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Tis research created hot-pressed composites of the AA6063matrix with varying concentrations of ZrO2 (0.25, 0.5, and 1wt %). At
sliding speeds of 80, 120, and 150mm/s, the wear performance of the specimen was studied at loads of 10N, 15N, 20N, and 25N.
Te authors analyzed the counter-face material, the wear debris, and the worn surfaces to learn about the wear mechanisms.
Developing these threemachine learning (ML) algorithms was to evaluate the ability to predict wear behavior using the same small
dataset collected using varying test processes. A thorough examination of each model hyperparameter tuning phase was per-
formed.Te predictive performance was analyzed using several statistical tools.Temost efective decision-making algorithms for
this data collection were those based on trees. Predictions made by the decision tree algorithm for the test and validation
measurements have an accuracy of 86% and 99.7%, respectively. Te best model was picked out based on the results of the
predictions.

1. Introduction

Aluminum (Al) has considerable potential to be utilized in
the aviation and automation industries to minimize emis-
sions owing to its less density, well machinability, damping
capability, and recyclability. Al has a less elastic modulus,
minimal wear resistance, and a maximum corrosion rate,
which are all signifcant problems. Various particle re-
inforcements have been reported to be added to the Al alloy
matrix to solve these issues [1].

Unfortunately, weak tribological characteristics are
a drawback of Al alloys. Compared to pure Al alloys,
AMMCs (aluminum metal matrix composites) perform
better in strength, stifness, and wear [2]. AMMCs in-
corporate Al alloys with various reinforcements, including

SiC, Al2O3, B4C, TiB2, CNT, and GNPs [3]. Due to its
outstanding thermal stability, Al2O3 is widely used in many
applications. As a result, the metal matrix and the re-
inforcement elements do not go through the brittle phase.
So, because of its exceptional characteristics, Al2O3 is fre-
quently used in the manufacturing of AMMCs [4].

Aerospace applications for the high-strength AA6063
include fasteners, shafts, and gears.Te natural deterioration
of these parts through rubbing is important [5]. Terefore,
signifcant breakdowns in industrial operations may result
from material loss due to wearing [6]. For this reason, in-
vestigating how AMMCs behave tribologically is essential. It
is common knowledge that running trials to determine wear
behavior is time consuming and costly. Machine learning
strategies are used to cut down on the cost and duration of
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probes. By analyzing past wear patterns, these techniques
allow for accurate predictions of future behavior [7]. Te
surface roughness and wear loss of materials are predicted
using a variety of machine learning techniques, including
artifcial neural networks (ANNs) [8], support vector re-
gression (SVR), and extreme learning machines (ELMs) [9].
In addition, the efect of several wear factors (sliding speed,
load, and sliding distance) was investigated using analysis of
variance (ANOVA).

Most industrial procedures can be classifed as either
solid-state or liquid-state processes. Te mechanical prop-
erties of solid-state processes are far superior to those of their
liquid-state counterparts. Improved mechanical properties
are linked to decreased segregation and intermetallic phase
formation [10].

Machine learning (ML) was the only available method to
solve the computational problems of big data science.
Glasses and alloys have intricate and disordered micro-
structures and have beneftted from ML approaches in
comprehending composition-engineering property re-
lationships [11]. Mechanical property predictions can also be
made with reasonable accuracy using ML methods based on
atomistic descriptors. For instance, an ANN can be trained
to estimate organic structure composites based on structural
or topological properties [12].

Pumps, bearings, propellers, engineering tools, and dies
all beneft from copper alloys’ excellent strength, hardness,
wear resistance, and abrasive resistance [13]. Te material’s
high tensile strength and hardness exemplify the mechanical
properties of aluminum bronze. Right now, we must resort
to destructive testing methods that are both expensive and
time consuming to evaluate the mechanical parts made of
aluminum bronze. Terefore, there is an immediate need for
a reliable means of evaluating aluminum bronze’s me-
chanical qualities.

Predicting the mechanical properties of materials using
machine learning techniques has grown increasingly pop-
ular in recent years. Te author found that the back-
propagation artifcial neural network (BP-ANN) model
could reliably forecast AMC’s bending toughness and
hardness [14]. Te strength of aluminum-copper-magne-
sium-silver alloys was predicted using support vector re-
gression (SVR) [15]. Tis research showed that, compared to
BP-ANN, SVR models performed better under controlled
conditions. Te author developed a high-precision ANN
model to forecast the UTS of niobium-silicon alloy [16]. Te
model was essential in facilitating their mission of improving
specimen strength by modifying its microstructure. Te
authors [17] employed an ANN model to predict the me-
chanical properties of A357 alloy, and their results show that
the back-propagation model is very accurate. Using an ar-
tifcial neural network model, the authors [18] could predict
the HB of 18-5PH and fne-tune a temperature treatment
protocol to achieve maximum HB.

Since its inception over 20 years ago, the feld of ar-
tifcial intelligence, known as machine learning, has been
an indispensable and foundational part of many busi-
nesses. AlthoughML was initially researched in the feld of
computer science and mathematics, it is often preferred

by researchers to use low-content nano-reinforcement
particles rather than high-range microsupplements [19].
Nano-reinforcements improve particular strength and
fexibility without compromising density, in contrast to
microreinforcements.

Only a few investigations on Al/ZrO2 composites were
found when searching the academic literature. Te authors
investigated the corrosion and mechanical performance of
powder metallurgy-produced nanocomposite Al-0.5 Zn/1.0
ZrO2 [20]. Composite materials, they said, have greater
compressive strength than pure aluminum. Al/1 ZrO2
composite has also been reported to have the highest cor-
rosion resistance [21]. Disintegrated melt deposition of Al
yields mechanical and fammability qualities, which were
studied by the authors [22], who looked at the impact of
ZrO2 particle size (submicron, micron, and nano) on these
characteristics.

Te exceptional success of machine learning in fore-
casting the outcomes of expensive and time-consuming
trials makes it a crucial tool for predicting the wear per-
formance of Al matrix composites [23]. No research was
found in the literature studies that indicated the wear be-
havior of AA6063/ZrO2 composites.

Tis research examines the various machine learning
models (support vector regressor, random forest, and de-
cision tree) that can forecast how the AA6063/ZrO2 com-
posites will perform under wear conditions. Powder
metallurgy was used to create 0.25 wt%, 0.5 wt%, and 1wt%
AA6063/ZrO2 composites. Sliding at 80mm/s, 120mm/s,
and 150mm/s while applying 10N, 15N, 20N, and 25N was
used to assess the s wear performance samples. It was de-
termined that three-machine learning algorithms could be
used to forecast the wear performance of the sample.

2. Experimental Density

Te matrix and reinforcing materials are AA6063 and ZrO2
powders, respectively. Te matrix material has an even
distribution of the elements Zn (0.1 wt %), Cu (0.1 wt %), Si
(0.6 wt %), and Al (0.1wt %) in its chemical composition.
Te average particle size of AA6063 powder is 40 µm, while
99.35% ZrO2 comes in at 78 nm. Methanol is used as an
etching solution to clean the specimen before SEM analysis.
Powdered AA6063 and ZrO2 are depicted in Figures 1(a)
and 1(b) using scanning electron microscopy (Carl Zeiss
MA15/EVO 18).

Te composites were made with ZrO2 in three distinct
weight percent fractions: 0.25%, 0.5%, and 1%. ZrO2
nanoparticles were found to have a vol% of 0.25%, 0.5%, and
1%. It took 12.5 grams of powder per output unit to achieve
this blend. After subjecting the ZrO2 nanopowders to ul-
trasonic vibration treatment, the AA6063 matrix powders
were added. Te composites were blended at a temperature
of 190°C using a void distillation technique. Due to its low
boiling point of 78.3°C, alcohol quickly evaporated from the
mixture. Once the powder was well mixed, it was put into the
graphite mold. A hot-pressing furnace with a controlled
environment was used in the manufacturing process. Te
time spent hot pressing was 1 hour, the temperature was
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525°C, and the pressure was 45MPa. Creating everything
was carried out in an argon-flled environment.

Te manufactured composite specimen has a radius of
about 16mm and an altitude of about 8mm. Tests for
measuring hardness were conducted using Vickers hardness
test equipment (FIE, VM50) with a 1 kg load. Te authors
took seven readings from each sample and calculated the
hardness based on the mean value.

When calculating density, a 0.1mg resolution Kern
electronic balance was used. Archimedes’ principle was used
to calculate the actual and relative densities of the specimen.
Both air and distilled water were used to make accurate
weight measurements of the samples.Te applicable formula
used in the calculation is as follows:

ρ �
ma

ma − mw

ρw, (1)

where ρ is the de nsity of the sample (g/cm3), ma is the mass
of sample in the air, mw is the mass of the sample in water,
and ρw is the density of the water.

X-ray difraction (XRD) was used to identify the phases
generated during the manufacturing of AA6063 matrix
composites. Te microstructure was inspected using scan-
ning electron microscopy (SEM) coupled with an energy
dispersive spectrometer (EDS).

Under dry sliding conditions, the wear behavior of Al/ZrO2
nanocomposites was investigated using a reciprocating trib-
ometer device. Ten, ffteen, twenty, and twenty-fve-newton
loads at speeds of 80, 120, and 150mm/s are used in wear tests.
One hundred meters was the slide distance. Te authors used
AISI 420 stainless steel balls for the countertops. Te wear
cross-section of the specimen was calculated precisely after the
abrasion tests were completed. Multiplying the cross-sectional
area by the stroke distance yields the lost volume (ml).

3. Results and Discussion

3.1. Density and Microstructural Properties. Table 1 displays
the outcome of density testing on AA6063 and AA6063/
ZrO2 composites. Te theoretical and actual densities of the

samples show a remarkable degree of agreement. Tis
demonstrates that AA6063/ZrO2 composites may be pro-
duced using hot pressing. To achieve the highest relative
density, the AA6063 alloy was used. Increasing the per-
centage of ZrO2 in the samples causes them to become less
dense in comparison [24]. A high melting temperature of
ceramic nanoparticles hinders compressibility and impairs
consolidation, leading to a lower relative density and hence
greater porosity [25]. Te authors [26] found that as the
ZrO2 content of the composites with an Al matrix increased,
the porosity of the composites also increased. Te reports
show less than 1.5% overall porosity [27]. Te density
fndings of this investigation are found to be compatible with
the literature.

SEM micrographs with magnifcation of 500X, 1000X,
and 2000X of the samples, displayed in Figures 2(a)–2(d),
reveal that neither defects nor microporosity are present.
Te intermetallic phase and the nanoparticles are shown to
be in motion. It is easy to see the intermetallic stages in
Figure 2(a). Te authors [28] reported that AA6063 alloys
could generate Al-Zr intermetallics. ZrO2 nanoparticle ag-
gregation is observed for all composite materials irrespective
of ZrO2 concentration. Te increased surface area of
nanoparticles is evidence of their accumulation in the
composite structure [29]. Nanoparticle aggregation was
reported for AA6063/2ZrO2 composite.

Te EDS results for the AA6063 alloy are shown in
Figure 3. A high concentration of Al and a relatively low Zr
content were found in the frst analytical zone. It is good to
know that the AA6063 alloy’s chemical arrangement has
been confrmed [30]. Te high concentrations of Al and Zr
found in the white particles (area 2) study identify them as
Al-Zr intermetallic complexes. High O content in the
structure also allows for the production of Al2O3. In the
literature [31], Al matrix composites with Al2O3 were
mentioned. Oxide production is linked to increased
chemical action among Al and O.

Tese graphs display Al, O, and Zr abundance within the
mapped region. Te analysis conclusively demonstrated that
Al makes up a large percentage of the area. High O

(a) (b)

Figure 1: Scanning electron microscope of (a) AA6063 and (b) ZrO2 powders.
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distribution is also observed near grain borders. Zr was also
found to be present in some locations.

TeXRD patterns of AA6063, AA6063/0.25 ZrO2, AA6063/
0.5 ZrO2, and AA6063/ZrO2 composites are presented in
Figures 4(a)–4(d). Te analysis confrmed the Al phase present
in the samples. Te peak of the Al-Zr phase can also be seen for
unreinforced alloy and compositematerials [32]. Evidence ofAl-
Zr intermetallic compounds was verifed by EDS and XRD
investigation. For composites, there was no ZrO2 peak observed.
As a result of the minimal ZrO2 in the composites, ZrO2 peaks
cannot be kept in complete constant perusing [33]. X-ray dif-
fraction (XRD) examination of an Al/2 ZrO2 composite was
claimed to shownoZrO2 peaks authors [24].Te test was held at
a constant of between 2 and the square root of 2 or between 28.5
and 30.5. It was possible to determine both the step size (0.05)
and the counting period (60 s).Te inset of Figure 5 provides the
value of 2 equal to 29.6, at which the ZrO2 peak was observed.

3.2. Wear Test and Hardness Results. Table 2 displays the
range of the hardness produced in the specimen. Te results
show that as the ZrO2 level of the samples rises, hardness

increases. Tis study found that the AA6063/1 ZrO2 sample
had the highest hardness (83 HV). Hardness increased from
6.2% for AA6063/0.25 ZrO2 to 9.5% for AA6063/0.5 ZrO2 and
14.5% for AA6063/1 ZrO2. ZrO2 nanoparticle indentation
resistance is linked to hardness improvement in composite
materials. In addition to preventing dislocation movement, the
reinforcing particles are responsible for the hardness increase.

A plot of volume loss versus load for variant sliding
speeds is indicated in Figure 6. It is clear from the plots that
for every sliding speed and load, volume loss declines with
rising ZrO2 content. In terms of volume loss, the AA6063/1
ZrO2 sample showed the highest durability over time.
Furthermore, with a load of 25N and a sliding speed of
80mm/s, for instance, the volume loss of the AA6063 was
recorded to be 1.56 (mm3), but it fell to 1.13 (mm3) for the
AA6063/1 ZrO2. Te volume loss of AA6063/1 ZrO2 was
18.6% less than that of unreinforced AA6063 when sliding at
150mm/s while under a stress of 25N. Increased wear
behavior for MMC materials has been attributed to several
distinct causes in the published literature. One of the crucial
wear-increasing mechanisms [34] involves the resistance of

Table 1: Specimen’s density.

Specimens Teoretical density Experimental density Relative density
Units (g/cm3) (g/cm3) (%)
AA6063 alloy 2.70 2.68 99.25
AA6063/0.25 ZrO2 2.71 2.69 99.26
AA6063/0.5 ZrO2 2.72 2.70 99.26
AA6063/1 ZrO2 2.73 2.72 98.63

(a) (b)

(c) (d)

Figure 2: SEM photograph of the specimens: (a) AA6063, (b) AA6063/0.25 ZrO2, (c) AA6063/0.5 ZrO2, and (d) AA6063/1 ZrO2.
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high-hardness reinforcement elements in the composite ma-
terial’s structure to wear degradation. Te particles of re-
inforcement are said to bear the weight of the structure [35].

Reducing the surface area of contact between theMMCand the
steel counterpart is crucial for better tribological behavior. In
Figure 6, it is evident that an increase in the applied load results
in a noticeable rise in the wear rate for both samples, as
measured by volume loss. Te wear rate of Al/ZrO2 nano-
composites (0.3 and 0.6wt%) increases with rising loads(from
5N to 30N), as observed by a researcher [36].

A plot of volume loss vs. sliding speeds for various loads
is shown in Figures 5(a)–5(d). Te authors saw that in-
creasing the sliding speed reduces the volume loss across the
board for all materials for a given weight. For instance, it was
measured that the volume loss of AA6063/ZrO2 under a load
of 25N varied from 1.13 (mm3) for a sliding speed of 80mm/
s to 0.91 (mm3) for a speed of 120mm/s and 0.78 (mm3) for
a speed of 150mm/s.Te volume loss rises in the limits of 80
to 120mm/s, then falls in the range of 110mm/s and above
(except for AA6063 under the load of 15N). Surface
hardness enhances wear behavior by decreasing contact area,
and strain rate and surface hardness increase with increased
sliding speed [37].

Te authors found the wear rate of the Al/BN nano-
composite to lessen as the sliding speed was increased (from
80 to 180mm/s) [38]. Researchers [39] analyzed a varied
wear behavior for the Al alloy under minimal load and
variable sliding speed, in contrast to the literature above
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investigations. A higher wear rate was seen up to a sliding
speed of 0.1mm/s, after which it was observed to decrease.
Te authors concluded that this was because the frictional
heat produced among the matrix and the counter material
signifcantly impacted the wear process. Te contact tem-
perature and surface oxidation both rise as sliding velocity

increases. Because the surface is being oxidized, friction and
wear are reduced. Te outcome of the low-load wear test for
this investigation agrees with the study’s fndings [40].

In addition, Figure 5 shows wear behavior as a function of
the ZrO2 level. Te volume loss diminishes with rising ZrO2
for all weights and sliding speeds. Compared to AA6063 alloy,
the volume loss of the AA6063/1 ZrO2 composite was 44.6%
less under a load of 10N and a sliding speed of 80mm/s. Te
volume loss of an AA6063 alloy decreased from 1.44 (mm3) to
1.01 (mm3) when loaded with 25N while sliding at 80mm/s,
with the addition of 1wt % ZrO2. ZrO2 nanoparticle in-
corporation signifcantly increased wear resistance under
both low and high loads. Incorporating nano-sized ZrO2
particles into composites results in a material with a much
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Figure 5: Variation of volume loss and sliding speed at variant loads: (a) 10, (b) 15, (c) 20, and (d) 25 N.

Table 2: Specimen’s hardness.

Materials Hardness (HV1)
AA6063 83.2± 1.3
AA6063/0.25 ZrO2 84.7± 1.7
AA6063/0.5 ZrO2 89.6± 1.8
AA6063/1 ZrO2 91.9± 2.1
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higher hardness, which contributes to the material’s excep-
tional wear resistance [41]. Results from this study onwear are
consistent with Archard’s law. Tere was a claim that more
rigid materials have better tribological performance. Re-
searchers have shown that incorporating nano-
reinforcements into an Al matrix composite improves the
wear resistance of the material.

Graphs of the coefcients of friction (COF) under wear
conditions (80mm/s and 150mm/s) are presented in
Figures 7(a)–7(h). In particular, it was found that the mean
COF of AA6063, AA6063/0.25 ZrO2, AA6063/0.5 ZrO2, and
AA6063/1 ZrO2 at loads of 10 and 25N at sliding speeds of
80mm/s was 0.363–0.391, 0.307–0.316, 0.245–0.267, and
0.214–0.224, respectively. With a sliding speed of 150mm/s

and weights of 10 and 25N, the mean COF of AA6063,
AA6063/0.25 ZrO2, AA6063/0.5 ZrO2, and AA6063/1 ZrO2
was calculated to be 0.335–0.367, 0.292–0.317, 0.231–0.253,
and 0.213–0.226, respectively. Te correlation between COF
values and volume reduction was negative (Figures 5 and 6).
Growing the strengthening in a structure improves its load-
bearing volume and reduces the stress on the Al matrix.
Shearing the reinforcement particles requires more energy.
Hence, the composite surface has a lower friction
coefcient [42].

Particles on the worn surface further reduce friction by
delaying strain hardening and plastic deformation [43].
Multiple studies have found that when reinforcement
content increases, COF levels fall.
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Figure 6: Variation of volume loss and load at variant sliding speeds: (a) 80, (b) 120, and (c) 150 mm/s.
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Figure 7 shows that the COF increases with load, in-
dependent of material type, or sliding velocity. More plastic
deformation occurred with a higher load, leading to a higher
COF [44]. High loads cause plastic deformation and wear
damage, as evidenced in the worn surface studies. Sliding
faster results in a drop in the samples’ COF levels, as ob-
served in this research. According to the study, the COF
drops as the wear rate rises because the oxides generated on
the surface are constantly delaminating. Increased wear
surface separation and larger delamination result from high
speeds and contribute to a lower COF. Te friction co-
efcient decreases due to oxygen entering metallic surfaces
and forming an oxide coating on the surface.

3.3. Analysis ofWorn Surface. Scanning electron microscope
images of wear on the samples, taken at 80mm/s, are shown
in Figure 8(a). Even under a light 10N load, there was
evidence of deep grooves and worn detritus (Figure 8(b)).
Wear caused by abrasion can be identifed by grooves
running perpendicular to the direction of sliding. Re-
searchers have found that AA6063 alloy and its composites
are susceptible to abrasion at low stresses [45]. When the
load is increased, AA6063 alloy shows a signifcant
delaminated region and some cracks. A large load causes
shear deformation, which results in breaks during de-
lamination wear. Under high load (25N), the primary wear
mechanism for AA6063/ZrO2 hybrid composites was ob-
served to be delamination and oxidation. Some grooves may
be seen on the AA6063/0.25 ZrO2 composite’s worn surface.

At greater stress, the cracks and wear debris become
apparent. Under a load of 10N, the AA6063/0.5 ZrO2 and
AA6063/1 ZrO2 surfaces show signs of wear in the form of
scratches. As the load rises from 10N to 25N, craters and
cracks appear on the AA6063/0.5 ZrO2 and AA6063/1 ZrO2
wear surfaces. Delamination wear leads to the creation of

craters. In the images of the worn surfaces of the samples, the
transition from depth grooves to scrapes indicates that the
character has experienced reduced wear damage as the ZrO2
content increases during the sliding test at 80mm/s and
a force of 10N. A 25N load caused a vast section of the
composite material to delaminate, creating a crater. Tis
confrms the fndings of the volume loss graph, which
showed that AA6063/1 ZrO2 showed the least amount of
wear damage out of all the samples.

Figure 9 displays the EDS analyses of AA6063/0.25 ZrO2
at 25N and a sliding speed of 80mm/s. As seen in an EDS
study, both the frst and second zones are rich in Al and
O. Tis is because, at extreme friction (25N), Al2O3 is
formed. Because of this, authors might say that oxidized
patches cover worn surfaces.

Figure 10 displays the outcomes of an EDS analysis
conducted on the samples at a sliding speed of 150mm/s.
Several studies using the EDS analysis confrmed the exis-
tence of elevated O on worn surfaces for Al matrix com-
posites. Te energy dispersive spectroscopy analysis reveals
exceptionally high concentrations of Al and Zr in the
structure, indicating that these areas interact with com-
pounds containing Al and Zr.

Moreover, the research revealed an amount of Zr within
the specimen. After the wear test, the ZrO2 nanoparticles
were still present in the structure, proving their durability.
Analysis by EDS revealed a high percentage (68.42%) of
aluminum. Increases in sliding speed and ZrO2 concen-
tration are readily seen to reduce the material area moved
into the counter-face ball. Tis is because the steel counter-
face makes less contact with the Al matrix due to the
presence of reinforcing particles (ZrO2). It has been
established through chemical analysis that the second sec-
tion contains a high concentration of steel counter-face
material, as evidenced by the presence of iron (55.7%),
chromium (10.5%), and carbon (5.3%).
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Figure 7: Evaluation of the coefcient of friction (a)-(b) AA6063, (c)-(d) AA6063/0.25 ZrO2, (e)-(f ) AA6063/0.5 ZrO2, and (g)-(h) AA6063/
1 ZrO2.
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4. The Methods of Machine Learning Models

Many supervised machine learning regression models have
been developed to create a mapping function between the
input characteristics (sliding speed, ZrO2 content, and load)
and the desired output feature (accuracy).

Before being fed into ML algorithms, data from actual ex-
periments must be cleaned, sorted, and prepared. Te in-
formation is then divided randomly into two groups: training
data (75%) and validation data (25%).All threeMLmodels are set
up and educated on data sets. At the end of the training process,
the stability of eachMLmodel is evaluated using cross-validation.
When assessing the efciency of the training phase, the authors
used 3-folds cross-validation, which involved splitting the
training data into fve sets and analyzing each group separately.

However, experimentation is necessary for determining the
optimal settings for the machine learning model. Te grid
search method is utilized, with multiple variations of each
model. Te models were cross-validated against one another,
and the optimal settings were identifed using the training set.
Terefore, the top estimators were applied to validation data,
and the outcomes are shown here. Te data must be cleaned
and normalized for the ML model to have a high degree of
accuracy. Te data have been preprocessed using a standard
scaling method for this application. To improve the ability to
forecast theMLmodels, preprocessing normalizes all input and
output features to the same scale.

4.1. ML Models. Te support vector regressor (SVR), random
forest (RF), and decision tree (DT) models, three of the most
widespread and efective models in recent literature [46], have
been chosen for a head-to-head performance comparison on the
current dataset. Volume loss is a constant real value, and a re-
gression can be used to predict its value. Python was used for all
code implementations, and all the source code is available on the
GitHub platform1. Te machine learning was accomplished
with the help of the sci-kit learn libraries, and the visualization
was performed using the seaborn libraries. Tis section briefy
describes the theoretical foundations uponwhich algorithms are
built. Readers interested in further exploring the topic of al-
gorithms are directed to recent literature surveys of individual
algorithms, which cover topics such as the algorithm’s math-
ematical foundations and current uses.

4.1.1. Support Vector Regressor (SVR). For regression, SVR is
a particular case of the original support vector machine. In
support vector regressor, high-order hyperplanes are set up to
establish a correlation between the input and the intended output
measurement within predetermined limits. Tese hyperplanes
are built using kernel functions, like radial basis and linear
functions, to reduce the generalized error bound to a minimum.
Te regularization parameter and gamma are two primary pa-
rameters infuencing themodel’s accuracy while constructing the
hyperplanes. While SVR models can function with a small
dataset, research in machine learning and tribology suggests that
accuracy can be improved by providing high-dimensional data.

4.1.2. Decision Tree (DT). TeDTtechnique constructs a tree-
like structure with nodes and leaves to make predictions about
the output data based on learning choice rules from the input
dataset. Te nodes make binary judgments dependent on the
values of the input features, while the leaf displays a numerical
goal. Splitting nodes can be done with the aid of mean squared
error (MSE) and mean absolute error (MAE) functions. Even
though increasing the tree’s depth adds complexity to the
model, doing so runs the risk of overftting, wherein the model
performs well on the training data because it has memorized
the input but poorly on the testing data.

4.1.3. Random Forest (RF). Te supervised machine learning
model random forest is still another option. Classifcation
problems shine the brightest although it also excels in regression.
Te random forest algorithm is called the ensemble technique
that uses decision trees that have been randomly generated. It
uses randomdata sampling from the training set to train various
decision trees. Te parameter n estimators, which represent the
total number of trees in the forest, control how many trees will
be created through the training phase. Inheritance from the DT
model is used for the remaining model parameters.

4.2. Hyperparameter Tuning. Te process of fne-tuning each
parameter of ML model values has begun. Table 3 shows the
various models and their respective setup parameters. For this
reason, the factor subset combinations have been put up in-
dependently for each model due to their unique tuning
parameters.

(a) (b)

Figure 8: (a) AA6063 alloy and (b) AA6063/0.25 ZrO2 for 10N and worn surface of the specimen at 80mm/s sliding speed.
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After fnishing the hyperparameter tuning process, the
optimal settings for each model may be identifed. Results
from experiments show that the optimal settings for SVR
are as follows: regularization parameter C � 100, rbf
kernel, and coefcient gamma � 0.001. Te optimal set-
tings for RF include a maximum of two features per split
(MF), one leaf node (MSL), and 100 decision trees (NE).
Assuming a maximum depth of 8, the optimal splitting
criterion for DT is absolute error and the minimum
splitting level is set at 1.

A total of four measures (R2, RMSE, MSE, and MAE)
were employed to evaluate the results of ML models. For
scoring regression functions, authors utilize a statistic called
R2, which is determined by the following formula:

R
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2


n
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where n is the no. of tests, yi is the real measuring output
value, yi is the predicting output value, and y is the mean
value of yi.
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Mean squared error (MSE) is the average squared de-
viation from the projected values.
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Mean absolute error (MAE) is the diference between the
actual and expected values.
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n
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Te R2 value of the model will be 1, and the others will be
0 if it is a perfect match for the data, as is evident from
equation (2). R2 provides more insight into the data’s var-
iability than the other three measures. Due to their
monotonically connected representation of the squared
errors among observed and predicted output values, RMSE
and MSE are of interest. More resilient to outlier data, MAE
also displays the mean value of the absolute error among the
actual and predicted output values.

Models with optimal settings had the best R2, RMSE,
MSE, and MAE values, shown in Table 4. Cross-validated
training has allowed us to give mean and standard deviation.
Table 4 indicates that DT is the most precise and reliable
model, with a mean R2 of 0.8580 and a standard deviation of
0.0220. Results on the test dataset showed that RF was
competitive with DT.

Te regression, root mean squared error, mean squared
error, and mean absolute error for each algorithm volume
loss validations are shown in Table 5. It has been claimed that
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Figure 9: AA6063/0.25 ZrO2 at 25N for 80mm/s analysis on EDS.
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values of R2 for a model between 0.7 and 0.9 are acceptable.
A model is deemed high quality if its R2 value is more than
0.9. Te R2 value on the validation dataset ranged from
0.8078 to 0.9973 (Table 5). Tree-based ML models (RF and
DT) outperformed higher-order models (SVR), which is an
exciting fnding. Terefore, the overftting problem associ-
ated with limited data and the inability to generalize could be

a contributing factor. Te fundamental disadvantage of tree-
based approaches is that they need to be recreated and
recalculated whenever new data is introduced to the current
model because this impacts all prior iterations.

Figure 11 displays the predicted and observed volume
decrease from each regressor. Volume loss was successfully
expected by both RF(b) and DT(c). However, SVR (a) fared
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Figure 10: EDS specimen at 150mm/s and AA6063/0.5 ZrO2 (10N).

Table 3: Models with a certain class of hypertuned parameters.

ML algorithms Factors
RF MF� {3, 4}, MSL� {4, 5, 6}, NE� {15, 25, 55, 100}
DT S� {MSE, MAE}, MD� {1, 5, 7, 10}, MSL� {4, 5, 6}, MWFL� {0.1, 0.2, 0.5}
SVR kernel� {rbf, linear}, gamma� {1e− 4, 1e− 5}, C� {1, 10, 100}

Table 4: Relative results of machine learning algorithms on testing data.

Metrics Regression Root mean squared
error Mean squared error Mean absolute error

Machine
learning
algorithm

Mean STD Mean STD Mean STD Mean STD

Support vector regression 0.8186 0.0949 0.3774 0.1908 0.1788 0.1873 0.3055 0.1766
Random forest 0.8504 0.0599 0.3523 0.1502 0.1467 0.1381 0.2896 0.1126
Decision tree 0.8587 0.0226 0.3481 0.1114 0.1337 0.0917 0.2696 0.0924
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poorly on the validation data set. SVR has a more signifcant
margin of error compared to RF and DT.

As shown in Figure 12, the load, ZrO2 content, and
sliding speed are three of the most important input variables
used by various ML models to estimate volume loss. Each
variable afects the predicted volume loss, as shown in

Figure 12. Te load was the primary factor in determining
the outcome. According to various reports in the research
literature, the load is the most critical factor when using
machine learning to estimate wear rate. In contrast, the
percentage of ZrO2 and the sliding velocity were determined
to be other crucial factors.

Table 5: Relative results on machine learning algorithm on validating data.

Machine learning algorithms Regression Root
mean squared error Mean squared error Mean absolute error

Support vector regression 0.8084 0.3922 0.1539 0.2578
Random forest 0.9784 0.1326 0.0183 0.0937
Decision tree 0.9926 0.0814 0.0071 0.0214
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Figure 11: Evaluation of the actual volume loss and predicted volume loss by the machine learning algorithm.
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5. Conclusions

In this research, the wear behavior and wear mechanism of
a specimen made from an AA6063 matrix composite
strengthened by ZrO2 (0.25, 0.5, and 1wt %) nanocomposites
were examined after successful hot pressing. Wear resistance
was predicted using three distinct machine learning methods.
Here, the following are the most important fndings:

(i) By adding more ZrO2, the resulting specimens were
found to have a somewhat lower relative density.
For the highest porosity (1.44%), the AA6063/1
ZrO2 composite was used. A 1wt% ZrO2 compo-
nent enhanced the hardness of the AA6063 alloy
from a measured 66.1 to a measured 74.9.

(ii) A study of the composite materials’ microstructure
reveals that the ZrO2 nanoparticles aggregate into
larger particles. X-ray difraction testing confrms
the existence of the Al, Al-Zr, and ZrO2 phases.

(iii) With the same load and sliding speeds, an increase
in ZrO2 content reduced volume loss.

(iv) Abrasion was found to be a wear mechanism at
10N, while abrasion and delamination were present
at 25N. Wear graphs showed that surfaces with
higher ZrO2 content showed reduced wear and
damage.

(v) Tree machine learning algorithms were evaluated
for their predictive abilities on a substantial ex-
perimental dataset.

(vi) On this data set, tree-based decision algorithms
performed the best. Te accuracy of the decision
tree algorithm’s predictions for the test and vali-
dation measurements was 86% and 99.7%,
respectively.

(vii) Tree ML techniques were used to state the relative
weights of the input features explicitly. It has been

found that the load parameter has the most sig-
nifcant impact on the prediction of volume loss
measurement.
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