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Te efects of the percentage volume of reinforcement, the ratio of reinforcement, and the matrix size of particles on the wear
behavior of AA5052/B4Cmetal matrix composites (MMCs) examine.Tis research examines a model function developed from an
artifcial neural network (ANN). AA5052/B4C composites bent using a powder metallurgy technique to hardness and ball-on-disc
wear testing.Tere are two exemptions such as (1) when the percentage volume of reinforcement is less than 8% and (2) when the
ratio of reinforcement particle size (Rs) and matrix particle size (Ms) increases before decreasing. Te results show that wear loss
decreases with increasing percentage volume of reinforcement and ratio of Rs andMs. In the second case, wear loss is increased at
high levels of percentage volume (14%) since the proportion of reinforcement andmatrix size of the particle is close to 1.When the
volume percentage of reinforcement is high (14%) and the matrix and reinforcement particle sizes are substantial (120m), the
reinforcement particles become dislodged and break. Because these broken-up particles are easily removed from the surface, the
material’s wear resistance is reduced. In this case, raising the volume fraction yields a uniformly higher hardness for all Rs/Ms
values; hence, composites with lower reinforcement volume percentages show better wear resistance. Hardness and wear re-
sistance have no relationship with one another.
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1. Introduction

MMCs are an emerging material class with a wide range of
desirable properties, including low weight, high strength,
specifc modulus, low density, low elongation, and high
stifness [1]. Excellent operating performance, wear re-
sistance, thermal stabilization, minimal thermal extension,
andmaximum fexibility to experience the distortion process
by conventional methods such as powder metallurgy and
casting have contributed to the increase in emerging of
AMMC strengthened with ceramics in both the industry and
academia. As a result of its compatibility with a wide variety
of metallic and ceramic substrate plating materials, AA5052/
B4Cp is useful in microelectronic packing for aviation,
automation, and microapplications.

Because of its unique qualities, including the lack of
undesired reaction products and less processing cost, solid-
state powder metallurgy (PM) is frequently employed as
a production method for Al-based MMCs [2, 3]. However,
this approach also has drawbacks, such as a lack of ho-
mogeneity and a low density from the pores [4].

Sintering, pressing, mixing settings (external factors),
and material aspects all infuence the qualities of particulate-
reinforced MMCs made through solid-state powder met-
allurgy. Material factors (internal factors) considered in this
investigation include Ms and Rs and the percentage volume
of reinforcement particles.

Wear resistance in Al-based MMCs has been found to
increase with both Rs and volume percentage of re-
inforcement [5]. Although internal parameters have a sig-
nifcant bearing on tribological features and reinforcement
particle clustering, the impact of the matrix size of the
particle and the ratio of Rs/Ms has not been extensively
studied.

Analysts frequently resort to analytical approaches to
investigate the efects of MMCs’ material features [6]. Te
use of an ANN is currently one of the most widely adopted
and successful approaches. Characterizing the material and
providing insight into the efective manufacturing material
and processing parameters are two additional benefts of
using ANN [7]. Tickness, porous, and stifness predictions
for AA5052/B4C MMC were investigated by authors [8].
Teir analysis took a Cu-weight percentage and a B4C
volume fraction as input parameters. A maximum inac-
curacy of 5.99% was determined.

Researchers [9]employed an artifcial neural network to
examine the relationship between the axial stress and strain
of AA5052/B4Cp MMCs and the thickness, size of the
particle, percentage volume of particles, and load. Te au-
thors [10] also used an artifcial neural network to examine
the results of particle size, percentage of volume, and milling
duration on the density, hardness, and tensile strength of
Al2024/B4C MMCs. Te authors examined the bending
strength and stifness of aluminium-silicon-magnesium-
basedMMC [11] using ANN to see if they varied with the Rs.
Te B4C particle was the only input during ANN. Re-
searchers found that B4C’s hardness and bending strength
improved along with its particle size [11].

Te wear resistance of MMCs was studied using ANN in
specifc research. To examine wear behavior, authors [12]
used ANN on AA5052/B4C MMCs. Te wear behavior of
AA5052/B4C MMCs was studied to determine the impact of
load and testing temperature. At the same time, in in-
vestigating the wear rate of aluminium/Al2O3 MMCs, au-
thors [13] employed an ANN technique, with a wear rate as
output and percentage volume of reinforcement, applying
pressure, sliding speed, and testing temperature as input
factors. Clustering, an undesirable phenomenon, is reported
to increase the volume percentage of reinforcement. Authors
[14] also investigated the impact of the reinforcing volume
fraction. Te researchers discovered that squeeze-cast
AA5052/B4C MMCs with a higher volume proportion of
B4C particles had better wear resistance [15–17]. Tey also
found that an increase in percentage volume led to a higher
critical transition temperature between the moderate and
severe regimes of wear loss [17]. Additional instances of the
successful application of ANN to the characterization of
MMCs can be found in the scholarly literature [18].

Tis research looked at how the Rs/Ms ratio afected the
wear behavior of AA5052/B4Cp MMCs. Te studies relied
on a model function determined with the help of a neural
network simulator and the data collected in the experiments.
Micrographs of the microstructures were acquired before
and after the wear testing, allowing for a comparison of the
two data sets. To get a more in-depth look at AA5052/B4Cp
MMCs to wear, an ANN was used with wear loss and
hardness as input factors and percentage volume of re-
inforcement, Ms and Rs as output parameters.

2. Materials and Experimental Procedure

Production of AA5052-B4C composites was achieved
through powder metallurgy. Five diferent volume fractions
of B4C particles were used to strengthen the aluminum
particles (99.5% purity). Matrix and reinforcement particle
sizes of 70, 95, 120, 145, and 170 μmwere tested and found to
be optimal. In a triaxial mixer, particles of aluminum and
B4C of varying sizes were mixed for a one-hour cold compact
at a pressure 450MPa. After compacting, the particle mixes
were sintered at 600 C for 8 hours.

Te hardness of the composite specimen was evaluated
using a Brinell hardness tester (DM-AKB-3000, Navin
Engineering) outftted with a ball indenter measuring
2.5mm in diameter and a 62.5 kgf force. Te wear tests were
conducted in the ball-on-disc-type machine with dry sliding
circumstances. Steel ball bearings with a diameter of 6mm
and a hardness of 62HRCwere employed as the counter-face
material. Normal loads of 10N were applied for the wear
testing, and the sliding velocity was held constant at
0.421ms−1, with the sliding distance set at 550m. Te
starting and ending weights of every sample were recorded
to calculate wear.

Table 1 displays the wear loss and hardness test results
for all the specimens tested, including those with a wide
variety of matrix particle sizes, reinforcement particle sizes,
and reinforcement volume fractions.
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3. Artificial Neural Network

Digital models of the nervous systems and artifcial neural
networks are based on the biology of intelligence [19]. Tey
are typically depicted as networks of neurons that can
calculate values from inputs when data are fed into the
system. Te ability of artifcial neural network models to
infer a function from observation is often cited as proof of
their usefulness. Tis is especially helpful when it would be
impractical to design such a function by hand, as is the case
when working with complex data or tasks. Tis means that
ANNs can provide meaning for the interrelationships be-
tween the variables of a high-dimensional space. When
asked to represent intricate linear and nonlinear connec-
tions, ANNs have excelled well. Compared to statistical
approaches, ANNs provide a radically new way to describe
materials and manage their processing.

Neural networks can be programmed to do a variety of
tasks. Te neural network is seen in Figure 1. Te weight
matrices (w), bias vectors (b), transfer function (f ), re-
inforcement (R), and outputs (a) in this network are R, f, w,
and a, respectively.

Training a neural network needs to receive examples of
data that may be used as inputs. Each input is multiplied by
a variant known as the weight and added to a variant known
as the bias beforehand, incoming the neuron; the preliminary
range of both variations can be specifed in advance if the
neural network has only one layer [18]. Te experimental
output value is compared with the neuron’s output, which is
the functional transfer input. Te input is the total of the
values received from each input. If the resulting error value
exceeds the allowed error value, the result is sent back to the
network to adjust the weights and biases until the intended
efect is achieved. Figure 2 depicts the iterative process of
network training and evaluation, with various techniques
used to explore the resulting model’s performance.

3.1. Implementation of the Neural Network. Numerous pa-
rameters can be adjusted during installation to optimize the
performance, speed, and accuracy of an ANN [20]. Pa-
rameters include the network learning rate, the number of
layers, the number of neurons in each layer, and many
others. In this research, the neural network was trained using
abrasive resistance and hardness as input factors and the Rs,
Ms, and the reinforcement volume fraction. Te network
was educated using the most popular and efective approach
for training, backpropagation error. According to authors
[21], the Pearson correlation coefcient is the other artifcial
neural network metric that demonstrates how successfully
a network is trained. Te research shows that Pearson
correlation coefcient values greater than 0.9 are considered
satisfactory for this parameter [22].

Dispersion in the training data can signifcantly afect the
number of layers and neurons; similarly, variation in the

input and output factors might cause difculties in the
network learning process. Data are normalized to reduce the
variation in such circumstances. Similar to the method used
by authors [23], all parameter values were normalized in this
study by dividing them by the most signifcant value of the
relevant parameter to place them in a uniform range from
0 to 1. Te optimal PCC (postclassifcation comparison)
value was found by trial and error. Table 2 provides the
artifcial neural network’s specifc architecture and the rel-
evant factors’ values. Tere were three distinct layers to the
network. Te ANN structure gave nominal values for the
sum of neurons in the input, hidden, and output layers.
Authors [24] indicate that growing the number of neurons,
being the minor process units, does not result in enhanced
network performance and accuracy. Tis is something to
remember while choosing the number of layers and neurons.
Te rate at which a network learns is another crucial variable
that must be considered during deployment. Authors [25]
discussed that a low value for this parameter results in slow
network convergence, which slows down the time it takes to
obtain the desired response. In that case, there is a risk that
the training process may become unstable, increasing the
amount of inaccuracy in the response from cycle to cycle.

3.2. Model Function. Te values of w, f, p, and b parameters
can be acquired upon successful training of the neural
network. Figure 3 indicates the overall structure of the
neural network used in this research. Using these values, one
may determine the function that connects the
manufacturing process parameters as inputs to themeasured
outcomes (wear loss and hardness) as outputs. Te model
function can be derived as follows:
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+b1
2 a2
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Input
Layer
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Figure 1: Single layer network with R/S neurons.
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Start

Normalise the Raw Inputs & Outputs

Feed the Data into Neural Network

Finding the
Optimum Network Parameters

Execute Network Training

Revise the Parameters of
Network Structure

Obtain Pearson Correlation Coefcient

No Is R ≥ 0.99?

Obtain Weights and Biases Values

Create the Model Function

Conduct the Analysis Based on Model Function

Verifying the Results by use of Micrographs of Microstructures

End

Figure 2: Network training, exploration of ANN training results, and evaluation of result composition of the technique.

Table 2: Assembly and the factors of ANN.

ANN framework PCC Rate of learning Number of epochs Mean error (%)
3× 8× 2 0.9991 0.094 150000 0.096
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a3 is the output of the third layer, which is equivalent to the
function G (g(1), g(2)), and a1 and a2 are the outputs of the
frst and second layers, respectively. G(g(1) and g(2)) are the
resultant factors for measured values. Ms, Rs is used in the
function G to calculate wear loss and hardness.

4. Results and Discussions

4.1. Artifcial Neural Network. For wear loss as well as
hardness, as can be shown in Figures 4(a) and 4(b), the ANN
predictions are close to the experimental results. Te ANN
model has a 1% margin of error for making predictions
(Table 2). Tis means that the projected fndings agree well
with the experimented data. Te results show that an arti-
fcial neural network is a valuable tool for predicting the

wear behavior of particle-strengthened MMCs and can be
utilized in conjunction with experimental results.

4.2. Analysis of Microstructure. Figure 5 shows the optical
microstructures of AA5052-B4Cp MMCs. Microscopically,
8% volume fraction composites have a homogeneous dis-
tribution of reinforcing particles (Figures 5(a) and 5(b)). In
these composites, the reinforcement (Rs) and the matrix
(Ms) particle size ratio is more than one or equal to 1. While
the reinforcement volume percentage is less, Figure 5(c)
shows that few particle clusters arise in the microstructure
when the reinforcement size is lesser than the matrix size of
the particle (Rs/Ms< 1) (8%). However, particle clusters are
more numerous in composites with a large volume fraction

b2, w2, f2

b1, w1, f1

b3, w3, f3

Inputs
Reinforcement PS.

Matrix PS
Reinforcement Vol.

Outputs
Wear Loss
Hardness

Figure 3: Framework of the functional ANN.
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(18%), which is true regardless of the Rs/Ms (Figures 5(d)–
5(f)). Tis research determined the clustering rate of re-
inforcement particles by comparing the cluster area to the
total microstructure area. Seven micrographs were obtained
from each sample, the parameter value was determined for
each, and the average was used to determine the clustering
rate. Comparing only specimens with 18% of reinforcement
reveals that the clustering of strengthening particles becomes
less severe with an increasing Rs/Ms ratio.

It can also be seen clearly from Table 1 and Figure 5 that
when the volume proportion rises and the Rs/Ms ratio falls,
the degree of reinforcement particle clustering increases.
Tese fndings suggest that reinforcement particles’ distri-
bution and cluster formation are controlled by the Rs/Ms
ratio in addition to the volume fraction. Te dashed arrows
represent particle clusters with space in Figure 5. Tere are
two distinct ways these gaps can emerge. Inefcient bonding
between the groups of reinforcement particles makes them
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Figure 4: Evaluation of the experimented values and theoretical values (a) wear loss and (b) hardness.
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(a)
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Particle Clusters

(c)
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(f )

Figure 5: Microstructure images of AA5052-B4Cp MMCs: (a) 8% AA5052/95-B4C/145; (b) 8% AA5052/95-B4C/95; (c) 8% AA5052/95-
B4C/95; (d) 18% AA5052/95-B4C/145; (e) 18% AA5052/95-B4C-95; (f ) 18% AA5052/145-B4C/95.
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easy to dislodge or remove from the matrix. In this case,
sliding wear tests have not yet been conducted. Second,
when deformed plastically, the matrix material has difculty
flling the gaps between the reinforcement particles. Tis is
because the reinforcing particles are clustered too closely
together, which impedes the fow of the matrix material
during the pressing and sintering processes. It explains how
the reinforcement particle clustering afects the AA5052/
B4Cp MMCs’ wear behavior.

4.3. Wear Behavior. Figure 6 shows that AA5052/B4Cp
composites’ wear behavior is afected by reinforcement
volume percentage and the Rs/Ms factors. Te percentage of
reinforcement volume in a material’s total volume is es-
sential in determining its wear resistance. As the volume
fraction of reinforcement rises, wear loss falls. However, as

seen in Figures 6(a)–6(d), wear loss rises with the increasing
matrix size of the particle. Te impact of particle size re-
inforcement on wear resistance is complex and cannot be
analyzed in isolation. Once the strengthening volume per-
centage is more signifcant than 12% and the Rs is less than
half that of the Ms (Rs/Ms 0.5), the wear loss appears to
decrease slightly. However, wear loss starts to diminish as
the relative Rs increases drastically. Tere is a minimum in
the wear loss’s lowering trend at high reinforcement volume
fraction and Rs, which then starts to climb again. Te wear
behavior of AA5052/B4Cp MMCs can be better examined
and comprehended if a second parameter is defned to
account for the size of the reinforcement particles.Tis study
developed a new metric, Rs/Ms, to accomplish this.

Temodel function (Figure 6, Table 1) and experimented
data show wear loss reductions as the ratio of Rs and Ms
increases. Previously established, this ratio demonstrates
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Figure 6: Predicted wear loss for various matrix particle sizes (a) 70 μm, (b) 95 μm, (c) 120 μm, and (d) 145 μm.

8 Journal of Chemistry



how many reinforcement particles there are for every
hundred matrix particles [26]. As the mixture is stirred, the
smaller matrix particles can more efectively fll the spaces
between the larger reinforcement particles. Wear resistance
improves as the ratio of Rs/Ms increases. With just two
exceptions, wear loss reduces with increasing Rs/Ms. In the
frst scenario, the volume fraction is between 6 and 8%. As
shown in Figure 6, the wear rate decreases after reaching
a maximum. In this second scenario, the volume percentage
of reinforcement is more than 14%, the reinforcement and
matrix particle size proportion is close to 1, and the matrix
particle size is more than 120 μm. When the particle size of
the matrix increases, the wear loss falls until a minimum is
attained, and then the minimum moves to a lesser range of
the ratio of Rs and Ms (Figures 6(c) and 6(d)).

Figure 7(a) demonstrates that the reinforcement parti-
cles cannot prevent substantial plastic distortion in the frst
situation, while the sample surface is in metal-metal contact
when the testing load is relatively high. Larger reinforcement
particles induce extensive plastic deformation and wear loss,
which may be attributed to their poorer strength due to
harboring more defects, as observed by authors [27, 28]. In
addition, low Rs/Ms can cause particle clusters, resulting in
a signifcant amount of wear loss. But after wear loss has
plateaued at a given reinforcing particle size, further in-
creases in particle size reduce the rate of wear (Figure 6).
Because larger reinforcement particles are lodged so pro-
foundly in the matrix, they are better able to shield the
matrix from damage and hence prevent the plastic distortion
of the specimen’s surface.

As shown in Figure 5, the volume proportion of re-
inforcement particles and the number of particle clusters raise
the reinforcement and matrix size particle ratio to a specifc
fxed maximum value of volume percentage. Authors [29–31]
conducted a few other study teams that have come to similar
conclusions. Wear loss decreases initially despite an increase
in Rs/Ms in another case when the percentage volume of
reinforcement is more signifcant than 14% and the Ms
is> 120 μm (Figures 6(c) and 6(d)). A maximum volume
proportion of reinforcement (>14%) is responsible for the

observed upward trend in wear loss. Te minimum process
temperature of the MMC prevents difusion between the B4C
and AA5052 particles, resulting in weak bonding in the
clustered particles that make up the microstructure of MMCs
[32, 33]. Because of this, particles are easily knocked of the
sample’s surfaces during the wear test [34]. Te spaces left
behind by considerable dislodged particles are not always
flled. Depending on the particle cluster, the voids created in
the present investigation may be noticed in Figure 5 well
before the wear test was performed. As shown in Figure 7(b),
the wear loss increases because the dislodged particles become
imprisoned among the sample surface and counter-face,
breaking apart (Figures 6(c) and 6(d)). When the percentage
volume of reinforcement (14%) and the percentage volume of
the matrix (120 μm) are both high, the high Rs/Ms cannot
improve the wear resistance of MMCs.

(a) (b)

Figure 7: SEM morphologies of worn surfaces of (a) 8% AA5052/145-B4C95 μm and (b) 18% AA5052/145-B4C/145 μm.
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Figure 8: Composites with varied Rs/Ms ratios with varying
hardness.
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4.4. Hardness. Hardness increases with increasing volume
fraction, as demonstrated by investigations by the authors
[35–37]. Dislodging and fracturing of reinforcing particles
diminish wear resistance, as seen in Figure 8. In contrast to
the wear loss trends, which show an increase as a function of
rising volume fraction, it is clear that hardness improves for
all ranges of Rs/Ms. Tis suggests an inverse relationship
between hardness and wear resistance in this region.

5. Conclusions

Using a numerical model derived from a trained ANN, this
research examined the wear resistance as well as hardness of
AA5052/B4Cp metal matrix composites and found the
following:

(1) Percentage volume of reinforcement, followed by the
ratio of particle size reinforcement to particle size
matrix, is the essential factor in defning the wear
resistance of AA5052/B4Cp MMCs, and more ac-
curate results can be obtained

(2) Except in two situations, wear resistance improves
with an increase in the Rs/Ms ratio: for (a), the
reinforcement volume fraction must be less than 8%.
Here, (a) the percentage volume is greater than 14%,
(b) the Rs/Ms is close to 1, and (c) the Ms is more
signifcant than 120 μm; wear loss diminishes as the
Rs/Ms ratio increases. Te lost wear reduces until it
reaches a minimum and then rises again.

(3) Reinforcing particle clustering has a signifcant
impact on wear loss. Te wear resistance goes down
with the number of clusters. Te proportion of re-
inforcement volume to particle volume and the
strengthening stifness to particle stifness are es-
sential factors in particle clustering. Wear resistance
is inversely proportional to the Rs/Ms ratio, which
means that raising the volume percentage increases
the particle clustering.

(4) Te reinforcement particles become dislodged and
break when the volume percentage of re-
inforcement is high (14%) and when the particle
sizes of both the reinforcement and the matrix are
signifcant (120 μm). Te material’s wear resistance
is decreased because these fragmented particles can
be readily cleaned of the surface. Here, increasing
the volume fraction results in a greater hardness
across the board for all Rs/Ms values; hence,
composites with lower reinforcement volume
percentages exhibit more excellent wear resistance.
Tere is no correlation between wear resistance
and hardness.

(5) Trough the use of a qualifed ANN, the wear be-
havior of particle-reinforced metal matrix compos-
ites was successfully characterized for the frst time.
Te network took as input parameters the particle
size and volume fraction of the reinforcement in the
matrix, and the network output factors were the wear
loss and hardness of the composite.
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