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Objective. MAPK3 activates several nuclear transcription factors, including c-Jun and c-fos, by phosphorylating its downstream
cytoplasmic protein, thereby contributing to cell proliferation and survival. Diferent carcinomas’ initiation, progression, cancer
cell metastasis, and drug resistance have been associated withMAPK3 overexpression. Given the need for new and potentMAPK3
inhibitors, this study aimed to explore the potential of anthraquinones (AQs) as organic compounds capable of inhibiting
MAPK3. Methods. Using AutoDock 4.0 software, the binding afnity of 21 AQs to the receptor’s active site was evaluated. AQs
were ranked based on their ΔGbinding values to the receptor’s active site, with the highest rankings receiving the most favorable
scores. Te Discovery Studio Visualizer tool was used to demonstrate the interaction modes between the highest-ranked AQs and
the MAPK3 catalytic site. Furthermore, a 100-nanosecond molecular dynamics (MD) computer simulation was performed to
assess the stability of the docked pose of the most potent enzyme inhibitor identifed in this study. Results. Te binding afnity of
emodin-8-glucoside, aloe-emodin 8-glucoside, pulmatin, rhodoptilometrin, and hypericin to the receptor’s ATP binding cleft was
noteworthy, as theΔGbinding values were<−10 kcal/mol. In addition, emodin-8-glucoside, aloe-emodin 8-glucoside, and pulmatin
were found to have inhibition constant values at the picomolar concentration. According to our computer simulation results, the
docked pose of emodin-8-glucoside within the active site of MAPK3 achieved a stable state after 70 ns. In other words, the root
mean square deviation (RMSD) graph indicated stability within the 70–100 ns timeframe. Conclusion. Inhibition of MAPK3 by
emodin-8-glucoside, aloe-emodin 8-glucoside, pulmatin, rhodoptilometrin, and hypericin may have therapeutic potential in
cancer treatment.

1. Introduction

Mitogen-activated protein kinases (MAPKs), a family of
serine/threonine protein kinases, are highly conserved and
have been shown to regulate a variety of cellular processes,
including cellular diferentiation, proliferation, survival, and
apoptosis [1, 2]. It consists of multiple crucial components
and phosphorylation events that signifcantly contribute to
tumorigenesis. Te activated kinases transmit signals from
the extracellular environment, leading to cell growth, pro-
liferation, diferentiation, migration, and apoptosis [3]. As
a critical signaling hub, the MAPK pathway integrates ex-
tracellular signals to regulate cellular diferentiation, pro-
liferation, and survival, as well as drug resistance [4, 5].

Te pathway is composed of a range of kinases, including
MAPKs (MAPK1 (ERK2) and MAPK3 (ERK1)), MEKs,
RASs, RAFs, adaptor molecules, and specifc negative reg-
ulators of ERK1/2 (DUSP3/5/6/7/9). Te activation of
MAPK1/3, KRAS, HRAS, and BRAF is widely recognized to
contribute to several human cancers through transcriptional
activation, interactions with other cancer-related pathways
(e.g., JAK/STAT and PI3K pathways), and activities that
modulate the immune response in some cancers [6–10].
Around 20% of cases of head and neck squamous cell
carcinoma (HNSCC) exhibit activating mutations in the
MAPK pathway [11]. Bayat et al. [12] reported that the
MAPK1/MAPK3 signaling pathway has a noteworthy in-
volvement in oral squamous cell carcinoma patients who
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have a poor prognosis, as opposed to those with a favorable
prognosis. Te interaction between MAPK1 and MAPK3
with a complex network of structures is well established, and
their role in promoting the malignant behavior of cancer
cells by changing the metabolic signaling pathway is sig-
nifcant [13]. Several reports have defned MAPK3 as an
oncogene factor in several malignancies, including breast,
ovarian, colorectal, liver, lung, thyroid, and gastric cancers
[14–18].

Te ATP binding site of MAPK3, the kinase active site, is
the target of type-I inhibitors. In contrast, type-II inhibitors
bind to the allosteric pocket of enzymes, and these two
groups make up the primary categories of kinase
inhibitors [19].

Anthraquinones (compounds with a 9, 10-anthracene
skeleton) are natural substances commonly employed in
traditional Chinese medicine [20]. Te biological properties
of these compounds are multifaceted, encompassing anti-
tumor, analgesic, antibacterial, antimalarial, antioxidant,
and anti-infammatory activities [21–23]. Te outstanding
antitumor activity demonstrated by anthraquinone de-
rivatives has generated considerable interest recently, with
inevitable results being authorized for clinical use as anti-
tumor medications. Clinical compounds, including mitox-
antrone, doxorubicin, daunorubicin, epirubicin, and
emodin, are employed to treat a diverse range of cancers
[24–27]. In this regard, the antitumor efect of mitoxantrone
and doxorubicin has been attributed to their ability to induce
apoptosis [28, 29]. Te extraction of anthraquinones from
Damnacanthus and Morinda spp. represents a promising
avenue for obtaining natural anticancer compounds [30].

Te present study proposes that AQs serve as efective
inhibitors of MAPK3 activity. Tis inhibition can down-
regulate downstream signaling pathways, ultimately re-
ducing cell diferentiation and survival rate. Hence,
a molecular docking analysis was conducted to assess the
binding afnity of multiple AQs to the active site of MAPK3.
Te identifcation and introduction of the top-ranked
MAPK3 inhibitors were based on the ΔGbinding values cal-
culated between the AQs and the enzyme’s active site. Te
subsequent step involved analyzing the interactions between
the top-ranked AQs and residues present inside the MAPK3
catalytic cleft. Subsequently, the stability of the docked pose
of the most efective MAPK3 inhibitor was compared with
that of a standard drug using molecular dynamics (MD)
simulation. Te present outcomes hold promise for the
development of cancer treatments.

2. Materials and Methods

2.1. Preparation of the Receptor and Ligands for Structural
Analysis. Obtaining the 3D coordinates of MAPK3 (PDB
ID, 4QTB; X-ray resolution, 1.4 Å) involved downloading
from the RCSB database (https://www.rcsb.org, [31, 32]) and
visualizing using BIOVIA Discovery Studio Visualizer
(DSV) version 19.1.0.18287. Two polypeptide chains (A and
B) with the same residues (348; 27–374) were present in the
PDB fle. Chain A was picked for in silico analyses, and the
Notepad++ software was used to remove the water

molecules and 38Z from the PDB fle. Te active site-
interacting residues in 4QTB were determined by [1] ex-
amining the docked pose of 38Z using DSV software in
a two-dimensional view and [2] referencing the publication
by Chaikuad et al. [33]. Te 4QTB fle was subjected to
energy minimization to attain its most stable 3D confor-
mation using Swiss-PdbViewer version 4.1.0, which can be
accessed at https://spdbv.unil.ch. By employing the GRO-
MOS 43B1 force feld, Swiss-pdbViewer can analyze the
structure’s energy and correct any irregular geometry via
energy minimization. Te selection of 21 AQs was made to
explore potential MAPK3 inhibitors. An analysis of the
MAPK3 ATP-binding cleft involved comparing the binding
afnities of the studied AQs with that of ulixertinib
(DB13930), a standard drug obtained from the DrugBank
database (https://go.drugbank.com/, [34]). As part of our
previous investigation [35], we followed an energy mini-
mization procedure on the AQs. By adjusting the MAPK3
3D structure to include Kollman charges and polar hydrogen
bonds and applying local charge and rotational motion to
ligands structures, PDBQT fles were generated for both the
receptor and ligands using MGL tools [36].

2.2. Procedure for Docking Analysis. Te setup used to
conduct the docking analyses was aWindows-based PC with
the subsequent specifcations: 64-bit system type, 32GB of
installed RAM, and an Intel Core i7 processor [37].
Implementing the AutoDock version 4.0 tool and a semi-
fexible docking algorithm [38], the ΔGbinding values between
AQs, a standard drug, and MAPK3 ATP-binding cleft were
computed in kcal/mol units. Our earlier report [19] high-
lighted the presence of 29 residues in the ATP-binding cleft
of MAPK3. As a result, the grid box was set up with the
subsequent values for docking analysis: X-dimension, 84; Y-
dimension, 60; Z-dimension, 70; X-center, 33.335 Å; Y-
center, 55.015 Å; Z-center, 49.3 Å, and spacing, 0.375 Å.
To assess the binding afnity between the studied AQs, the
positive control inhibitor, and the MAPK3 active site, we
constructed several independent docked models for each
ligand using the Lamarckian genetic algorithm (GA) ap-
proach. Te Lamarckian GA docking calculations utilized
the following parameters: 50GA runs, a population size of
150, a maximum number of evaluations set at 2500000,
a maximum of 27000 generations, and only the top 1 in-
dividual automatically survives.Te gene mutation rate was set
at 0.02, while the crossover rate was set at 0.8, with a two-point
crossover mode.Te mean of the Cauchy distribution for gene
mutation was set at 0.0, and the variance was set at 1.0. In
addition, the worst individual was picked after 10 generations.
Te docking results were then grouped based on the root mean
square (RMS) tolerance of 2.0 Å [36], and the most negative
ΔGbinding value within the most signifcant cluster was chosen
for evaluation. Finally, the generation of molecular visualiza-
tions was carried out using the DSV software.

2.3. Molecular Dynamics Analysis. Te receptor was sub-
jected to MD investigations alone and in complex with [1]
the most highly ranked AQ from the molecular docking
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results and [2] the standard drug ulixertinib. Computer
simulations lasting 100 nanoseconds (ns) were employed to
conduct MD analyses using Discovery Studio Client software
version 16.1.0.15350. A more powerful computer confgura-
tion was employed for MD simulations than for docking
analyses (system type, 64-bit; installed RAM, 64GB DDR5;
and processor, Intel 24-Core i9-13900KF). Te MD simula-
tion was conducted for 100 nanoseconds (100 ns) and
implemented using advanced settings. Te solvation model
utilized was the explicit periodic boundary, while the cell
shape was orthorhombic with a minimum distance set at 10 Å
from the boundary. Te solvent used was water, with a target
temperature of 310K. Te force feld utilized CHARMm, and
the charge distribution was point-based [39, 40]. Te root
mean square deviation (RMSD) and root mean square
fuctuation (RMSF) of the MAPK3 backbone atoms were
investigated throughout MD simulations. In addition, the
radius of gyration (ROG) and total energy of the receptor
were computed to obtain more accurate outcomes.

3. Results

3.1. Binding Afnity Assessment. Te top-ranking MAPK3
inhibitors were identifed in this study by determining the
ΔGbinding value of fve AQs with the ATP-binding cleft,
which was below −10 kcal/mol. Te binding energies for
emodin-8-glucoside, aloe-emodin 8-glucoside, pulmatin
(chrysophanol-8-0-glucoside), rhodoptilometrin, and
hypericin were calculated to be −12.78, −12.42, −12.41,
−10.75, and −10.13 kcal/mol, respectively, highlighting their
potential as efective inhibitors of MAPK3.Te highly potent
inhibitory efect of emodin-8-glucoside, aloe-emodin 8-
glucoside, and pulmatin on MAPK3 was evident from the
estimated Ki value, within the picomolar (pM) range. On the
other hand, rhodoptilometrin and hypericin exhibited in-
hibition at the nanomolar (nM) level, indicating their rel-
atively weaker inhibitory potential. Based on the AutoDock
4.0 tool’s calculation of the ΔGbinding value between ulix-
ertinib and MAPK3, a total of 10 AQs, including top-ranked
compounds as well as emodic acid, aloe-emodin, sennidin B,
purpurin, and chrysophanol, exhibited a superior binding
afnity to the MAPK3 catalytic site than the reference drug.
Te ΔGbinding value between ulixertinib and MAPK3 was
found to be −9.12 kcal/mol (Figure 1). To provide a com-
prehensive overview of the ligand-MAPK3 afnity, Table 1
displays the calculated ΔGbinding and Ki values between
MAPK3 and all ligands. Furthermore, Table 2 presents
a detailed analysis of all energy types computed between the
ATP-binding site of MAPK3 and the top-ranked AQs. Te
Gibbs free energy of binding between a ligand and receptor
is infuenced by several energy factors, including in-
termolecular energy, internal energy, torsional free energy,
and the unbound system’s energy, which have been defned
in previous reports [41, 42].

3.2. EvaluatingModes of Interaction. Trough the DSV tool,
the interactions between the top-ranked AQs, a reference
drug, and residues positioned within the MAPK3 ATP cleft

were revealed. Computer simulations lasting 100 ns were
also conducted to explore the interactions between emodin-
8-glucoside, ulixertinib, and residues located within the
protein’s active site. Among the ligands studied, emodin-8-
glucoside, aloe-emodin 8-glucoside, and rhodoptilometrin
formed the highest number of hydrogen bonds (n� 5),
whereas rhodoptilometrin displayed the most hydrophobic
interactions (n� 6) with the residues of MAPK3. Te ref-
erence drug formed four hydrogen bonds and one hydro-
phobic interaction. Before the MD simulation, emodin-8-
glucoside, the most efective MAPK3 inhibitor in this re-
search, interacted with the residues of the MAPK3 ATP-
binding cleft through fve hydrogen bonds and fve hy-
drophobic interactions. Nevertheless, this compound
formed seven hydrogen bonds and three hydrophobic in-
teractions after theMD simulation.Te interactions between
the ligands and the residues of the MAPK3 ATP-binding
cleft are presented in Figure 2 and summarized in Table 3.
Notably, Table 3 does not include any hydrogen bonds with
a distance exceeding 5 Å.

3.3. Robustness of the Docked Conformations. Te RMSD
range for MAPK3 backbone atoms bound to emodin-8-
glucoside was computed between 1.6 and 2.28 Å following
100 ns computer simulation. Te RMSD value for a free
receptor, however, was found to be between 1.55 and 2.57 Å.
In the case of the enzyme complexed with ulixertinib, the
minimum and maximum RMSD values were found to be
1.25 and 2.02 Å, respectively. Te receptor exhibited more
excellent stability when in complex with emodin-8-glucoside
in comparison to being free, as suggested by the results. Te
simulation results showed that the protein’s backbone atoms
remained stable after approximately 70 ns of simulation
when hindered by emodin-8-glucoside, as indicated in
Figure 3(a).

As per the RMSF plots, a notable diference in fuctuation
was observed around the 64–124 region. Specifcally, the
fuctuation of protein complexed with emodin-8-glucoside
was lower than that of the free protein (Figure 3(b)). Given
the proximity of this region to the MAPK3 active site [19],
emodin-8-glucoside is believed to have stabilized the pro-
tein’s active site. However, the MAPK3 active site appears to
have been more stabilized by the reference drug than by
emodin-8-glucoside.

TeMAPK3-emodin-8-glucoside total energy was found
to be lower than that of free protein during the 100 ns MD
simulations. As well, the total energy exhibited by MAPK3-
ulixertinib was the lowest compared to that of free MAPK3
and MAPK3-emodin-8-glucoside during the 100 ns MD
simulation, according to Figure 3(c).

Te results revealed that the ROG value of free MAPK3,
MAPK3-ulixertinib, and MAPK3-emodin-8-glucoside in-
creased after the 100 ns MD simulation. As per the data
presented in Figure 3(d), the ROG for the enzyme com-
plexed with emodin-8-glucoside was lower than that of free
MAPK3 during the frst 50 ns computer simulation.
Troughout the 50–100 ns MD simulation range, the ROG
values of free MAPK3, MAPK3-ulixertinib, and MAPK3-
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Table 1: Te active site of MAPK3 was evaluated for Gibbs free energy and Ki values in the presence of 21 anthraquinones, along with
a positive control inhibitor.

PubChem ID Ligand name ΔGbinding Inhibition constant
(A) Anthraquinones
99649 Emodin-8-glucoside −12.78 430.14 pM
126456371 Aloe emodin 8-glucoside −12.42 790.15 pM
442731 Pulmatin (chrysophanol-8-0-glucoside) −12.41 793.77 pM
101286218 Rhodoptilometrin −10.75 13.14 nM
3663 Hypericin −10.13 37.48 nM
361510 Emodic acid −9.64 86.15 nM
10207 Aloe-emodin −9.63 86.80 nM
10459879 Sennidin B −9.52 105.35 nM
6683 Purpurin −9.33 145.27 nM
10208 Chrysophanol −9.19 184.75 nM
10168 Rhein −9.09 216.30 nM
3220 Emodin −8.85 327.05 nM
6293 Alizarin −8.40 500.01 nM
2950 Danthron −8.38 719.56 nM
92826 Sennidin A −8.30 828.06 nM
10639 Physcion −8.18 1.01 μM
160712 Nordamnacanthal −7.95 1.48 μM
3083575 Obtusifolin −7.63 2.55 μM
124062 Rubiadin −7.33 4.24 μM
442753 Knipholone −6.97 7.72 μM
2948 Damnacanthal −5.47 98.18 μM
(B) Control inhibitor
11719003 Ulixertinib −9.12 207.14 nM
MAPK3, mitogen-activated protein kinase-3.
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Figure 1: Te ΔGbinding values indicate the Gibbs free binding energy in kcal/mol units between anthraquinones, the MAPK3 positive
control inhibitor, and the receptor’s active site. Ligand names are shown on the X-axis, and their corresponding Gibbs free binding energy is
presented on the Y-axis.Te green diamond represents the positive control inhibitor, the red spots depict themost potentMAPK3 inhibitors
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Figure 2: Continued.
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emodin-8-glucoside were in close proximity to each other.
Te superimposed structures of free MAPK3, MAPK3-
emodin-8-glucoside, and MAPK3-ulixertinib, before and
after MD simulations, are presented in Figure 4, using the
DSV tool. In addition, Figure 5 depicts the incorporation of
emodin-8-glucoside in the MAPK3 ATP-binding grove,
both pre- and post-MD simulation, carried out with the help
of Chimera version 1.8.1.

4. Discussion

Te MAPK3 gene encodes an upstream regulator of the
MAPK cascade that plays a crucial role in various biological
processes associated with apoptosis and cell survival. Ab-
errant expression of MAPK3 has been linked to the initi-
ation, progression, metastasis, and resistance to the
treatment of various human cancers, highlighting the urgent
need to explore and develop innovative and potent MAPK3
inhibitors [19]. Te objective of this study was to identify
natural AQs that could serve as promising inhibitors of
MAPK3. Te results indicated that the calculated binding
free energy between MAPK3 and fve AQs (emodin-8-
glucoside, aloe emodin 8-glucoside, pulmatin, rhodoptilo-
metrin, and hypericin) was <−10 kcal/mol, making them the
most potent MAPK3 inhibitors in this study. Te recorded
ΔGbinding value of −9.12 kcal/mol between MAPK3 and
ulixertinib indicates that the top-ranked AQs in this study
had a stronger binding afnity to the MAPK3 ATP-binding
cleft compared to the standard drug. Furthermore, emodin-
8-glucoside, aloe emodin 8-glucoside, and pulmatin
exhibited Ki values in the picomolar range.

Te MAPK3 active site exhibited a ΔGbinding value of
−12.78 kcal/mol upon binding with emodin-8-glucoside.
Furthermore, the binding energies between aloe emodin 8-
glucoside, aloe-emodin, emodin, and MAPK3 were

estimated to be −12.42, −9.63, and −8.85 kcal/mol, re-
spectively. Tese results suggest a sugar moiety enhances
emodin’s binding afnity to MAPK3. Prior to undergoing
MD simulations, emodin-8-glucoside was shown to estab-
lish fve hydrogen and fve hydrophobic interactions with
residues Tyr53, Val56, Lys71, Glu88, Gln122, Asp123,
Cys183, and Asp184 situated within the ATP-binding cleft of
MAPK3.Tis compound exhibited seven H-bonds and three
hydrophobic interactions with Glu50, Val56, Lys71, Met125,
Lys131, Ser170, Leu173, and Cys183, after MD simulations.

Te use of Chinese herbs to treat diferent cancers has
been established for a long time due to their confrmed
benefts and negligible side efects. Emodin (1,3,8-tri-
hydroxy-6-methylanthraquinone) is obtained from the root
and rhizome of Rheum palmatum L., a medicinal herb with
a long-standing tradition [43]. Previous research has
demonstrated that emodin possesses inhibitory potential
against several cancers, such as hepatocellular carcinoma
[44], breast cancer [45], cervical cancer [46], ovarian cancer
[47], and bladder cancer [48]. According toManimaran et al.
[49], emodin administration at a dose of 50mg/kg b.w. was
efective in inhibiting the activation of Akt, ERK, P38
MAPK, and DNA methyl transferase (DNMT) in golden
Syrian hamsters with 7,12-dimethylbenz[a]anthracene
(DMBA)-induced oral carcinoma.Tis was evident from the
downregulation of these markers as observed through
Western blotting. Furthermore, emodin was found to alle-
viate the severity of precancerous lesions, such as dysplasia,
in DMBA-treated hamsters. As well, the fndings of Lin et al.
[50] indicate that aloe emodin can suppress the expression of
matrix metalloproteinase-2 via the P38 MAPK-NF-kappa B
signaling pathway, thereby inhibiting the invasion of na-
sopharyngeal carcinoma cells.

According to the fndings, the binding of chrysophanol-
8-0-glucoside (pulmatin) to the MAPK3 catalytic domain

Pi-Alkylvan der Waals
Conventional Hydrogen Bond

Interactions

(g)

Carbon Hydrogen Bond
Pi-Alkyl

van der Waals
Conventional Hydrogen Bond

Interactions

(h)

Figure 2: Various interaction modes were observed between the top-ranked anthraquinones, the reference drug, and residues inside the
MAPK3 active site. Emodin-8-glucoside is displayed in (a, b), and the reference drug is shown before and after MD simulations in
(g, h), respectively. Other anthraquinones, such as aloe emodin 8-glucoside, pulmatin, rhodoptilometrin, and hypericin, are illustrated in
(c), (d), (e), and (f), respectively. MD, molecular dynamics; MAPK3, mitogen-activated protein kinase-3.
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Figure 3: Trough the generation of (a) RMSD, (b) RMSF, (c) total energy, and (d) radius of gyration plots, the behavior of free MAPK3
backbone atoms was analyzed in the presence of emodin-8-glucoside and ulixertinib during a 100 ns MD simulation. Te location of the
asterisks in part (b) is within the protein’s active site. MAPK3, mitogen-activated protein kinase-3; RMSF, root mean square fuctuation;
RMSD, root-mean-square deviations; MD, molecular dynamics.

(a) (b) (c)

Figure 4: Te structures of (a) free MAPK3, (b) MAPK3 in the presence of ulixertinib, and (c) MAPK3 in the presence of emodin-8-
glucoside were superimposed after a 100 ns MD simulation. Te protein chains before and after the MD analysis are depicted in green and
red, respectively, while the ligands before and after the MD simulations are displayed in yellow and blue colors. MAPK3, mitogen-activated
protein kinase-3; MD, molecular dynamics.
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resulted in a Ki value of 793.77 pM and a binding energy of
−12.41 kcal/mol. Te MAPK3 showed less binding afnity
towards chrysophanol than its glycosylated form, with
a recorded ΔGbinding value of −9.19 kcal/mol and a Ki value
of 184.75 nM. Te MAPK3 active site was found to interact
with chrysophanol-8-0-glucoside through four hydrogen
and four hydrophobic interactions with specifc residues,
including Tyr53, Val56, Lys71, Gln122, Asp123, and Asp184,
before MD simulations.

Chrysophanol, an anthraquinone metabolite obtained
from the Rheum genus, has been found to possess anticancer
properties in recent studies [51–53]. In addition, it exhibits
anti-infammatory activity [54] and provides neuro-
protection efects [55]. Rheum genus contains a higher
amount of chrysophanol-8-O-glucoside, which is a glyco-
sylated form of chrysophanol, compared to chrysophanol
[56]. Our bioinformatics results are in line with those of the
research of Kwon et al. [57], who have found that the Cassia
tora seed extract, a rich source of chrysophanol, can de-
activate the JNK/P38 MAPK signaling pathway, thereby
suppressing heat-induced lipogenesis in human sebocytes.

Upon conducting a comparison of the “emodin-8-glu-
coside”-MAPK3 contacts between the initial docking and
fnal MD-simulated results, several noteworthy points
emerged. Tese are as follows:

(a) Te hydrophobic interaction between Val56,
Cys183, and emodin-8-glucoside remained stable
before and after the MD simulation.

(b) Cys183 formed a hydrogen bond with emodin-8-
glucoside in addition to the hydrophobic interaction
after the MD simulation.

(c) Te contact between emodin-8-glucoside and Lys71
was initially a hydrophobic interaction, while after the
MD simulation, it was observed as a hydrogen bond.

(d) Following the MD simulation, new residues inter-
acted with the emodin-8-glucoside, including Glu50,
Met125, Lys131, Ser170, and Leu173.

Furthermore, the results indicated that the interacting
residues between MAPK3 and ulixertinib underwent
a complete change following theMD simulation. Prior to the
simulation, Tyr53, Asp128, Ser170, and Asn171 were found
to interact with ulixertinib. However, after the simulation,
hydrophobic and hydrogenic interactions were observed
between Tyr130, Lys131, and Lys168 and the reference drug.
It is worth noting that, based on the present fndings, the
interactions between emodin-8-glucoside and MAPK3 were
comparatively more stable than those observed with the
standard drug.

5. Conclusion

Based on the current study, emodin-8-glucoside, aloe-
emodin 8-glucoside, pulmatin, rhodoptilometrin, and
hypericin possess strong inhibitory properties against
MAPK3. Among these metabolites, emodin-8-glucoside, aloe-
emodin 8-glucoside, and pulmatin are the most potent, withKi
values at the picomolar scale. Te computer simulation in-
dicated that the 3D conformation of MAPK3 remained stable
when in complex with emodin-8-glucoside for approximately
65ns. Tese fndings may ofer valuable insights to researchers
aiming to create novel drug therapies for numerous types of
cancer. However, additional research is needed to confrm the
present results, including more extended MD simulations and
in vitro and in vivo validation experiments.
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Figure 5: Te hydrophobicity surface mode of MAPK3 in a 3D view is depicted. Emodin-8-glucoside is depicted within the MAPK3 ATP-
binding grove in (a, b), before and after a 100 ns MD simulation, respectively. MAPK3, mitogen-activated protein kinase-3; MD, molecular
dynamics.
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