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A novel green synthesis of cellulose/Ag nanocomposites (Cell/XTLL Ag NCs) with in situ generated silver nanoparticles using
Xenostegia tridentata (L.) leaf extracts (XTLL). Te synthesized nanocomposites have been appreciably characterized by SEM,
TEM, FT-IR, XRD, UV-Vis spectrometer, AFM, DRS, XPS, TGA, and ICP-OES. Te Ag nanoparticles found for the Cell/XTLL
60mM AgNO3 have an average particle size of 33.78 nm. Moreover, Cell/XTLL Ag NC flm, prepared with 60mM AgNO3,
suggests greater antioxidant activity. Te most potent cell/XTLL 60mM AgNO3 against Escherichia coli, Staphylococcus aureus,
Trichoderma viride, and Fusarium oxysporum has strong antimicrobial activity and the best antimicrobial properties due to the
fact that because the concentration of AgNO3 solution increased, the zone of inhibition additionally accelerated. Te Cell/XTLL
60mM becomes examined in vitro for its ability of human tumor cell growth inhibitory impact on human breast cancer cell line
MCF-7 using MTT assay. Te catalytic activity of Cell/XTLL 60mM AgNO3 was assessed by the photocatalytic degradation of
methylene blue and compared with bare cellulose. Te Ag NPs are homogeneously unfolded out in Cell/XTLL 60mM AgNO3
which leads to low electron-hole recombination and accelerated dye adsorption. In particular, 100mg of Cell/XTLL 60mM
AgNO3, as catalyst, showed excellent photocatalytic activity with the efciency of 91% degradation of methylene blue (MB).

1. Introduction

Silvernanoparticles with electrochemical, chemical reduction,
and biological techniques have been combined over the past
few years [1, 2]. Te biosynthesis of silver nanoparticles had

advanced the use of microorganisms and chemical reduction
method by using plant extracts [3, 4]. In this method, plants,
being easily available, provide rapid and simple silver nano-
particle synthesis, due to the presence of metabolites consisting
of terpenoids, vitamins, alkaloids, amino acids, enzymes,
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proteins, etc., which act as both stabilizing and capping agents
[5, 6].Te review of research studies revealed the generation of
silver nanoparticles within the polymer network utilizing plant
extract, notwithstanding biocompatible cellulose silver nano-
composites for antimicrobial, fabric, and therapeutic applica-
tions [7–9]. Te Xenostegia tridentata (L.) possesses good
diuretic, antiallergic, bitter, astringent, calefacient, laxative,
purgative, fever, snake bite, tonic, and spasmolytic character-
istics [10, 11]. Xenostegia tridentata (L.) leaf has been found to
contain 3,5-cafeoylquinic acid, quercetin-3-o-rhamnoside,
kaempferol-3-o-rhamnoside, luteolin-7-o-glucoside, β-sterol,
and stigma sterol compounds that can be capping and reducing
agents (XTLLs) which can easily reduce the silver nitrate so-
lution to Ag ions in cellulose matrix [12–14]. In previous
studies, the radical scavenging activities of silver nanoparticles
and cellulose silver nanocomposites have been reported as
a free radical scavenger in in vivo and in vitro systems [15–17].
Te literature suggests that silver nanoparticles and cellulose
silver nanocomposites can treat cancer via alterations in cell
morphology, cell viability, and lower metabolic activity
[18–20]. In the past few decades, the fast development of the
industry worldwide has critical environmental issues, especially
water and soil contamination, which has harmed the biosphere
[21]. Recently, Fan et al. prepared a self-assembled cellulose
flm having uniform Ag and tungsten oxide nanoparticles in
cellulose matrix with the nanoparticles obtained by the re-
duction of polydopamine (PDA), previously deposited on
cellulose for better adhesion of oxide nanoparticles.Te fexible
fber showed excellent photocatalytic degradation of RB-19 dye
with 93% efciency under solar irradiation [22]. Te
nonsolvent-induced phase separation and in situ deposition
technique was used to fabricate cellulose-Ag@AgCl-cellulose
acetate/silk fbroin flm, which showed excellent catalytic
performance in the degradation of methyl orange dye. Ag
nanoparticles enhanced the catalytic activity of the Ag@AgCl-
CA/SF flm [23, 24]. Junjie Wu et al. adopted an ecofriendly
route to prepare porous cellulose/silver nanoparticle composite
from NaOH/thiourea aqueous solution through sol-gel syn-
thesis [25]. In this manuscript, we present an investigation on
the in situ preparation of AgNPs in cellulose matrix to prepare
cellulose silver nanocomposites Cell/XTLL/Ag NCs. Te pre-
pared Cell/XTLL/Ag NCs were characterized by TEM, SEM,
FT-IR, XRD, UV-Vis spectroscopy, AFM, DRS, and TGA.
ICP-OES was used for the measurements of silver nanoparticle
concentration in the cellulose matrix. Eventually, this study
investigates the antimicrobial cell viability test against human
breast cancer cell line MCF-7, photocatalysis, and free radical
scavenging properties of the novel Cell/XTLL/Ag NCs.

2. Materials and Methods

2.1. Plant Materials. Te plant material Xenostegia tri-
dentata (L.) fresh leaves (Figure 1) have been accumulated
from Ariyalur, Tamil Nadu, India.

Te XTLL extraction leaves have been dried in the labo-
ratory for six days at room temperature and then crushed into
small pieces. Te 20 g of XTLL (Figure 2(a)) was mixed with
300ml of deionized water and heated to 82°C for 25minutes,
and then the solution was fltered and used (Figure 2(b)).

2.2. Chemicals. Te NaOH, 1,1-diphenyl-2-picrylhydroxyl,
urea, and silver nitrate were purchased from Sigma Aldrich,
Mumbai. 2, 2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) was purchased from Merck, Darmstadt, Germany.
Degree of polymerization (Dp) of 620 (cotton linter) was
supplied by Hubei Chemical Fiber, China.

2.3. Dissolution of Cellulose. Te technique described
through [8, 26] was adopted; the aqueous solution was made
up of mixing 8wt% NaOH and 15wt% of CO(NH)2, with
subsequent cooling to − 13.0°C. Tis precooled solution was
supplied with 5wt% cotton linter pulp and was continuously
stirred at high speed at room temperature. A clear solution
of cellulose obtained under 3min of stirring to the un-
dissolved cellulose was removed by centrifugation at
7150 rpm and a temperature of 6°C for 15min. Te clear
cellulose solution obtained was stored at 6°C for
additional use.

2.4. Preparation of Cellulose/XTLL Composite Films. Te
XTLL was dried in a warm air oven to remove the
moisture; the dried leaf was added to cellulose solution
and mixed thoroughly with the help of a mechanical
stirrer. Te cellulose solution was degassed to remove any
air bubbles. Glass plates have been used for casting cel-
lulose and cellulose/XTLL solution. Te dried glass plates
had been suspended in water and pH adjusted with

Figure 1: Leaves of Xenostegia tridentata (L.).

(a) (b)

Figure 2: (a) Xenostegia tridentata (L.) leaf powder and (b) XTLL
extract.
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sulfuric acid; the regenerated composite flms were
washed thoroughly and kept immersed in the water bath
until further use.

2.5. Preparation of Cellulose/XTLL Ag NC Composite Films.
Te silver nitrate solutions at exclusive concentrations of 20,
40, and 60mM were prepared; each of these solutions was
kept taken separately and wet cellulose/XTLL composite
flms were immersed in each beaker and the whole ar-
rangement was mixed thoroughly for 25 h. Te color change
of the wet flms from light color to dark brown indicated the
in situ generation of silver nanoparticles on the cellulose
flms. Te wet flms were washed and dried at room tem-
perature and stored in desiccators for further use.

2.6. Sample Characterization. Te morphological studies of
Cell/XTLL and Cell/XTLL Ag NCs have been executed with
the usage of a SUPRA 55 Field Emission Scanning Electron
Microscope from Carl Zeiss AG, Germany. Te crystalline
structure and morphology of Cell/XTLL Ag NCs have been
additionally studied with the aid of using version TECNAI G2
FEI F12 TEM at a voltage of 200 kV. Te X-ray difractogram
of the Cell/XTLL Ag NCs and cellulose has been recorded
using the Bruker AXSD8 ADVANCE Difractometer using
Cu K-alpha radiation of 1.5406 A, U.S.A. Color change vi-
sualizations of the Cell/XTLL Ag NCs and the photocatalytic
activity monitoring were carried out using the UV-1650PC,
UV-visible spectrophotometer. To obtain FT-IR spectra, KBr
and the nanocomposite have been pressure pressed to pro-
duce a disk, which was analyzed in the Avatar 330 FT-IR
spectrophotometer.Te size of silver nanoparticles was found
using an AFM (model: Innova), Bruker AXS Pvt., Ltd., USA.
A Termo Fisher Scientifc spectrometer using non-
monochromatic Al K radiation 1486.5 eV run at 15 kV and
10mA as an X-ray source was used to obtain the photo-
electron spectra of the synthesized nanocomposites. Te
thermal gravimetric analyzer (TGA, Q50) was used to
measure the weight loss and thermal behavior of the cellulose
nanocomposite. Te silver contents in the samples have been
quantifed by the usage of an inductively coupled plasma
optical emission spectrophotometer with a cross-fow neb-
ulizer and a Ryton Scott chamber.

2.7. Photocatalytic Activity Measurement. Te methylene
blue was used as the model molecule to evaluate the pho-
tocatalytic activity of the prepared nanocomposites, Cell/
XTLL and Cell/XTLL 60mMAgNO3. Typically, 0.05 g of the
photocatalyst was introduced into 100mL of 1.05 g L− 1 dye
solution.Temixture was dispersed in an ultrasonic bath for
15min and then equilibrated in a dark room for 35min. A
black box, with a focus to attract sunlight, was used as an
efcient illuminator for photocatalysis. Aliquots, of the re-
action mixture, had been withdrawn and subjected to UV-
Vis evaluation for studying the change in the absorbance of
the peak at 640 nm. Repeated trials were conducted that had
been completed to test the reusability of the photocatalysts
(Cell/XTLL 60mM AgNO3).

2.8. Microorganisms. Te antimicrobial activities of Cellu-
lose, Cell/XTLL, and Cell/XTLL‒20, 40, and 60mM AgNO3
have been investigated against antifungal and antibacterial
activities which were procured from the Pondicherry Centre
for Biological Sciences (PCBS), Pondicherry, India. Te
bacterial strains are Escherichia coli (MTCC 493), Staphy-
lococcus aureus (MTCC 96), Salmonella typhi (MTCC 733),
Klebsiella sp (ATCC 700834), and Hafnia alvei (ATCC
13337). Te fungal strains are Trichoderma viride (ATCC
20476), Fusarium oxysporum (ATCC 48112), Guignardia
mangiferae (ATCC 32759), Aspergillus fumigates (ATCC
1022), and Candida albicans (MTCC 227). Te strain cul-
tures had been grown in brain heart infusion liquid at 36 to
37°C; after 12 hours of undisturbed growth, each microor-
ganism at a concentration of 1× 106 cells/mL equivalent to
0.5 Mc Farland Standard was spread on the surface of
Mueller–Hinton agar plates.

2.9. Preparation of Pathogens. Te pathogens to be tested
had been spread on plates and a well with a 6mm diameter
made in the agar. Te samples had been loaded in the
concentration range from 45 to 55 μg/well compared with
sterile antibiotics, which were loaded at the concentration of
22 μg/well. Te samples had been incubated for 25 h, fol-
lowing which the zone of inhibition was measured and was
regarded as the antimicrobial activity.

2.10. Free Radical Scavenging Activity. Te in vitro free
radical scavenging activity of the nanocomposites with dif-
ferent silver concentrations was used: DPPH (2,2-diphenyl-1-
picrylhydrazyl) and ABTS (2,2-azino-bis(3-etylbenzothiazo-
line-6-sulfonic acid) assays. Te radical form of DPPH has an
absorption band at 514 nm, which shall disappear upon re-
duction with the samples, demonstrating the antioxidant
property. Te photometric assay was settled by distributing
the samples in diferent volumes in multiple test tubes. Te
total volume was adjusted to 10 μL using methanol; 5mL of
0.1 methanolic solutions of DPPH was added and shaken
vigorously. Te solutions were equilibrated at 27°C. A control
was also prepared with the procedure outlined above, but for
the samples. Ascorbic acid (C6H8O6) was used as an internal
standard. Te absorbance was measured at 516 nm and the
percentage decolorization of the samples was calculated using
the following formula, scavenging activity (%)� [(A517 of
control‒A517 of Cell/XTLL 20, 40, and 60mM AgNO3)/A51
of control]× 100. ABTS+, 2, 2′-Azino-bis(3-ethyl-
benzothiazoline-6‒-sulfonic acid) scavenging activity: the
assay was prepared by reacting a 7mmol aqueous solution of
ABTS+, with 2.4mM potassium persulfate in the dark for
12–16 h at 27°C. Care was taken to the prepared free radical
solution to be stable for more than two days when stored in
the dark at room temperature. During the absorbance
measurement, 2mL of the diluted free radical solution is
added to the nanocomposite samples. Water was chosen as
blank. After an incubation time of 36minutes at room
temperature, the absorbance was recorded at 732 nm and
compared with ascorbic acid, the internal standard. Te
percentage of inhibition was calculated.
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2.11. Anticancer Activity. Subculturing of cells: ahead of the
experiment, the culture medium and TPVG (trypsin, PBS,
Versene, and glucose solution) were brought to ordinary
temperature. Te tissue culture fask was pragmatic for cell
degradation, pH, and turbidity, and a suitable fask was
selected for splitting. In vitro evaluations were carried out
using MCF-7 cell lines purchased from the National Centre
for Cell Science (NCCS), Pune, and were used in this study.
Te subsequent procedure of progression is as follows: (1)
the mouth of the fask was wiped with cotton soaked in
spirit. (2) Te medium was discarded and the cells had been
washed twice, with MEM medium. (3)4mL of TVPG
(prewarmed to 37°C) was added over the cells. (4) TPVGwas
allowed to act for 45 s‒1 minute. (5) TPVG was discarded
and 5mL of 10% MEM was added. (6) Te cell clusters were
broken by gently pipetting (passaging the cells) back and
forth. (7)20mL of growth medium was added to the tissue
culture fask and the cells were transferred into 96 well
plates. Te calculation of the cell viability is carried out as %
MCF-7 cell viability� absorbance at 540 of treated cells/
absorbance at 540 of control cells× 100%.

2.12. Statistical Analysis. Te antibacterial, antifungal,
DPPH, ABBTS, and cytotoxicity tests were performed in
triplicate and repeated three times (mean± SE). Statistical
analysis was performed using the analysis of variance
(ANOVA) method with Tukey’s multiple comparison tests
(Prism, version 5.0). Te diference observed between
samples was considered to be signifcant at P< 0.05 [27]. In
the present work, Ag nanoparticles were produced in situ
using Xenostegiatridentata (L.) leaf extract by changing the
silver nitrate concentration (Cell/XTLL/20, 40, and 60mM
AgNO3) in a polymer matrix.

3. Results and Discussion

Tese Cell/XTLL and Cell/XTL samples were examined
using scanning electron microscopy and were exposed to 20,
40, and 60 mM AgNO3 (Figures 3(a)–3(d)). Te SEM
photograph (Figures 3(b)–3(d)) shows the combination of
mostly spherical Ag nanoparticles, located on the surface of
the cellulose matrix; Figure 3(a) suggests the absence of
spherical Ag nanoparticles on the cellulose matrix. Te
EDAX spectra were utilized to indicate that Ag metal was
present in the Cell/XTLL20, 40, and 60 mMAgNO3 flms, as
shown in Figure 3(e) [9, 28].

Te TEM image of Cell/XTLL 60mM AgNO3 had been
observed to be a spherical shape as shown in Figures 4(a) and
4(b).Te diameters of the silver nanoparticles were found to be
around 33.78nm, as presented in a histogram of particle size
distribution (Figure 4(d)). Te bright circular spots in the
selected area electron difraction (SAED) pattern (Figure 4(c))
show circular rings that can reveal the crystalline nature of the
silver nanoparticles formed in cellulose matrix. Figure 4 reveals
that the spherical Ag nanoparticles might be dispersed ho-
mogeneously on the surface of the cellulose matrix. In this case,
the cellulosematrix (Cell/XTLL) serves as a capping, stabilizing,
and reducing agent to the nanosized silver particles [29–31].

Te X-ray difraction spectra carried out by cellulose, Ag
NPs, and Cell/XTLL 20, 40, and 60mMAgNO3 are shown in
Figure 5. It was seen in our previous articles that in the case
of raw cellulose, a broad peak appeared around 15.2° [32, 33].
In Figure 5, in Cell/XTLL 20.40, and 60mM AgNO3, the
presence of Ag NPs is confrmed by peaks at 2θ � 38°, 44°,
64°, and 77° attributed to the crystallographic planes (3 1 1),
(2 2 0) (2 0 0), and (1 1 1) of face-centered cubic silver
crystals to be formed (JCPDS Card No. 893722-870720).

An FT-IR spectrum had been shown with the aid of
using the presence of silver nanoparticles in the cellulose,
XTL (leaf), as shown in Figures 6(a)–6(f). Cell/XTLLAgNO3
and Cell/XTL 20, 40, and 60 mMAgNO3 were the reactants
used in the frst reaction. In the XTLL extract and difused
cellulose, distinguished bands had been located at around
2258, 1719, 1625, 1557, and 1073 cm− 1. Te observed bands
account for C− O− C, C− O, and C=C organic functional
groups.Tese bands can be attributed to 3,5-dicafeoylquinic
acid, quercetin-3-o-rhamnoside, kaempferol-3-o-rhamno-
side, luteolin-7-o-glucoside, β-sterol, and stigmasterol
compounds which might be considerably found in Xeno-
stegia tridentata (L.) leaf extract [12–14] and are responsible
for the reduction of silver ion to silver nanoparticles in the
cellulose matrix.

It can be seen that an additional band at 1730 cm− 1 was
observed for the Cell/XTLL 60mM AgNO3 which was
assigned to the C�O vibration as shown in Figure 6(c). It is
evident that the carbonyl groups of XTLL were involved in
the reduction of silver nitrate into silver nanoparticles in
cellulose matrix. Te cellulose used in this study has a high
amount of hydroxyl (OH) groups as well as substantial inter-
and intramolecular hydrogen (H) bonding interactions,
characteristic of Cell/XTLL AgNCs.Tese functional groups
could be involved in the Ag NPs by anchoring Ag ions to the
cellulose matrix and stabilizing the silver nanoparticles due
to the interaction between cellulose hydrogen (H) bonds and
the silver nanoparticles [9, 34, 35].

Te XPS spectra evaluation is carried out further to
confrm the chemical state of the cellulose silver nanoparticle
composite.Te survey spectra in Figure 7(a) clearly show the
presence of oxygen (O1s) and carbon (C1s) from cellulose in
nanocomposites. As shown in the inset of Figure 7(a), the
XPS spectra clearly reveal the elemental status of Ag3d,
which are doublet peaks formed by spin orbital coupling,
Ag3d3/2 (371.51 eV) and Ag3d5/2 (366.3 eV). A high res-
olution analysis of Ag3d was performed for further in-
vestigation and the core level spectrum is shown in
Figure 7(b). Te spectrum deconvolutes into three com-
ponents with binding energies of 368.3 eV (Ag2O), 367.4 eV
(AgO), and 366.3 eV (Ag0), which can be assigned to Ag0
corroborating the formation of silver nanoparticles on the
surface of the cellulose [36–38].

Primarily, thermal stability of Cell/XTLL and Cell/XTLL
Ag NCs was performed by TG for Cell/XTLL; there are
mainly two weight loss stages below 160°C and 290 to 360°C
(Figure 8) in which the frst weight-loss stage corresponds to
the evaporation of physically adsorbed water XTLL leaf
extract which behaves as a reducing agent. Te organic
functional groups reduce their afnity toward moisture
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absorption. As a result, a small quantity of water was
absorbed by the surface of Cell/XTLL Ag NCs evaporated
from the surface at a much lower temperature. In the second
stage thermogram, the weight loss of about 87% is due to the
decomposition of cellulose followed by carbonization. Te
nanocomposite (Cell/XTLL 60mM AgNO3) shows an
overall weight loss of 64%, while the Cell/XTLL showed 97%
decomposition. Hence, the deposition of silver nanoparticles
resulted in a more thermal resistant material.

Using the frst reaction mixture and the UV-Vis spectra
of Cell/XTLL 20, 40, and 60mM AgNO3, it was observed
that Ag nanoparticles are shown in Figure 9. It was dem-
onstrated by the formation of a characteristic surface

plasmon resonance absorption band at 415 to 425 nm; at this
peak, it was confrmed that Ag ions present in the silver
nitrate solution were reduced to silver nanoparticles. As the
silver content increased, the peak intensity increased sug-
gesting that the concentration of the silver nanoparticles also
increased. Te cellulose matrix is band-free, and the color
shift from pale yellow to grey is all that is visible (Figure 10),
indicative of redox reaction between the silver salt and
carbonyl groups of XTLL. Tis grey color was persistent in
the Cell/XTLL Ag NCs compound during four months of
realization of the remaining experiments, suggesting that the
cellulose used in this study provides good stability to the
synthesized silver nanoparticles [39]. Both the solutions

(a) (b)

(c) (d)
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Figure 3: SEM images of (a) Cell/XTLL, (b) Cell/XTLL 20mM AgNO3, (c) Cell/XTLL 40mM AgNO3, (d) Cell/XTLL 60mM AgNO3, and
(e) EDAX spectra of Cell/XTLL 60mM AgNO3.
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were withdrawn and further diluted to measure the Ag NP
content using inductively coupled plasma optical emission
spectroscopy and are listed in Table 1. It is observed that as

the concentration of AgNO3 solution increases, so does the
formation of silver nanoparticles.

Te UV-Vis refection spectra of cellulose/XTLL and
Cell/XTLL 20, 40, and 60mM AgNO3 are shown in
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Figure 4: (a, b) TEM images of Cell/XTLL 60mM AgNO3, (c) SAED patterns of Cell/XTLL 60mM AgNO3, and (d) histogram of particle
size distribution.
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AgNO3, (e) Cell/XTLL 40mM AgNO3, and (f) Cell/XTLL 60mM
AgNO3.
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Figure 11. Tese peaks are due to the surface plasmon efects
due to the quantum confnement of Ag nanoparticles sta-
bilized on the cell/XTLL surface. It can be observed that the

strong absorption was seen between 400 and 500 nm. Te
Cell/XTLL 60mMAgNO3 band gap was calculated using the
Kubelka‒Munke equation and plotted as a function of
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Figure 7: (a) XPS survey spectrum of Cell/XTL 60mM AgNO3 hybrids and (b) high resolution spectrum of Cell/XTL-60mM AgNO3.
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Figure 8: TGA spectra of (a) Cell/XTLL and (b) Cell/XTLL 60mM AgNO3.
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absorption coefcient versus band gap energy Cell/XTLL
60mM AgNO3. Te band potentials of silver nanoparticles
Ag (0) in the cellulose matrix were calculated theoretically
and showed 3.40 eV at Cell/XTLL 60mM AgNO3
(Figure 11) [40].

Te top morphology of the Cell/XTLL 60mM AgNO3
flm was also characterized by atomic force microscopy.
Figure 12 shows a 3D AFM image of the Cell/XTLL 60mM
AgNO3 surface. Te presence of silver nanoparticles on the
cellulose surface can be observed as additional supporting
evidence related to the surface roughness of Cell/XTLL
60mMAgNO3 at 33.78 nm which was evaluated (Figure 12).
Tis result may indicate good adhesion and dispersion of Ag
nanoparticles on the cellulose surface [41].

Te antibacterial efects of cellulose, Cell/XTLL, Cell/
AgNO3, and Cell/XTLL 20, 40mM AgNO3, and Cell/XTLL-
60mM AgNO3 against bacterial and fungal strains by disc
difusion tests are shown in Figures 13–16. It has been
verifed. It was observed that as the concentration of the

silver nitrate solution increased, Ag NPs in the cellulose
matrix increased and the inhibition zone also increased.
Escherichia coli, Staphylococcus aureus, Trichoderma viride,
and Fusarium oxysporum showed higher activity than the
other microorganisms tested. Terefore, from the current
approach, the developed Cell/XTLL 60mM AgNO3 can be
regarded as an excellent antibacterial agent efective in
killing microorganisms. It can also be concluded that the
developed Cell/XTLL 60mM AgNO3 nanocomposites have
a larger inhibition zone compared to other prepared
nanocomposites. Cellulose-silver nanocomposites penetrate
more efectively into bacterial and fungal cells, damaging cell
nuclei and killing fungi faster. Te primed Cell/XTLL Ag
NCs can penetrate the bacterial cell wall and induce cell
death. Cell/XTLL Ag NCs can increase the permeability of
cell membranes. Te production of reactive oxygen species
releases Ag ions and interferes with the replication of
deoxyribonucleic acid [42–44].

Te DPPH and ABTS+ free radical scavenging ability of
cellulose, Cell/XTLL, Cell/AgNO3, Cell/XTLL/20, 40, and
60mM AgNO3, and ascorbic acid (standard) indicated that
their DPPH activity was dose-dependent, with increased
inhibition of 2.34, 4.23, 11.85, 55.76, 71.58, 82.31, and 85.12%
(ascorbic acid) at 40 μg/mL, respectively (Table 2 and Fig-
ure 17). Te prepared Cell/XTLL 60mM AgNO3 is efective
against DPPH radicals. Absorption rates of ABTS+ radicals
from cellulose, Cell/XTLL, Cell/AgNO3, and cellulose-silver
nanoparticles increased by approximately 2.87, 3.92, 10.31,
53.23, 62.87, 73.53, and 75.45% (ascorbic acid) (Table 3 and
Figure 18). Te Cell/XTLL 60mM AgNO3, the most pow-
erful nanocomposite (Cell/XTLL 20, 40, and 60mM
AgNO3), increases silver nanoparticles in the cellulose
matrix and blocks DPPH as the concentration of silver
nitrate solution increases. Due to the increase, it provided
the highest DPPH and ABTS+ activity and ABTS+. Tis may
indicate a combined efect of silver nanoparticles and XTLL
in the cellulose matrix that signifcantly binds DPPH and
ABTS+ [17, 45].

Te cancer activity of Cell/XTLL 20, 40, and 60mM
AgNO3 on MCF-7 cells was determined by the MTT assay
[46], when MCF-7 cells (1× 105/well) were plated in 0.2ml
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Figure 9: UV spectrum of (a) initial reaction mixture, (b) Cell/XTLL 20mM AgNO3, (c) Cell/XTLL 40mM AgNO3, and (d) Cell/XTLL
60mM AgNO3.
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Figure 10: (a) Cellulose and (b) Cell/XTLL Ag NCs.

Table 1: ICP-OES analysis of Cell/XTLL and Cell/XTLL/20, 40,
and 60mM AgNO3.

Samples
Ag NP content
in Cell/XTLL Ag

NCs (%)
Cell/XTLL 0
Cell/XTLL 20mM AgNO3 22
Cell/XTLL 40mM AgNO3 30
Cell/XTLL 60mM AgNO3 41
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(d) (e)

Figure 13: Antibacterial activity of cellulose (7), Cell/XTLL (6), Cell/AgNO3 (5), and Cell/XTLL Ag NCs (20 (4), 40 (3), and 60 (2) mM
AgNO3) and positive control ciprofoxacin (1). Bacteria strains: Escherichia coli (a), Staphylococcus aureus (b), Salmonella typhi (c),Klebsiella
sp (d), and Hafnia alvei (e).
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Figure 14: Antibacterial activity of cellulose, Cell/XTLL, Cell/AgNO3, and Cell/XTLL Ag NCs (20, 40, and 60mM AgNO3). Asterisk (∗)
denotes a signifcant diference compared to control (P< 0.05).
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Figure 15: Continued.
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medium/well on a 95-well plate and incubated in a 5% CO2
incubator for 72 hours. Ten, various concentrations of the
Cell/XTLL 20, 40, and 60mM AgNO3 at various

concentrations in 0.1% DMSO were added and placed at
a 5% CO2 incubator for 24 h. Te MCF- cells were observed
under an inverted microscope at a magnifcation of 40X and

(d) (e)

Figure 15: Antifungal activity of cellulose (7), Cell/XTLL (6), Cell/AgNO3 (5), and Cell/XTLL Ag NCs (20 (4), 40 (3), and 60 (2) mM
AgNO3 and positive control ciprofoxacin (1). Fungal strains: Trichoderma viride (a), Fusarium oxysporum (b), Guignardia mangiferae
(c), Aspergillus fumigatus (d), and Candida albicans (e).
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Figure 16: Antifungal activity of cellulose, Cell/XTLL, Cell/AgNO3, and Cell/XTLL Ag NCs (20, 40, and 60mM AgNO3). Asterisk (∗)
denotes a signifcant diference compared to control (P< 0.05).
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the images were recorded. After removing the Cell/XTLL 20,
40, and 60mM AgNO3 solution, 20 μl/well MTT reagents
were added; viable MCF-7 cells were determined by the
absorbance at 540 nm. A 50% inhibition of cell viability
(IC50) value was graphically determined. Te efect of Cell/
XTLL 20, 40, and 60mM AgNO3 on MCF-7 cell pro-
liferation was expressed as cell viability using the following
equation: % MCF-7 cell viability�A540 treated cells/A540
control cells× 100%. Cell/XTLL 20, 40, and 60mM AgNO3
were tested for potential inhibitory efects on human breast
cancer cell proliferation in MCF-7 cervical cancer cell lines
using the MTT assay shown in Figure 19.

Te cytotoxic efects of Cell/XTLL 20, 40, and 60mM
AgNO3 on MCF-7 cervical cancer cell lines at 72 hours at
diferent concentrations shown in Figures 19(A)–19(D) may
be deduced that for cell lines, cell count decreases as sample
concentration increases (Table 4). In this process, silver
nanoparticles in the Cell/XTLL Ag NCs bind and penetrate
the negatively charged cancer cell to disturb metabolic and
membrane activity leading to cell death. Te Cell/XTLL Ag
NCs also release positively charged (Ag+) cation which leads
to the destruction of the cell wall. Te prepared Cell/XTLL
Ag NCs are endocytosed into MCF-7 cells; this can release
their cargo to exert a therapeutic efect. However, the
strength of this interaction depends not only on the rate of
endocytosis but also on the residence time and accumulation
of the silver nanoparticles inside cells [47].

Photocatalytic activity of cellulose-silver nano-
composites: the absorption intensity of MB at 525 nm
decreased with increasing irradiation time, indicating that
the concentration of MB dye also decreased with

increasing irradiation time as shown in Figures 20(a) and
20(b). When exposed to light, photon absorption occurs,
and (e–h+) charge loss occurs due to the excitation of
electrons (e‒) from the valence band of silver nano-
particles and the abandonment of the conduction band
opening to do a band of silver nanoparticles [48–51].
Photocatalytic tests have shown that UV light and cata-
lytic activity are required to efectively destroy MB. Te
pure Cell/XTLL and Cell/XTLL 60mM AgNO3 nano-
composites were used under equivalent conditions with
only 49% and 91% degradation, respectively. Tis shows
that the Cell/XTLL 60mM AgNO3 nanocomposite pro-
cess can handle MB degradation better than other pre-
pared nanocomposites. Degradation was more successful
with Cell/XTLL 60mM AgNO3 nanocomposites, but we
investigated the efects of valid parameters in this process
and found optimal conditions.

In catalytic decomposition, the pseudofrst-order rate
constants (plot ln (C/C0) vs. time t) show a linear re-
lationship, as shown in Figure 20(c), where C is the con-
centration of MB dye. When integrated within the range of
C/C0 at t= 0, C0 is the equilibrium concentration of the bulk
solution of the MB dye, and the formula (ln (C/C0) = kt) is
obtained, where C0 is the equilibrium concentration of the
dye. Solution, C = concentrations and t = time; therefore, the
equation has the following form ln (C0/C) =KAppt, where
KApp (min− 1) is the frst-order pseudodynamics of the ve-
locity constant shown Figure 18(d), t/qt= 1/k2 qe2 + t/qe
velocity constant second reaction rate Figure 20(d). Te rate
constant values for photocatalytic decomposition of MB dye
by Cell/XTLL and Cell XTLL 60mM AgNO3 were found to
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Figure 17: Efect of cellulose, Cell/XTLL, Cell/AgNO3, and Cell/XTLL Ag NCs (20, 40, and 60mM AgNO3) on DPPH assay. Asterisk (∗)
denotes a signifcant diference compared to control (P< 0.05).
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be k= 0.9723 and k= 0.94242, respectively. Te proposed
mechanism of photocatalytic activity of the cell/XTLL
60mM AgNO3 heterojunction nanocomposites is outlined
in Figure 21 as charge transfer and energy position. Cellulose
is common, has a large surface area, and has a loose porous
structure, so it can absorb large amounts of contaminants in
a dark environment and balance absorption and desorption.
Tis is because the photo-generated electrons on the Ag
conduction band can be transferred to the conductive
network system on the Cell/XTLL composite due to the
conductivity that prevents the photo-generated electrons
and holes from binding. As a result, the addition of AgNO3
to the fabric signifcantly improved the photocatalytic
properties. In addition, the introduction of AgNO3 nano-
particles separates electrons and holes by absorbing visible
light through the SPR efect. In addition, electrons or holes
transferred to the nanostructure Cell/XTLL 60mM AgNO3
active surface are directly involved in the redox reaction. In
this reaction, the electrons reduce the dissolved oxygen to
mimic the superoxide anion (O2

‒), and the H2O‒the mol-
ecule is oxidized to provide hydroxyl radical (OH). Organic
dye contaminants (MBs) are eventually oxidized to CO2 and
H2O products by these highly elastic species. Apart from
hydroxyl radicals, holes have been identifed as the most

important active species in the Cell/XTLL 60mM AgNO3
system [52, 53]. Te grafted silver nanoparticles can act as
preferred hole channels and receptors for efcient separation
of photo-excited electrons and holes, thereby enhancing the
photocatalytic properties of Cell XTLL 60mM AgNO3
shown as follows:

Cell
Ag

+ hυ⟶ Cell e‒CB . . . h+VB( 

Cell e− CB( ) + Ag NP⟶ Cell + AgNP e− CB( )

AgNP e− CB( ) + O2⟶ Cell + O•−
2

O•
2 − +H2O⟶ HO•

2 + OH−

HO•
2 + H2O⟶ OH•

+ H2O2

H2O2⟶ 2OH•

OH•
+ MB⟶ H2O + CO2

Cell(h + VB) + MB⟶ degraded products.

(1)
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Figure 18: Efect of cellulose, Cell/XTLL, Cell/AgNO3, and Cell/XTLL-Ag NCs (20, 40, and 60mM AgNO3) on ABTS+ assay. Asterisk (∗)
denotes a signifcant diference compared to control (P< 0.05).
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Table 4: Cytotoxic efect of Cell/XTLL 20, 40, and 60mM AgNO3 on MCF-7 cell lines at 72 hours.

S. no.
Cytotoxic efect of cell/XTLL/20, 40, and
60mM AgNO3 μg/ml on MCF-7 cell

line
Absorbance 540 nm % cell viability

1 Cell/XTLL 60mM AgNO3 0.08 6.7
2 Cell/XTLL 40mM AgNO3 0.27 24.6
3 Cell/XTLL 20mM AgNO3 0.85 75.8
4 Control cell 1.17 100
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4. Conclusion

In summary, Xenostegia tridentata (L.) leaf extract is used as
a reducing agent and silver nitrate is used as a silver pre-
cursor, environmentally friendly green synthesis, to produce
silver nanoparticles (in situ) in a cellulose matrix. Te SEM
and TEM results show that the spherical shape silver
nanoparticles are evenly dispersed in the Cell/XTLL matrix.
Te XPS spectra observed that the Ag3d5/2 peak was com-
posed at 368.82 eV, which can be assigned to Ag0. Among
these are the XRD patterns of face-centered cubic silver in
cellulose matrix (3 1 1), (2 2 0), (2 0), and (1 1 1). Te FT-IR
spectra were concluded that C– O–C, C–O, and C=C
functional groups reducing silver ion to Ag nanoparticles.
Te most potent have been synthesized Cell/XTLL 60mM
AgNO3 against Escherichia coli, Staphylococcus aureus,
Trichoderma viride, and Fusarium oxysporum have strong
antimicrobial activity, DPPH, ABTS+ scavengers, and MTT
assay for its highly inhibitory efect on human tumor cell
proliferation in MCF-7 cervical cancer cell lines. In this
cellulose-silver nanocomposite heterojunction nano-
structure, Ag may (i) enhance the composite’s response to
visible light and (ii) enhance fast electron transfer and in-
hibit charge recombination. Consequently, the synthesis of
highly photocatalytic 1D cellulose silver nanocomposites
opens up a wider range of applications which can be

efectively used as a photocatalyst to decompose organic
pollutants in aqueous bodies, thereby helping to restore the
environment.
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