database scale
used for searching. Tey may also involve some inherent
errors within the program. Consequently, they need to
provide a perfect solution for discovering and predicting
new lipases.

4.2. Discovery of Lipases Using Machine Learning and Arti-
fcial Intelligence. Recent advances in machine learning and
artifcial intelligence have opened new opportunities for the
classifcation of lipases and esterases. Techniques such as
deep learning and artifcial neural networks facilitate ac-
curate classifcation and functional prediction of new

enzymes based on sequence and structural information.Tis
allows for overcoming the time and cost constraints asso-
ciated with traditional approaches.

4.2.1. Prediction of Lipase 3D Structure. DeepMind’s
AlphaFold, the protein 3D structure prediction system
developed by the creators of AlphaGo, has introduced new
possibilities [101]. It employs artifcial intelligence to
predict amino acid sequences into 3D structures, im-
proving accuracy through continuous iterative learning.
After the frst software release in 2018, AlphaFold2 was
developed in 2020 [108]. AlphaFold contains approxi-
mately 3,000 lipase amino acid sequences; however,
expanding to a more extensive database is necessary. While
the 3D structure prediction of independent proteins is
highly accurate, limitations in the prediction model arise
from the need for more information on variables such as
environmental conditions and proximity of other proteins,
oligomers, metal ions, and cofactors.

RoseTTAFold, another protein 3D structure prediction
system, provides more accurate predictions for specifc re-
gions, such as membrane proteins, by considering some of
the variables mentioned above based on amino acid se-
quences [109]. However, similar to AlphaFold, the absence
of machine learning for various variables results in reduced
accuracy in predicting protein 3D structures under specifc
conditions [110].

Modeling methods for neural network-based protein 3D
structure prediction have made signifcant progress in recent
years, ofering a new paradigm for protein structure pre-
diction. Although systems such as AlphaFold and RoseT-
TAFold have many areas requiring improvement, their
utility in various felds remains high. In discovering new
lipases, clarifying structural features and phylogenetic
classifcations through prediction model systems can sig-
nifcantly shorten time constraints.

Low calorie
Fats

Structured
Lipids

Cocoa Butter
Equivalents

Human Milk
Fat Substitutes

Trans-free
Plastic Fats

Medium Chain
Triacylglyceride

Functional
Fatty acids

Functional
emulsifiers

[Advantages]
Improved physicochemical properties
Enhanced nutritional values
Customized functionality

[Disadvantages]
Production and purification of enzyme
Limitation of ability to produce lipids (regio-specificity)
Complexity of structured lipid synthesis

Figure 3: Overview of structured lipids in the food industry.
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4.2.2. Prediction of Lipase Regiospecifcity. Identifying novel
lipases is essential for producing structured lipids with
various functional properties. In addition to sn-1 regio-
specifc and nonspecifc lipases, the discovery of sn-1(3) and
sn-2 regiospecifc lipases is signifcant. Despite several
studies aiming to recognize lipases with sn-1(3) regiospe-
cifcity and sn-2 regiospecifcity, obtaining experimental
data, and research results takes time and efort. Various
solutions can be proposed to overcome these limitations. For
example, to determine enzyme inhibitors, Durai et al. [111]
developed an in silico prediction model, predicting in-
hibitory potential based on structural compatibility and
binding strength between natural substances and tyrosinase
substrate interaction. Tese fndings can be highly benefcial
for identifying lipases that can synthesize structured lipids.
Novel regiospecifcity can be predicted based on structural
compatibility and binding strength with each substrate after
structural prediction for the active lipase site with known
positional specifcity to produce 1,3-DAG and 2,3-DAGwith
TAG and synthesize various structured lipids such as POS
and POP. Te outcomes of this prediction modeling may
enable faster discovery of novel regiospecifc lipases.

In addition to developing lipases with novel regiospe-
cifcity, ongoing research is needed to reduce the cost of
commercially available lipases. Most commercially available
lipases are expensive and derived from microorganisms
[112]. Identifying new lipases, which are essential compo-
nents of enzymatic synthesis methods for structured lipid
production, is necessary. Despite active research on lipase
extraction from diverse natural sources such as plants and
fungi, only some industrial applications have been identifed
[113]. Tis is explained by the challenging mass production
of lipases isolated from natural sources. Genetic engineering
studies have ofered potential solutions to these issues, such
as fnding novel lipases and producing lipases through ge-
netic replication in various cultural environments, including
bacteria and yeast, where mass production is more feasible.
With active collaboration from discovery to mass pro-
duction, further research on lipases that can synthesize
structured lipids is expected.

In addition to discovering novel lipases, extensive re-
search is ongoing on the multiple roles of lipids, anticipating
the production of structured lipids with additional func-
tionalities. As lipids with diverse properties such as anti-
oxidant, antibacterial, and anti-infammatory capabilities
have been identifed, producing multifunctional structured
lipids by enzymatically synthesizing lipids with these
properties and functions can add signifcant value. Tis can
increase the availability of structured lipids for widespread
use in medicine, cosmetics, and food as dietary ingredients.

In summary, machine learning and artifcial intelligence
hold great potential for discovering and classifying lipases
and esterases. Techniques such as deep learning and artifcial
neural networks can facilitate accurate predictions of en-
zyme structures and functions, leading to more efcient
discovery and development of novel lipases for the synthesis
of structured lipids. Furthermore, ongoing research on the
multiple roles of lipids and the development of in silico
prediction models can contribute to the production of

structured lipids with additional functionalities and ex-
panded applications across industries.

4.3. Improvement of Lipases through Gene Editing
Technologies. Gene editing technologies, particularly the
CRISPR/Cas9 system derived from the bacterial immune
system, are emerging as potential tools in various felds as
third-generation gene scissors [102]. CRISPR/Cas9 com-
prises gRNA, which binds to a particular base sequence, and
Cas9 nuclease, which acts as the scissors [103]. Compared
with the frst- and second-generation gene scissors, the
CRISPR/Cas9 system allows for highly precise gene ma-
nipulation. It has been widely utilized because of its sim-
plicity, ability to cut at any site, and cost-efectiveness.
Moreover, many studies have tried to improve the function
of lipases and esterases, and gene editing technologies can be
employed to enhance the activity of specifc enzymes or
improve their stability in specifc environments [114, 115].
Tis can lead to the development of improved enzymes
through genetic manipulation, resulting in more cost-
efective industrial products.

Despite the advantages of CRISPR/Cas9, concerns about
the safety and ethical issues of gene manipulation are always
raised [116]. Te simplicity and precision of this technology
have led to recent research fndings presenting the risk of
carcinogenesis because a portion of the genes is lost within
cells [117]. In addition, a case in China where the technology
was directly applied to humans faced ethical issues, and the
research results were not recognized [118]. Consequently,
CRISPR/Cas9, although a superior genetic engineering
technology, has limited application because of ethical and
legal concerns.

Various methods are available for discovering and de-
veloping biological enzymes to produce structured lipids,
each with advantages and disadvantages. Traditional re-
search methods, such as metagenomic screening and an-
cestral sequence reconstruction, may be more accurate but
require signifcant time and costs. On the contrary, new
paradigms such as machine learning, artifcial intelligence,
and CRISPR/Cas9 may present some potential for errors.
Each technique can only be considered the best approach.
Terefore, to derive and validate lipases that can synthesize
structured lipids, combining various methods is necessary to
complement the advantages and disadvantages of each
approach in terms of research accuracy and efciency.

5. Conclusions

Structured lipids produced using biological enzymes, par-
ticularly lipases and esterases, have become essential ele-
ments of food, pharmaceuticals, and cosmetics because of
their numerous benefts over traditional chemical catalysts.
Te regiospecifcity and substrate specifcity of these en-
zymes, including the ability to selectively modify the
composition of fatty acids and distribution of lipids, make
them useful for the synthesis of structured lipids. In par-
ticular, the utilization of immobilized lipases as catalysts
ofers many advantages, such as reusability, high selectivity,
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and low environmental efects, making themmore attractive
in commercial applications. However, the current range of
sn-1,3 regiospecifc lipases and available natural oils and fats
for use in the synthesis of structured lipids is limited.

Terefore, further research and development of new
lipases that can synthesize structured lipids with diverse
functionalities and improvement of existing enzyme prop-
erties through genetic engineering and innovative screening
methods are essential. Furthermore, the use of machine
learning and artifcial intelligence tools and the development
of in silico prediction models can greatly aid in the efcient
and accurate discovery of new lipases. With continued
collaboration between academia and industry, the devel-
opment and commercialization of structured lipids using
biological enzymes will undoubtedly expand, ofering wide-
ranging benefts for various industries.Te utilization of new
technologies such as data science, machine learning, artifcial
intelligence, and CRISPR/Cas9 in discovering and en-
hancing lipases and esterases can promote the development
of more efcient and cost-efective production methods for
structured lipids. However, these novel technologies should
be used responsibly, considering their potential ethical, legal,
and safety issues.

In summary, structured lipids and their production
using biological enzymes present numerous opportunities
for improving human health and the environment. Future
research should focus on discovering and enhancing novel
enzymes, improving structured lipid production processes,
and exploring new applications of structured lipids. Te
utilization of innovative technologies will accelerate the
development of more efective and sustainable solutions for
the synthesis of structured lipids.
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[27] M. Hájek, A. Vávra, H. de Paz Carmona, and J. Koćık, “Te
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