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Universidad Autónoma Metropolitana (UAM), Campus Iztapalapa, Ciudad de México, CP 09310, Mexico
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Te extraction process of bioactives from the aqueous extract of cinnamon (Cinnamomum verum) was optimized using the Design
Expert 11 program and analysis of variance (ANOVA) by considering the following parameters: cinnamon weight (g), power (W),
and time (s) of microwave irradiation. Te optimal conditions are cinnamon weight of 4.5 grams, time of 600 seconds, and power
of 150watts of microwave irradiation. With Cinnamomum verum extract under optimal conditions and titanium (IV) tetra-
chloride as a precursor, TiO2 nanostructures were synthesized using the sol-gel method assisted by microwave irradiation in the
crystallization stage with a power and irradiation time of 150W and 600 sec, respectively. Similarly, a sample without extract was
synthesized under the same conditions. Te following techniques characterized the materials: X-ray difraction (XRD), Fourier
transform infrared (FTIR) spectroscopy, UV-vis difuse refectance, Raman spectrometry, and high-resolution transmission
electron microscopy (HRTEM). It was feasible to obtain nanocrystalline solids of TiO2 anatase phase with and without cinnamon
extract; the particle size and the crystallinity were infuenced by the bioactive agents during the synthesis (aqueous extract of
Cinnamomum verum) and the synthesis method (microwave irradiation); a smaller crystal size, a smaller particle size, a higher
crystalline order, and a lower band gap were achieved for the material synthesized with cinnamon extract compared to the
material synthesized without extract and other methods. Te synthesized materials were evaluated in the photodegradation of
methyl orange (as a model of photodegradation), employing as reference parameters the commercial TiO2 brand Sigma-Aldrich
phase anatase and the photolysis of the system. Te amount of dye adsorbed in the tested materials was quantifed, fnding an
equilibrium time of 15min, where the TiO2 synthesized with Cinnamomum verum extract was the material that most adsorbed
methyl orange at 7.5%. In the case of photodegradation, the TiO2 synthesized with cinnamon extract apparently promoted the
total mineralization of methyl orange in 40minutes of reaction, making it the best material of those evaluated in the photo-
degradation. In all cases, the degradation models were adjusted to a frst-order kinetic model, where it was confrmed that the
highest reaction rate corresponded to TiO2 synthesized with Cinnamomum verum.
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1. Introduction

Te generation of nanomaterials through green synthesis
uses low-cost sustainable methodologies with low or zero
emission of waste and toxic by-products [1, 2] as an alter-
native to existing synthesis methods such as coprecipitation,
solvothermal, and the sol-gel method, among others, that
require a high energy expenditure and purifcation and
generate toxic by-products and waste for the
environment [3].

In green synthesis, natural sources such as microor-
ganisms (bacteria, fungi, and yeasts), extracts of plants
(fowers, stems, and leaves), or products of metabolism or
parts of them (enzymes) are used [4, 5]. Natural extracts
contain bioactive compounds present in plants, such as
alkaloids, polyphenols, terpenoids, antioxidants, sugars,
favonoids, organic acids, and quinones, together with low
molecular weight proteins [6] which can be used in the
reduction of precursor agents for the synthesis of nano-
materials [4, 7] because they act as electron donors [8],
stabilizers, and capping agents [9–11]. Coating agents pre-
vent coagulation and spontaneous focculation of the pre-
cursors and intermediate products during the synthesis
processes through electrostatic interaction [12].

A viable biological material for the green synthesis of
nanomaterials is cinnamon (Cinnamomum verum) due to its
high content of bioactive compounds such as aldehydes,
alcohols, esters, acids, monoterpenes, diterpenes, sesqui-
terpenes, benzopyrenes, hydrocarbons, favonoids (procya-
nidin dimers type A and B), and phenolic compounds
(eugenol and pyrogallol). Previous studies have shown that
the aqueous extract of Cinnamomum verum has high an-
tioxidant activity [13, 14], which suggests its application in
the synthesis of nanomaterials as an efective reducing agent
for metallic particles and promoting chemical processes such
as hydrolysis [15]; in addition, no reported applications for
the synthesis of nanomaterials were found for this
compound.

Te nanomaterial employed in this work was titanium
dioxide (TiO2), with high photocatalytic activity (>50–80%
in 2 H) [16, 17] and can be found in three crystalline
structures: anatase, rutile, and brookite [18]. Te anatase
phase is the one with the highest photoactivity [19]. How-
ever, although TiO2 is an excellent photocatalytic material, it
also has some drawbacks since it has a limited absorption in
the visible spectrum with a band gap of 3.2 eV [20], mainly
absorbing UV radiation, with a high recombination rate of
electron-hole pairs and presenting photo corrosion which
decreases its photocatalytic efciency. For this reason,
various works [21–23] have sought to generate a change in
the band pap, morphology, texture, and/or particle size
[20, 24]. Tis is through doping (with noble metals such as
silver and gold), coupling it to other semiconductors and/or
materials such as graphene (composites and hybrid mate-
rials), with morphosynthesis (polymeric templates), and/or
obtaining with diferent synthesis methodologies and pre-
cursors [25, 26]. Tis is where microwave-assisted green
synthesis provides a viable and novel technology.

Microwave irradiation has been implemented in the
search for methodologies that represent a lower energy
expenditure and allows the manipulation of properties such
as the texture and morphology of nanoparticles [27]. Mi-
crowaves are a type of electromagnetic radiation between 0.3
and 300GHz; the heating mechanism involves two main
processes: dipolar polarization and ionic conduction. Irra-
diation of a sample with microwaves results in the alignment
of the dipoles or ions in the electric feld. Because electro-
magnetic radiation produces an oscillating feld, the dipoles
or ions continually try to realign themselves in the electric
feld. Depending on the oscillation phenomena in relation to
the frequency of the irradiation, diferent amounts of heat
are produced through molecular friction and dielectric loss
[28, 29]; this superheat allows a fast reaction speed, re-
producibility, and control of the morphology and texture
depending on the parameters of power and irradiation time
[28, 30], which makes it a suitable irradiation source both for
the extraction of bioactive compounds and for the synthesis
of nanomaterials [30–32].

Methyl orange was used as a photodegradation model
for the synthesized materials [33, 34], belonging to the azo
dyes, and these constitute between 60 and 70% of the dyes
used in the industry, being one of the most important
contaminants that reproduce in the environment [35–37]. It
is worth mentioning that the objective of this research is
focused on the properties of TiO2 synthesized by green
synthesis by microwave irradiation of TiO2 using Cinna-
momum verum and its potential application, constituting
a starting point for future work. Te quantifcation of the
percentage of methyl orange degradation was evaluated by
UV-vis spectroscopy (467 nm).

On the other hand, the optimization of the aqueous
extract of Cinnamomun verum was carried out using the
Box–Behnken Design (BBD) model, which is one of the
methods for predicting response surface methodologies
(RSMs). Tis model has its origin from the graphic per-
spective and an adjustment through empirical models. Te
response surface methodology (RSM), introduced by George
E. P. Box and K. B. Wilson in the early 1950s, consists of the
collection of statistical andmathematical techniques useful for
modeling and analyzing experimental data, which determine
the efects and response of quantitative variables to identify
the optimal point. Te advantage is the decrease in the
number of experiments to evaluate their independent vari-
ables, and the disadvantage is the inability to provide a global
optimal point. Te RSM largely uses the BBD response
surface, which is suitable for ftting quadratic and cubic
models and is feasible to investigate and optimize variables in
the experimental space with the fewest number of experi-
ments without being an expert in statistics. Te central
composite design (CCD) is based on the same criteria as BBD;
however, the main diference between them is the number of
star points or center points in the experimental space, which
gives CCD more points and, therefore, more experiments.
Compared to the “one-variable-at-a-time” approach and the
full factorial design, the BBD has more advantages due to the
reduced number of experiments [38–46].
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In this work, we sought to obtain photocatalytic
nanomaterials such as TiO2 via green synthesis by the sol-gel
method assisted with microwave irradiation of the TiO2 type
through the use of bioactive compounds from the aqueous
extract ofCinnamomum verum,which were optimized using
the RSM statistical technique, with the premise of obtaining
efcient and economically sustainable nanomaterials that
improve the photocatalytic processes.

2. Experimental

2.1. Chemicals. Te reagents used for the preparation of the
precursor solutions for the extraction of bioactives from
cinnamon and TiO2 synthesis were as follows: TiCl4Sigma-
Aldrich 99.9%, C14H14N3O3SNa Sigma-Aldrich 99.9%,
C2H5OH Sigma-Aldrich 98%, TiO2Sigma-Aldrich 99.5%,
and Caledon brand bidistilled, tridistilled, and
deionized water.

2.2. Cinnamomum verum Aqueous Extract Optimization.
Cinnamomum verum aqueous extract optimization by mi-
crowave irradiation was performed with the use of Design
Expert software (Version 8.0.6, Stat-Ease Inc., Minneapolis,
MN, USA). It employs the BBD as an algorithm, which is one
of the methods for predicting response surface methodol-
ogies (RSMs) to examine the relationship between one or
more response variables and a set of quantitative experi-
mental parameters. Te optimization was made using three
independent variables and one response variable, with 17
runs to optimize the extraction conditions of bioactive
(Table 1). Aqueous extracts of Cinnamomum verum were
obtained in an SBL CW-2000Amicrowave reactor.Te three
independent variables were as follows: the weight of Cin-
namomum verum (1.5, 3.0, and 4.5 g) with deionized water,
microwave irradiation time (300, 600, and 900 s), and mi-
crowave irradiation power (150, 250, and 350W); the re-
sponse variable was the weight of the Cinnamomum verum
extract. Regression analysis was made according to the
experimental data, and the second-order polynomial model
(equation (1)) was ftted to express the amount of extract
obtained through theANalysisOfVAriance (ANOVA) [47].
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where Y is the amount of Cinnamomum verum extract, a0 is
the intersection (constant), ?1X1 to ?3X3 are linear co-
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2
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2
3 are quadratic coefcients and

interaction coefcients,X1 is the weight of theCinnamomum
verum (g), X2 is microwave irradiation power (W) y, and X3
is the microwave irradiation time (s).

2.3. Green Synthesis of TiO2 Nanoparticles by the Sol-Gel
Method Assisted by Microwave Irradiation and Cinnamo-
mum verum Extract as Reductant. In the synthesis of TiO2
nanoparticles (a code C-TiO was assigned) using the sol-gel
method assisted by microwave irradiation, 100ml of Cin-
namomum verum extract (prepared according to optimal

results) was added to a fanged reactor, and the equivalent of
5% TiCl4 was added dropwise, keeping the system under
constant agitation for 40minutes in a cryogenic bath at 4°C.
Finally, the mixture was introduced into the SBL CW-2000A
microwave reactor and irradiated for 10minutes at 150W.
Washes were performed by centrifugation with a 1:
1 ethanol-water mixture at 15 000 rpm at room temperature
for 15minutes. Te precipitate was dried in a convection
oven for 5 hours at 70°C, and the resulting material was
calcined for 4 hours at 450°C with a heating ramp of
30minutes at 10°C·min−1. Te procedure was repeated
without extract, and the code CO-TiO was assigned to this
sample. It is worth mentioning that in the evaluation, Sigma-
Aldrich brand TiO2 was used as a reference, which was
identifed as A-TiO .

2.4. Characterization of the Samples. Te synthesized com-
pounds were characterized by X-ray difraction (XRD),
Fourier transform infrared spectroscopy (FTIR), UV-vis
difuse refectance spectroscopy (UV-vis), Raman spec-
troscopy, and High-resolution transmission electron mi-
croscopy (HRTEM). Te XRD spectra were obtained on
a PANalytical model X’Pert PRO difractometer for thin
flms or crystalline coatings (λ�1541 Å), and the infrared
spectra were obtained on a Nicolet Magna-IR 550 spec-
trometer in a range of 4000− 650 cm. UV-vis spectra were
obtained via a Cary 100 UV-vis spectrophotometer, with an
integrating sphere (Labsphere DRA-CA-30) and was op-
erated over a wavelength interval between 200 and 800 nm.
Raman spectra were recorded at ambient temperature on
a Raman Termo Nicolet Almaga between 100 cm−1 and
1000 cm−1 with an exposure time of 1 s; the emission
wavelength was 532 nm, and a nominal power of 25mWwas
applied with a Nd: YVO4 laser. HRTEM and BFTEM mi-
crograms were obtained in a transmission electron micro-
scope JEOL brand JEM-ARM200CF model at 200 kV.

2.5. Evaluation of the Adsorption-Photodegradation ofMethyl
Orange

2.5.1. Adsorption of Methyl Orange. Te materials were left
in the dark in contact with the 3 ppm solution of methyl
orange and found that the equilibrium time was 15min. Te
adsorption of methyl orange was quantifed in a Perkin
Elmer brand UV-vis Lambda XLS spectrophotometer at
a wavelength of 467 nm. After the adsorption, the materials
were subjected to the photodegradation process.

2.5.2. Photodegradation of Methyl Orange. Te process was
carried out in 15ml vials in triplicate for each point. 10ml of
methyl orange at 3 ppm and 0.1 g of C-TiO2 were added to
each vial; the resulting suspensions were subjected to UV
light irradiation in a Luz Chem brand photoreactor
equipped with 2 Philips 125W UV lamps and an agitation
system. Every 10minutes, 5ml aliquots were taken in
triplicate until reaching equilibrium (100minutes of re-
action), and each aliquot was fltered with a 45 μ hydro-
phobic membrane. Te concentration of degraded methyl
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orange was quantifed in a Perkin Elmer brand UV-vis
Lambda XLS spectrophotometer at a wavelength of
467 nm. Te above procedure was repeated for the CO-TiO2
and A-TiO2 photocatalysts and the photolysis.

3. Results and Discussion

3.1. Cinnamomum verum Aqueous Extract Optimization.
According to Table 1, the highest amount of extracts was
obtained for run number 3 with 0.0902 g of bioactive, with
4.5 g of ground cinnamon, power of 150W, and microwave
irradiation time of 600 s, followed by runs 9 and 13, and the
one that obtained the least amount of cinnamon extract was
run 5. ANOVA results considering the second-order
polynomial model of the 17 runs are shown in Tables 2 and 3.

ANOVA results predicted a quadratic model (equation
(2)) for the three independent variables (weight of Cinna-
momum verum, microwave irradiation time, and microwave
irradiation power). Te results in Table 2 suggested that the
generated model had a high value of the coefcient of de-
termination R squared (0.8283). Te results in Table 3 in-
dicate that the model had a high F value (3.75) and a low p

value (0.0476) for the response indicating that the quadratic
model is signifcant. Tis suggests that the model could
predict 82% of the variations in the experimental data. In this
sense, the quadratic model is signifcant during microwave
extraction.

Te analysis of variance (ANOVA) determined the
following second-order polynomial model:

Y � 0.08 − 0.018X1 − 1.52E10− 4
X2 + 0.71EX3

+ 2.5E10− 6
X1X2 + 5.16E10− 6

X1X3 − 1.87EX2X3

+ 3.58E10− 3
X

2
1 + 3.92E10− 7

X
2
2 − 4.30EX

2
3.

(2)

Te analysis of the response surface and contour is
shown in Figure 1. 3D dimensional graphs were obtained by
the ANOVA for the 17 runs, and the relationship of the
independent and dependent variables was studied for getting
the Cinnamomum verum extract.

Te analysis of the response surface and contour of the
weight of the Cinnamomum verum extract shows the efect
of these independent variables. It can be seen in the response
surface graphs that the best results for the weight of the
Cinnamomum verum extract tend to be red color, that is,
lower microwave irradiation powers produce higher cin-
namon extract weights, and the lowest value on the blue scale
with higher irradiation power and lower Cinnamomum
verum weights produces the lowest cinnamon extract
weights (Figures 1(a)–1(c)).

When comparing the same weight of cinnamon and
microwave irradiation power at diferent irradiation times at
(A) 300 sec, it can be seen that the best results in terms of the
greater amount of extract obtained tend to have higher
cinnamon weights (4.5 g) and low microwave irradiation
powers (150W). In the case of (B) 600 sec and (C) 900 sec,
the same trend can be observed. In general, the increase of
the microwave irradiation time during the extraction of the
bioactives promotes a decrease in the amount of extract
obtained due to the degradation efect.

Preferably, when comparing the same weight of cin-
namon andmicrowave irradiation power, the degradation of
the resulting bioactives is promoted as the irradiation time
increases.

Table 1: Optimization by Design Expert software of aqueous extracts of Cinnamomum verum.

Runs

Independent variables Response variable
X1

Weight of Cinnamomum
verum (g)

X2
Microwave irradiation power

(W)

X3
Microwave irradiation time

(s)

Weight of Cinnamomum
verum extract (g)

1 3.0 350 300 0.0582
2 1.5 150 600 0.0617
3 4.5 150 600 0.0902
4 3.0 350 900 0.0453
5 1.5 350 600 0.0406
6 1.5 250 300 0.0610
7 3.0 250 600 0.0535
8 3.0 250 600 0.0521
9 4.5 350 600 0.0706
10 3.0 250 600 0.0558
11 3.0 150 300 0.0511
12 1.5 250 900 0.0440
13 4.5 250 300 0.0673
14 3.0 150 900 0.0607
15 3.0 250 600 0.0542
16 4.5 250 900 0.0596
17 3.0 250 600 0.0533

Table 2: Predicted and experimental values of the responses were
obtained under optimal extra extraction conditions.

Predicted model Sum of squares Df R2

Quadratic 0.0018 9 0.8283
Df: degree of freedom and R2: coefcient of determination.
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Figure 2 shows the Pareto diagram, prepared with the
variables X1, X2, and X3 and the frequency of the response
variable (amount of theCinnamomum verum extract) for the
17 experiments proposed by the Design Expert program.

Based on the 80/20 Pareto principle to establish priorities
in obtaining the greatest amount of theCinnamomum verum
extract, it corroborates the trend of the ARS graphs; that is,
the greatest amount of the extract is obtained towards

Table 3: ANOVA statistics of quadratic models for the extraction yields of the weight of the Cinnamomum verum extract.

Source Mean square F-value p value ∗Signifcant
Model (quadratic) 0.0018 3.75 0.0476 Signifcant
F-value: Fisher-Snedecor distribution value, p value: probability value, ∗signifcant (p< 0.05).
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Figure 1: Analysis of response surface (ARS) and analysis of response contour, respectively: weight of Cinnamomum verum, microwave
irradiation power vs. weight of Cinnamomum verum extract: (a) 300 sec, (b) 600 sec and (c) 900 sec of microwave irradiation.
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greater weights of cinnamon (4.5 g), at low microwave ir-
radiation powers (150W) and an irradiation time of 600 sec
[48–51].

3.2.X-RayDifraction(XRD). Figure 3 shows the normalized
X-ray difraction patterns of the C-TiO2 and CO-TiO2
samples.

Based on the JCPDS (Joint Committee on Powder
Difraction Standards) library, it can be seen that in all cases,
the characteristic refections of the anatase phase were ob-
tained at 2θ � 25.3, 38.5, 48.03, 55.0, 62.11, 68.76, 75.05, and
82.16° (JCPD letter 00-021-1272) corresponding to a te-
tragonal unit cell. Te CO-TiO2 sample synthesized without
the extract has a refection attributed to the brookite phase
(JCPD letter 01-075-2548) at 2θ � 31° (B), and for the C-TiO2
sample, two refections are observed at 2θ� 28 and 42° (R)
identifed for the rutile crystallographic phase (JCPD letter
00-021-1276), where the commercial sample A-TiO2 is the
lowest crystallinity. Comparing the intensity of the re-
fections (1 01), (1 0 3), (2 0 0), and (1 0 5) shows that the CO-
TiO2 sample is more ordered than the C-TiO2 sample. Te
crystal size was determined by the Debye–Scherrer equation.
Te sample synthesized by microwave and the aqueous
extract of Cinnamomum verum (C-TiO2) presented
a smaller crystal size (1.96 nm) than the one synthesized
without extract CO-TiO2 (2.35 nm), which indicates that the
phenolic and favonoid compounds contained in the cin-
namon extract promote a smaller crystal size and improve
the crystallinity since both samples were synthesized under
the same microwave irradiation conditions [52]. Also, the
reaction time is reduced from hours to minutes (10minutes)
during the synthesis of materials with the use of microwaves.

3.3. Fourier Transform Infrared (FTIR) Spectroscopy.
Figure 4 shows the absorption bands of the functional
groups present in TiO2, obtained by Fourier transform in-
frared (FTIR) spectroscopy for samples A-TiO2, C-TiO2,
CO-TiO2, and the aqueous extract of cinnamon.

In the cinnamon extract, it is possible to observe the
signal corresponding to the −OH bonds of the phenolic
compounds of the extract at 3244 cm−1. At 2922 cm−1, the

Pareto diagram of the microwave extraction of bioactives from Cinnamomum verum

4.5 g, 600 sec and
150-350 W

3.0 g-250 W-600
-900 sec

1.5-3 g, 350
W-900 sec

16

14

12

10

8

6

4

2

0

Fr
eq

ue
nc

y

0
10
20
30
40
50
60
70
80
90
100

A
cc

um
ul

at
ed

 p
er

ce
nt

ag
e (

%
)

Figure 2: Te Pareto diagram of the microwave extraction of bioactives from Cinnamomum verum.
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and the aqueous extract of cinnamon.
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signal for the C-H bond of the methylene group corresponds
to terpenes. Te phenolic compounds appear with the ab-
sorption bands for −COOH bonds at 1350 cm−1, for C-O at
1230 and 1055 cm−1, and for the favonoids, the signals for
aromatic C�O bonds are presented at 1600 cm−1 with its
harmonics at 1500 and 1435 cm−1. Tis indicates that the
extract of Cinnamomum verum is composed of phenolic
compounds, terpenes, and favonoids, which have been
reported to be able to promote the synthesis of TiO2 [53].

In the case of the C-TiO2 and CO-TiO2 samples, the
signal at 1104 cm−1 indicates the distribution of TiO2
nanoparticles in the anatase phase; this has already been
reported by Raghunandan et al. [54]. Te additional signals
that appear in the C-TiO2 sample at 1633, 1387, and
1250 cm−1 could correspond to remnants of the extract.

3.4. High-Resolution Transmission Electron Microscopy.
Figure 5 shows the images by bright-feld micrographs
(BFTEM) at diferent magnifcations for the commercial
samples A-TiO2 (A and D) and the samples synthesized by
microwave irradiation in 10min: CO-TiO2 (B and E) and C-
TiO2 (C and F).

At 20 and 10 nm scales, it can be seen that the sample
synthesized with the Cinnamomum verum extract C-TiO2 (C
and F) is the one with the smallest particle size and with
regular hemispherical shapes with an approximate size of
15 nm, followed by the synthesized sample without the
extract CO-TiO2 (B and E) with semielliptical irregular
shapes and sizes from 20 to 40 nm and the commercial A-
TiO2 (A andD) with the least uniform shape and particle size
ranging from 20 to 50 nm. At magnifcations of 10 nm, it can
be seen that the samples synthesized with microwaves CO-
TiO2 (E) and C-TiO2 (F) planes of atoms with preferential
orientation are observed.

Figure 6 shows the images by high-resolution trans-
mission electron microscopy (HRTEM) at diferent mag-
nifcations of the C-TiO2 sample: (A) 5 nm, (B) 1.5x, and (C)
5x. Additionally, the difraction pattern obtained by TEM is
shown in (D).

Te digital enlargement of the microgram of a C-TiO2
nanoparticle is shown (Figure 5(b)), in which the crystal
lattice of this material can be observed, and the top view of
the unit cell can be seen (Figure 5(c)), which corresponds to
the tetragonal crystal system (marked in yellow) corre-
sponding to the anatase phase for TiO2, according to what
was found by XRD.Terefore, the use of the aqueous extract
of Cinnamomum verum during the synthesis assisted by
microwave irradiation with titanium precursor (TiCl4)
promoted nanoparticles of uniform nanometric size (ap-
proximately 15 nm in diameter) with a high degree of
crystallinity and preferential anatase phase. Te difraction
pattern of the C-TiO2 sample (Figure 5(d)) indicates that
a polycrystalline sample of TiO2 nanoparticles was obtained,
confrming the polycrystalline nature of the material as
shown in the HRTEM images (Figure (A)) [55–57].

3.5. UV-Vis Difuse Refectance Spectroscopy. Based on the
difuse refectance data, it is possible to determine the optical
band gap (Eg) of the A-TiO2, C-TiO2, and CO-TiO2 samples
using the Kubelka–Munk equation and the Tauc graphs
following the formula: αh]�A (h]−Eg)n/2 for semi-
conductors [58–60]; these values are represented in Figure 7.

Te samples synthesized by microwave irradiation with
C-TiO2 and without the CO-TiO2 extract have a band-gap
value of 3.42 and 3.67 eV, respectively, both being higher
than the commercial sample A-TiO2 brand Sigma-Aldrich
(3.19 eV), which would indicate in the theory that to pho-
toactivate the C-TiO2 and CO-TiO2 samples with UV light,
more energy will be required, whereas the commercial
sample (A-TiO2) needs less energy to be photoactivated by
UV light.

Te TEM images show that the CO-TiO2 sample has
sizes between 20 and 40 nm (Figures 5(b) and 5(e)) with
a band gap equal to 3.67 eV. In the case of the sample
synthesized by cinnamon C-TiO2 of 15 nm (Figures 5(c) and
5(f )), its band-gap value decreases to 3.42 eV, which in-
dicates that there is a correspondence between the particle
size and the band-gap value. Tis is attributed to the efect of
quantum confnement of the material promoted by mini-
aturization, having a greater uptake of UV light absorption
for the sample synthesized with the Cinnamomum verum
extract.

3.6. Raman Spectroscopy. In Figure 8, the Raman spectra of
the C-TiO2 and CO-TiO2 samples are presented.

In all cases, the vibrations that characterize the typical
tetragonal structure of the anatase phase can be seen; the
signal that appears at 450 cm−1 can be attributed to traces of
the rutile crystallographic phase with a face-centered cubic
structure, according to what is indicated in the X-ray dif-
fraction spectra in the refections at 28 and 42° (Figure 1)
[61, 62].Te vibrations at 144 and 639 cm−1 are generated by
the symmetric stretching of the O-Ti-O bond; the vibration
at 399 cm−1 is caused by the symmetric bending of the O-Ti-
O bonds; the vibration at 519 cm−1 was generated by the
asymmetric bending in the O-Ti-O bond, sending signals
that confrm the anatase phase as predominant in all cases
[63, 64].

In Figure 9, we present a reaction proposal for the
synthesis of TiO2 using the Cinnamomum verum extract,
based on what was proposed for the sol-gel method by Rojas
et al. [65].

Te synthesis of TiO2 needs an abundance of −OH ions;
on the other hand [66], the bioactives contained in the
Cinnamomum verum extract (mainly favonoids and phe-
nolic compounds) contain numerous −OH groups in their
structure [67–69], which efciently promote a nonstable
polymeric structure by hydrolysis generating Ti(OH)4 and
HCl, where the use of the aqueous extract of cinnamon
contributes to the nucleation and growth of the polymeric
phase.Te resulting mixture was washed to remove HCl and
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calcined (450°C for 4 h); after calcination, the tetragonal
crystallographic structure was generated, and that corre-
sponds to the anatase phase for the nanometric TiO2
(Figure 7), which has a smaller particle size, more uniform
size, and crystallinity than the rest of the materials evaluated
(CO-TiO2 and A-TiO2).

3.7. Evaluation of the Adsorption-Photodegradation ofMethyl
Orange. Figure 10 shows the profle with the adsorption-
photodegraded percentages of methyl orange at the optimal
conditions for the samples C-TiO2, CO-TiO2, and A-TiO2
and the photolysis (without catalyst) of the system at 3 ppm
of contaminant with adsorption (15min (a)) and degrada-
tion (100min (b)) time of equilibrium, respectively, using
a ratio of 1 g of catalyst per liter of methyl orange.

According to Figure 10(a), the sample synthesized with
theCinnamomum verum extract (C-TiO2) is the one with the
highest percentage of adsorption (7.5%), reaching equilib-
rium time experimentally in 15min, followed by the C-TiO2
sample (4.7%) and A-TiO2 (1.76%). 10(b)Te percentages of
photodegradation for photolysis and samples A-TiO2, CO-
TiO2, and C-TiO2 with 100min of UV irradiation resulted in
34.22, 81.42, 95.56, and 100%, respectively. Te C-TiO2
sample, synthesized with an aqueous extract of cinnamon
(Cinnamomum verum), completely photodegraded methyl

orange (100%) in just 40minutes, reaching equilibrium at
this time, unlike the rest of the experiments.

Figure 11 shows a comparison of the percentages of
adsorption-photodegradation with all the materials evalu-
ated with an exposure of 40min.

Te photolysis after 40minutes only reaches up to
photodegradation of 12.95%, followed by the A-TiO2 sample
(commercial) with 36.97%. For the samples synthesized with
TiCl4, with the aqueous extract of Cinnamomun verum and
microwave irradiation (C-TiO2), there is an improvement of
52.22% of methyl orange photodegradation when compared
with CO-TiO2. Tis can be attributed primarily to the fact
that the band gap for the C-TiO2 sample (Eg = 3.42 eV) is
lower than that for the CO-TiO2 sample (Eg = 3.67 eV),
indicating that less energy is required to pass electrons from
the valence band to the conduction band. In addition, the
particle size was smaller, and the crystallinity was higher
than the synthesized sample without extract; therefore, the
active sites of the catalyst were better exposed than the
sample synthesized without the extract. Other authors have
found that there could be traces of the bioactives used as
precursors (corroborated by FTIR, Figure 3), which could
additionally have a photochromic efect and facilitate the
photoreaction [66]. Additionally, when quantifying the
adsorption of the dye, it can be seen that the resulting

Figure 5: Bright-feld transmission electron microscopy (BFTEM) micrograms for the samples: A-TiO2 (a, d), CO-TiO2 (b, e), and C-TiO2
(c, f ).
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morphology for the C-TiO2 sample allowed a better in-
teraction of the catalyst with the reaction medium, con-
tributing to the photodegradation (Figure 5(f )).

In the comparison of the C-TiO2 (15 nm) and A-TiO2
(50 nm) samples, the smaller particle size of the sample
prepared with extract allowed for the exposure of a greater
number of active sites in photodegradation, in addition to

Figure 6: Micrograms by high-resolution transmission electron microscopy (HRTEM) for the C-TiO2 sample at (a) 5 nm, (b) 1.5x, and (c)
5x. (d) Difraction pattern obtained by TEM.
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the already mentioned photochromic efect. Terefore, the
sample synthesized with the aqueous cinnamon extract,
despite having a higher band gap (Eg� 3.42 eV), was more
photoactive than the commercial sample (Eg� 3.19 eV).

Figure 12, (A) shows the values obtained for the constant
rate (k (min−1)) and the order (n) of the reaction calculated
for the adsorption-degradation of methyl orange. Sections
(B) to (C) present the speed profles (-rmethyl orange adsorption-

degradation) for the evaluated samples.
In all cases, the adjustment of the speed model (ppm

methyl orange/min) corresponds to order one (n� 1), where
the speed constants (k) resulted in values of k� 0.89, 0.021,
0.012, and 0.003min−1 for the samples C-TiO2, CO-TiO2, A-
TiO2, and the photolysis of the system, respectively, with R2
settings between 0.89 and 0.99 (Figure 12(a)). Tese values
can be corroborated in the speed profles (Figures 12(b) and
12(c)), where the sample synthesized with the Cinnamomum
verum extract is the one with the highest speed according to
the highest value of k of the tested materials, which shows the
excellent interaction of TiO2 with the reaction medium,

attributable to the higher adsorption of methyl orange in the
C-TiO2 sample; therefore, the C-TiO2 sample has smaller
crystal size, smaller particle size, higher crystallinity, and
smaller band gap than the one synthesized without cinnamon.

Figure 13 shows the UV-vis spectra obtained for the
remnants of the sorption photodegradation of methyl or-
ange to identify intermediate products, using the semi-
conductor CO-TiO2 (%MOD� 95.56), that did not reach
total mineralization after 40 and 100min of
photodegradation.

In the spectrum at the beginning of the reaction
(0min), two signals are presented. Te frst is located at
λ= 466 nm, which is indicative of the chromophore group
-N=N- (azo); the second signal at λ= 269 nm is associated
with the benzene rings in the methyl orange structure.
After 40min of irradiation with UV light, the signal at
466 nm reduces its intensity, and after 100min of irra-
diation, it disappears; this indicates the breaking of the
-N=N group bond [70, 71]. In the case of the signal at
269 nm, it can be observed that after 40min of irradiation
it decreased, and at 100min, a displacement of the signal is
observed at approximately 253 nm, which indicates that
the aromatic group was not fractionated, generating by-
products derived from the aromatic ring which can be
attributed to N,N-dimethyl-p-phenylenediamine, as re-
ported by Lide and Col. [72] and sulfanilic acid in [73]. It
is worth mentioning that the C-TiO2 sample does not
show any signal after photodegradation, and it is likely
that it has reached mineralization.

Table 4 shows a comparison of studies where TiO2 was
used for the degradation of methyl orange compared to TiO2
synthesized with the Cinnamomum verum extract.

Fortunately, the C-TiO2 sample being a pristine material
shows a very good percentage of degradation in a short time
compared to binary and ternary materials (Table 4). So, the
green synthesis of nanostructures such as C-TiO2 represents
an area of opportunity for the synthesis of more efcient
materials since it can be coupled with other semiconductors
and graphitic materials and decorated or doped with metals.
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4. Conclusions

Te optimization of the aqueous extract of Cinnamomum
verum predicts a signifcant quadratic model, with an 82%
prediction to the experimental variations.

It was feasible to synthesize nanocrystalline solids of the
TiO2 anatase phase by microwave irradiation for 10minutes
at 150watts of power, with and without the aqueous extract
of Cinnamomum verum, where the size of the particle is
infuenced by the bioactive during the synthesis (the aqueous
extract of Cinnamomum verum) and the synthesis method
(microwave irradiation), resulting in smaller size and
crystallinity when synthesized with the aqueous extract of
cinnamon.

Te signals obtained in the FTIR spectrogram for the
aqueous extract of Cinnamomum verum suggest the pres-
ence of terpenes, phenolic compounds, and favonoids. For
the samples A-TiO2, C-TiO2, and CO-TiO2, the vibration
modes of the Ti-O and Ti-O-Ti bonds are confrmed with the
signal at 625 cm−1. For the C-TiO2 and CO-TiO2 samples,
the signal at 1104 cm−1 confrms the formation of TiO2
nanoparticles in the anatase phase since this signal does not
appear in the A-TiO2 sample.

Te use of the aqueous extract of Cinnamomum verum
FIGURAS FIONALES promotes during the synthesis of
TiO2 that the value of the band gap decreases, afects the
crystallinity, and decreases the size of the crystal, compared
to the sample synthesized without the extract (CO-TiO2)
since both were prepared under the same synthesis
conditions.

Raman spectroscopy confrms that the C-TiO2 and CO-
TiO2 samples mostly contain the tetragonal crystallographic
structure corresponding to the anatase phase. In both cases,
the presence of traces of the face-centered cubic crystallo-
graphic structure of the rutile phase is also confrmed.

Te commercial sample A-TiO2 does not have a good
particle size uniformity, where larger size particles pre-
dominate (50 nm). Te sample synthesized by microwave
irradiation without the extract promoted the formation of
elliptical nanoparticles with good uniformity and sizes of
approximately 20 nm in diameter. When using an aqueous
extract of Cinnamomum verum during the synthesis, it
generated a material with a uniform particle size (less than
15nm in diameter), with a higher degree of crystallinity.

Te use of the aqueous extract of cinnamon (Cinnamo-
mum verum) during the synthesis of TiO2 generated
a semiconductor with a smaller crystal size, smaller particle
size, higher crystallinity, smaller band gap, and greater ad-
sorption capacity for the dye tested as a reaction model
(methyl orange) than the one synthesized without cinnamon,
which apparently promotes the total mineralization of methyl
orange in 40minutes of reaction, making it the best material
of those evaluated in the adsorption-photodegradation.
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Gutiérrez, “Efect of microwave or ultrasound irradiation in
the extraction from feather keratin,” Journal of Chemistry,
vol. 2019, Article ID 1326063, 9 pages, 2019.
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