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Te nanostructures synthesized using the green chemistry method have recently attracted the attention of scientists due to their
signifcance in many scientifc domains.Tis work provides an overview of the biosynthesis of zinc oxide (ZnO) nanosheets (NSs)
using Phyllanthus emblica plant (PEP) extract. X-ray difraction analysis (XRD), X-ray photoelectron spectroscopy (XPS),
scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) were used to analyze the synthesized ZnO-NSs.
Evaluation of the antibacterial activity of biosynthesized ZnO-NSs was performed. ZnO-NSs exhibit efective antibacterial activity
against Gram-positive (S. pyogenes and S. aureus) and Gram-negative (S. typhi and E. coli) bacterial strains. S. typhi is the most
sensitive microbe towards ZnO-NSs and formed a 21mm zone of inhibition (ZOI). ZnO-NSs are also tested as a photocatalyst in
the degradation of methyl orange (MO) and rhodamine B (RB).Te degradation rate of MOwas 90%, and RB was 96% after being
exposed to UV light for 120min. Te as-synthesized ZnO-NSs exhibited selective dye degradation and showed relatively better
photocatalytic activity for positively charged (cationic) dyes. Tis work could lead to the fabrication of high-yield photocatalysts,
which have the potential to degrade textile dyes from aqueous solution.
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1. Introduction

Nanotechnology is considered a developing feld in science
and technology. It has been playing a crucial role in the
development of various nanomaterials in recent years.
Numerous advantages of pharmaceutical nanoparticles have
grabbed the attention of many researchers for innovations
[1]. Te prevalence of infections that are resistant to anti-
biotic treatment has prompted a constant quest for new
substitutes [2]. Water-borne bacteria species constitute
a serious hazard to public health among drug-resistant
pathogens because they cause the spread of illnesses such
as diarrhea [3]. A variety of pathogenic bacterial species have
shown inorganic nanoparticles to be poisonous [4, 5]. Te
bactericidal impact of inorganic nanoparticles is poorly
understood, even though their broad-spectrum biocidal
action is well documented [6, 7]. It has been suggested that
when ions are released into a solution, reactive oxygen
species are generated that are harmful to bacteria [8]. Other
studies indicated that due to their small size, nanoparticles
could enter the cell wall of bacteria and damage organelles,
which results in cell death [9, 10]. In contrast to their organic
counterparts, inorganic antibiotics have multiple targets
[11, 12].

Zinc oxide is considered a quite interesting material
because of its application in areas such as optical, end-
odontics, and gas sensing. In addition, zinc oxide has been
considered an antifungal agent which has no toxicity and
harmful environmental efects [13–15]. Due to the safety of
zinc oxide nanoparticles and their compatibility with human
skin, it is accepted as an additive for textiles and surfaces that
meet human skin [16]. ZnO nanoparticles express high
photocatalytic properties, which enhances their antifungal
activity [17, 18]. ZnO nanoparticles produce ROS under UV
light. Te primary uses of zinc oxide in the chemical, cos-
metics, and pharmaceutical sectors are for its photocatalytic
and antibacterial properties [19]. Zinc oxide nanoparticles’
antibacterial capabilities have been widely investigated
[20, 21], and the development of oxidative stress linked to
the particles’ photocatalytic activity is thought to be the main
cause of toxicity [22]. ZnO is a potential water purifcation
product due to its antiseptic characteristics [23–27].

Te plant Phyllanthus emblica, commonly identifed as
Indian gooseberry, grows in areas of Indonesia, India, China,
and the Malay Peninsula that are tropical and subtropical.
Emblica is one of the most signifcant herbs in the con-
ventional Ayurvedic medical system and has excellent an-
tioxidant properties. Other conventional medical systems
employ it for its immunomodulatory, hepatoprotective,
antiulcer, anti-infammatory, and anticancer efects. Flavo-
noids, gallic acid [24], kaempferol, pyrogallol, ellagic acid,
elaeocarpusin, nor sesquiterpenoids, geraniin, corilagin, and
prodelphinidins B1 and B2 are some of this plant’s chemical
components. Plants that have been reported to produce ZnO
NPs through biosynthesis are Citrus aurantifolia [28],
Calotropis gigantea [29], Ocimum tenuiforum [30], Tam-
arindus indica [31], Maple leaf [32], Phyllanthus niruri [23],
Solanum nigrum [21], and Anisochilus carnosus [22]. Green
synthesis of nanomaterials has recently been performed

using microbes and plant extract that have been reported to
produce ZnO-NSs due to their accessibility, afordability,
nontoxic nature, biodegradability, and environmentally
friendly qualities.

In this study, ZnO with nanosheets (NSs) like mor-
phology has been synthesized using a green approach. Zinc
nitrate and Phyllanthus emblica leaves extract were used to
prepare ZnO-NSs. XRD, XPS, SEM, FTIR, and UV spec-
trophotometer were used to analyze the prepared NSs.
Studies have also been carried out to analyze the antibac-
terial and photocatalytic efciency of ZnO-NSs. Several
methods were reported to synthesize ZnO, but no one in the
literature claims to synthesize ZnO-NSs using Phyllanthus
emblica plant leaves extract.

2. Material and Methods

2.1. Preparation of Zinc Oxide Using Phyllanthus emblica
Leaves Extract. Freshly collected PE leaves were washed
using distilled water to eliminate any dust, and after that,
they were dried at room temperature. A mortar and pestle
were used to convert the dried leaves into fne powder.
10 grams of fne powdered PE were added to 100ml of
deionized water under stirring. Te subsequent mixture was
poured into 0.05M ZnCl2 solution under continuous stir-
ring on a magnetic hot plate at 90°C for 2 hours. Te yellow-
colored precipitate was obtained and cooled down to room
temperature. To remove the impurity contents, this extract
was then centrifuged for 15minutes at 1000 rpm. Te pre-
cipitate was continually washed in methanol and distilled
water before being dried at 80°C. Finally, at 650°C, the
product was calcined for roughly 3 hours in a mufe furnace.
Te complete synthesis procedure of ZnO using PE extract is
shown in Figure 1.

2.2. Characterization. Te authors used SEM (MAIA3
TESCAN) to study the physical appearance of ZnO, XRD
(Bruker D8 (Germany) was employed to study crystallo-
graphic structure, FTIR (Nicolet Avatar 370) was used to
analyze the attached functional groups, and chemical
composition of synthesized material is studied using XPS
Kratos Axis Ultra DLD apparatus (Manchester, UK).

2.3. Antimicrobial Assay. Te efciency of the prepared
nanomaterials to inhibit human pathogens was evaluated
against microorganisms using the disc difusion method
[26]. Gram-negative pathogenic strains of E. coli (ATCC®33876), S. typhimurium (ATCC® 14028), and Gram-positive
pathogenic strains of S. aureus (ATCC® 11632) and
S. pyogenes (ATCC® 19615) were employed. To ensure that
the nanoparticles were distributed uniformly, 20mg of the
prepared samples were used to make dilution in 1ml of
deionized water. After adding nutrient agar and allowing it
to settle, the sterilized Petri plates were inoculated with
Gram-negative and Gram-positive bacteria. Te solid agar
was covered with discs of Whatman flter paper, size 6mm.
At 37°C, nutritional broth was added to all the strains for 18
to 24 hours. Te sterile cotton swabs were used to make
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streaks across the Muller Hinton agar (MHA) surface. Te
extract (20 μL) was pipetted onto a sterile paper disc 6mm in
diameter. As a standard reference antibiotic/control, discs
containing 40 μl/mL of ciprofoxacin, were employed.
Moreover, the plates were placed in an incubator and
subjected to incubation at 37°C for 24 h after the solvent had
evaporated. Te development of a clean zone around the
discs is proof that the test sample has antibacterial prop-
erties. Using an antibiotic zone scale, the diameter of the
inhibition zones was assessed. Tere were three repetitions
for each experiment.

2.4. Photocatalytic Activity Measurement. ZnO nano-
particles’ photocatalytic activity was calculated based on the
rate at which methylene orange (MO) and rhodamine B
(RB) was oxidized when exposed to UV light. Before illu-
mination, both MO and RB dyes (10 ppm) were mixed for
30min in the dark with the required amount of catalyst
(0.5 g). UV-visible spectrophotometer was used at various
time intervals to observe the reaction’s progress.Te color of
reaction mixtures progressively faded until it eventually
became colorless. An indication of the successful catalytic
activity of ZnO was the absorbance for MO and RB mea-
sured with a UV-vis spectrometer.

3. Result and Discussion

3.1. Scanning Electron Microscopy (SEM). Te morphologi-
cal features of the synthesized material were investigated
through SEM. Te obtained images of the ZnO sample

showed square-shaped nanosheets with signifcant particle
aggregation, as shown in Figure 2. ZnO-NSs are compar-
atively homogeneous due to the regular dispersal of Zn
cations within a three-dimensional structure. Te cluster
(agglomeration) in the sample is a result of increased density
carried on by the small gap between the particles, while it
may also be related to the rapid grain development and
nucleation at higher temperatures.

3.2. Structural Analysis. Phase and structural analysis of
ZnO NPs prepared using Phyllanthus emblica is carried out
by XRD analysis and shown in Figure 1. All marked dif-
fraction peak positions in Figure 3 are well matched with the
standard JCPDS Card: 36-1451. Te corresponding X-ray
difraction peaks at observed planes (100), (002), (101), (102),
(110), (103), (200), (112), (201), and (004) confrm the
formation of hexagonal wurtzite structure of ZnO. Te
difraction peaks’ observed line broadening is proof that the
produced ZnO NPs are in the nanoscale range. Major peaks’
increasing full width at half maxima (FWHM) supports the
decline in crystallite size. Using the Scherrer formula, the
average crystallite size of ZnO-NSs is determined from the
X-ray line broadening.

D �
kλ

β cos θ
. (1)

D and λ represent the crystallite size and radiation’s
wavelength (1.5406 for Cu kα), β is the peak intensity width
at half maximum, θ is the peak position, and k is a constant
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Extract
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Scanning Electron
Microscope Image

Filtration
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ZnO
Nanostructures

Drying at 80 °C
Calcination at 650 °C for 3 hDistilled Water Stirring at 90 °C for 2 h 1000 rpm for 15 minutes

Figure 1: Te schematic diagram for the complete synthesis procedure of ZnO-NSs.
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(0.94). Te synthesized ZnO-NSs have an average crystallite
size of 31 nm.

TeWilliamson–Hall method was used to determine the
lattice strain and crystallite size of ZnO, as shown in Figure 4.

β cos θ � kλD + 4ε Sin θ, (2)

where β, D, and ε in the above equation represent full width
at half maximum (FWHM), crystallite size, and strain, re-
spectively. Te strain is obtained from the linear ft of the
data while plotting β cos θ against 4 sin θ. In comparison to
the Williamson–Hall method, which measures crystallite
sizes using microstrain, the Scherrer method measures
crystallite sizes using the X-rays cohesion length. Any va-
cancies and defects will make the observed size to be smaller
than the actual size.

3.3. Elemental and Chemical State Analysis. To identify the
constituent elements of the compound synthesized and
examine the sample’s surface, a surface-sensitive XPS
analysis was conducted. Surface scanning was performed to
get the survey spectrum, which provides information about
the elemental content of the sample surface, as shown in
Figure 5(a). Zn and O are recognized with their corre-
sponding distinctive peaks in a low-resolution spectrum
(survey analysis). All samples underwent charge shift cor-
rection using the adventitious carbon peak binding energy
(284.6 eV). High-resolution spectra of the relevant elements

were examined in the chemical state study. After laser
fragmentation, we carried out high-resolution scanning of
the sample. Due to spin-orbital coupling, high-resolution
spectra of transition metals such as zinc will exhibit
a doublet. Zn thus had doublets for the sample examined in
this study.Tese doublets, which are known as 2p3/2 and 2p1/
2, represent 2p orbitals. Figures 5(b) and 5(c) show the high-
resolution spectra of the materials following laser frag-
mentation, namely the ZnO sample for Zn 2p and O 1s. Te
binding energies that are displayed are those that match the
primary peak, Zn2p3/2.Te energy diference between the Zn
2p doublets was 23.1 eV for all samples, which is consistent
with previous research [33]. Te Zn2+ oxidation state is
indicated by Zn 2p binding energies in the range of 1022 eV
[34]. Pure metallic oxides were chemically represented in the
ZnO XPS spectra.

3.4. Fourier Transform Infrared. FTIR spectra of ZnO-NSs
produced using the green method were captured in the
500–4000 cm−1 range, as shown in Figure 6. Te vibrations
of the H-O-H bending and O-H stretching were believed to
be responsible for the peaks in 1734 and 3418 cm−1, re-
spectively. Tis demonstrates that the nanocrystalline ZnO
contains a little amount of H2O. Te sample was calcined at
400°C for 3 hours, although not all the adsorbed OH groups
were removed.Te peak in the range of 1451–1734 cm−1 was
linked to the stretching mode of the C�O group, whereas the
band at 847 cm−1 corresponds to the vibrations of de-
formation and elongation of the vibratory Zn-O in
ZnO [35].

3.5. Antibacterial Activity. According to numerous studies
[36, 37], varying particle morphologies have a considerable
impact on ZnO’s antibacterial efcacy. Tis morphology-
dependent behavior can be addressed considering the per-
centage of active aspects on the NPs. Nanomaterial studies
have been encouraged, to produce specifc nanosized ZnO
for antibacterial measurements [38]. Te antibacterial ac-
tivity is also signifcantly infuenced by the concentration
and particle size. Research fndings have shown that the
harmful efect of NPs on microorganisms increases with

Figure 2: SEMmicrographs for ZnO nanosheets synthesized using
Phyllanthus emblica extract.
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decreasing NP size [39, 40]. Smaller NPs are more efective
in penetrating bacterial membranes due to their smaller size
and larger contact area [41–43]. Te ZnO-NSs employed in
this study were prepared using a green chemistry approach
and shaped like nanosheets with an average length of
97.2 nm.

Te microbial sensitivity of ZnO-NSs fuctuates with the
microorganisms and the concentrations of the ZnO-NSs. A
zone of inhibition is formed for measured values of 30μg/mL,
50μg/mL, and 100μg/mL.Te disc difusion method was used
to test the antibacterial activity of ZnO-NSs against diverse
microbes, as shown in Figure 7. Antibacterial activity of pure
ZnO shows 18mm, and 21mm of inhibition zone for E. coli
(ATCC® 33876) and S. Typhimurium (ATCC® 14028) while
for S. aureus (ATCC® 11632), S. pyogenes (ATCC® 19615)
ZnO shows 17mm and 18mm of inhibition zone as dem-
onstrated in Table 1 and Figure 8.Te inhibition zone indicates
the sensitivity of the bacteria to toxic substances, resulting in
large inhibition diameters for disinfectant-sensitive pathogens
and smaller or even no inhibition diameters for resistant
pathogens. Our fndings demonstrate that ZnO-NSs can only
efectively inhibit bacteria at concentrations of 100μg/mL or
above. Tis validates that greater volume and concentration
result in improved antibacterial action.

3.6. Dye Degradation Study. Te factors that afect the
photocatalytic dye degradation efciency of ZnO-based
materials are large surface area, particle size, and the
presence of functional groups on the surface [44, 45]. ZnO’s
surface area and photodegradation abilities are improved
when its size is reduced. Figures 9(a) and 9(b) show the
degradation of MO and RB over time under UV light
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Figure 5: X-ray photoelectron spectroscopic micrographs for (a) survey scan and (b, c) high-resolution spectra for Zn 2p and O 1s.
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irradiation in the presence of ZnO-NSs. Te relative in-
tensity of UV-visible spectra was used to determine the
amount of dye degradation. Te MO and RB dyes were kept
in the dark for 20min before exposure to UV light. No
change was observed in the absorption behavior of the dyes
in the dark before exposure to UV light.Te fndings showed
that the maximum absorbance of MO and RB dye solution
occurs at 481 nm and 563 nm, and constantly decreases

when the UV irradiation time is increased. Tis indicates
that ZnO may have accelerated dye degradation with in-
creasing UV exposure time. Te degradation % of RB and
MO is shown in Figures 10(a) and 10(b); it is observed that
the degradation % progressively increased, and about 96% of
RB dye and 90% of MO dye degraded within two hours. Te
kinetics of the photodegradation of organic dyes using ZnO-
NSs photocatalyst can be described by several models,

Figure 7: Petri plates containing ZnO-NSs employed against microorganisms using disc difusion method (a) S. typhi, (b) E. coli, (c)
S. pyogenes, and (d) S. aureus.

Table 1: Information zone of inhibition formed against bacterial isolates.

Bacteria 30 μg/mL 50 μg/mL 100 μg/mL
E. coli

Inhibition zone (mm)

14± 0.28 15± 0.36 18± 0.34
S. typhimurium 15± 0.3 16± 0.34 21± 0.38
S. aureus 13± 0.26 14± 0.48 17± 0.3
S. pyogenes 9± 0.18 12± 0.4 18± 0.32
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including the pseudo-frst-order kinetics model and the
pseudo-second-order kinetics model [46]. Tese models are
based on the observation that the rate of degradation of RB is
dependent on the concentration of both RB and ZnO-NSs.
By understanding the kinetics of the photo degradation
process, it is possible to optimize the conditions for the
efcient removal of MB using ZnO photocatalyst.Te rate of
degradation calculated using the pseudo-frst-order kinetics
and schematic illustration for the charge transportation
process of ZnO-NSs is shown in Figures 10(c) and 10(d).

4. Conclusion

Green leaf extract from the Phyllanthus emblica plant was
used to successfully prepare ZnO-NSs, which demonstrates its
efciency as an environmentally friendly, nontoxic, and cost-
efective technique to synthesize nanomaterials. Te PE ex-
tracts employed in the production of nanoparticles act as
capping and reducing agents. By using the disc difusion
method, the antibacterial activity of produced nanomaterial
was analyzed. It was discovered that ZnO-NSs had a larger
zone of inhibition for S. typhi (21mm) than all other tested
microbes. Te growth and survival curves found in this study
help us better understand how ZnO NPs work to kill mi-
croorganisms over time. Finally, the fndings of this study
indicate that some of the most severe and prominent food-
borne pathogens can be successfully inhibited when ZnO-NSs
prepared from PE extract are used as an antibacterial agent in
food systems. Te comparative dye degradation studies
revealed that the catalysts were able to degrade both rho-
damine B (cationic) and methyl orange (anionic) dyes.
Rhodamine B (RB) and methyl orange (MO) were degraded
by ZnO photocatalyst with the highest efciency of 96% and
90%, respectively, in 120minutes. Results suggest that many
other hazardous organic compounds that are present in both
commercial and residential water resources can also be
photodegraded using a ZnO photocatalyst.
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