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Te mechanisms by which drugs and several sulfur chemicals induce sulfhemoglobin formation have not yet been elucidated.
However, enzymes producing hydrogen sulfde in mammalian tissues and organs suggest sulfhemoglobin and sulfmyoglobin
formation mechanisms are more complex than previously hypothesized. Te process involves the interaction of H2S with
hemoglobin or myoglobin in the presence of O2 or H2O2 to generate sulfhemoglobin or sulfmyoglobin, respectively. Structurally,
the sulfheme product chromophore is a covalent heme modifcation. Tis modifcation involves the incorporation of one sulfur
atom within carbon atoms to form a sulfur-carbons ring moiety across the β-β double bond of heme pyrrole B, which shows
a characteristic optical band around 623 nm and 618 nm for sulfhemoglobin and sulfmyoglobin, respectively. Te results show
a linear correlation between the sulfHb electronic charge transfer transition at 623 nm and the emission wavelength of 460 nm
upon Soret excitation at 420 nm.Te data show no such linear relationship for oxy-Hb or met-aquo Hb.Tis new approach allows
us to measure from 0.02% to 13.5% sulfhemoglobin in mixtures of met-aquo hemoglobin and oxy-hemoglobin. Although
additional work is needed, the results suggest that simultaneously monitoring sulfHb electronic transition at 623 nm and emission
wavelength at 460 nm upon Soret excitation at 420 nm is a powerful technique to determine the percentage of sulfhemoglobin in
blood. Te data and techniques presented indicate that fuorescence spectroscopy coupled with UV-vis spectroscopy provides
a fast and accurate method for detecting sulfhemoglobin in the blood, facilitating the diagnosis of sulfhemoglobinemia in patients.

1. Introduction

Hydrogen sulfde (H2S), a highly lipophilic gas endoge-
nously produced in tissues and organs, has been associated
with myriad conditions and diseases [1–11]. H2S plasma
values in the 100 μM range are associated with the fbrosis
phenomena [12]. SARS-CoV-2 survivors show serum H2S
levels higher (≥150 μM) than those of nonsurvivors [13, 14],
suggesting that the production of H2S acts as a defense
mechanism against COVID-19 [15, 16]. Reduced H2S levels
are also observed in Parkinson’s, Alzheimer’s, and athero-
sclerosis [17, 18]. In addition, H2S has been correlated with
chronic diseases [19–21], infammation [22–24], immune
system regulation [25, 26], cancer [27, 28], oxidative stress

[29–34], oral diseases [35], glaucoma [36], subarachnoid
hemorrhage [37], infertility in men [38], arterial oxygen
saturation [39], and skin diseases [40]. Furthermore, clinical
studies have emphasized the potential of modulating H2S
synthesis for therapeutic use [41–43]. However, the in-
vestigation results are limited by the lack of reliable H2S
measurements in body fuids and tissues and the absence of
specifc biomarkers [1].

Hydrogen sulfde could interact with metals in the body
like iron, copper, nickel, and zinc to carry out specifc func-
tions.Te interactions ofH2S withmetal-binding proteins have
been shown to aid signal transduction and cellular metabolism
[44]. Furthermore, H2S is capable of reducing heme iron from
Fe(III) to Fe (II) and providing a cytoprotective role against the
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gas. Tis reduction process depends strongly on heme pocket
distal mutations showing faster reduction for those mutants
exhibiting the most robust H-bonding interactions [45]. Also,
hydrogen sulfde can exert a biological role via widespread
interactions with metalloproteins in maintaining redox ho-
meostasis by eliminating reactive oxygen species [46]. More-
over, hydrogen sulfde interacts with oxy-myoglobin and oxy-
hemoglobin to generate sulfmyoglobin (sulfMb) and sulfhe-
moglobin (sulfHb) complexes. Tis process leads to sulfhe-
moglobinemia, a bluish skin color associated with the lack of
oxygen, and cyanosis. Furthermore, common causes of
sulfhemoglobinemia-induced cyanosis include a wide range of
drug overdoses like acetanilide metoclopramide, phenacetin,
dapsone, sulfanilamide, cimetidine, paracetamol, ibuprofen,
naproxen, and exposure to sulfur compounds [47]. Tis
phenomenon has been observed in a newborn [48], during
gamma-ray irradiation [49, 50], in cancer and neurodegen-
erative disease [51], in dimethyl sulfde dermal applications [52]
and applications of sodium nitrate formulations [53], sulfur
dioxide [54, 55], hydroxylamine sulfate [56], and hydrogen
sulfde [57], in chronic constipation [58] and urinary tract
infection [59], and in applications of thiocolchicoside (Miorel)
[60], metoclopramide, and N-acetylcysteine [61].

Te mechanisms by which drugs and chemicals con-
taining sulfur induce sulfhemoglobin formation have not yet
been elucidated but are postulated to be similar to how H2S is
produced by intestinal bacteria [62]. However, the enzymatic
process by which hydrogen sulfde is produced inmammalian
tissues and organs suggests that the chemical-induced sulfHb
and sulfMb mechanisms are more complex than previously
hypothesized. Tis problem can be understood through red
blood cell (RBC) analysis. For example, a hemoglobin (Hb)
level of 13.5 g/dL is equivalent to a 2.0mMHb concentration.
Normal levels of physiological sulfHb are estimated to be
below 0.037 g/dL (5.5 μM, ∼0.28%), whereas a concentration
of 0.5 g/dL (74.4 μM, ∼3.8%) in the blood is enough to present
clinically detectable cyanosis symptoms [1, 57–61]. Severe
sulfHb cyanosis seldom exceeds 10% (∼200 μM). However,
16% and 23% SulfHb measurements have also been reported
[62]. Analogously, methemoglobinemia is a blood disorder
characterized by a higher-than-average level of met-aquo Hb
(Fe(III))-H2O. Toxic agents like oxidizing chemicals or drugs
such as nitrites, nitrates, aniline dyes, aniline derivatives,
sulfonamides, and lidocaine can also convert oxy-Hb into
met-aquo Hb [60–63]. A 1.5 g/dL (223.0 μM) of met-aquo
hemoglobin in the blood also causes detectable cyanosis. Tis
represents approximately 10% met-aquo Hb in total blood
hemoglobin [63]. At the same time, it is estimated that 3.0% of
oxy-heme (FeII-O2) groups autoxidize to met-aquo heme
(FeIII-H2O) and superoxide (O−

2 ), leading to reactive oxygen
species (ROS) reactions and free radical chemistry [64]. In
summary, only 0.5 g/dL (74.4 μM) sulfhemoglobin is needed
to cause clinically detectable cyanosis, compared with 1.5 g/dL
(223.0 μM) met-aquo hemoglobin and 5.0 g/dL (744.0 μM) of
deoxygenated hemoglobin in a matrix of ∼2.0mM oxy-Hb
[63]. Tus, it is a challenge to determine precise concentra-
tions of sulfheme in oxy-hemoglobin red blood cell
environments.

Structurally, the sulfheme product chromophore is
a covalent heme modifed by incorporating one sulfur with
carbon atoms to generate a sulfur-carbons ring moiety
across the β-β double bond of heme pyrrole B. Tis sulfMb
structure is supported by X-ray [65], NMR [66–69], and
resonance Raman [70, 71] spectroscopy. Figure 1 shows
a visualization model of the sulfHb system containing
partial sulfheme structures in diferent subunits. Te
sulfHb and sulfMb Soret chromophore transitions in the
Soret region occur from 402 nm to 423 nm, coupled with
a unique charge transfer band in the 565 nm to 623 nm
region. Tese transition energies depend on the nature of
the hemeprotein, iron oxidation, ligation, spin states, and
pH [72–80]. Te most prominent transitions for oxy-
sulfhemoglobin are the Soret band at 412 nm, character-
istic of a π to π∗ transition, and the 623 nm band char-
acterized by π to dπ (dyz, dxz) charge transfer transition
associated with the sulfur ring attached to pyrrole B and the
heme iron [73, 81, 82].

Roman-Morales et al. demonstrated that distal histidine
in the E7 position (HisE7) is essential in sulfheme formation
[71]. Te hydrogen bonds between heme Fe(III)-H2O2 or
heme Fe(II)-O2, heme distal His64, and H2S regulate this
process. Mechanistically, the sulfheme formations for met-
aquo Mb (Fe(III))-H2O adduct and oxy-Mb (Fe(II)) in the
presence of H2S show diferent heme intermediates and
energy barriers towards the reaction intermediate heme Cpd
0 (Heme Fe(III)-OOH) and the generation of a thiyl radical
(HS•) [82–85]. Tis reactive sulfur species, suggested pre-
viously [78, 86], explicitly attacks the heme pyrrole B at the
β-β double bond to generate the heme-sulfur fve-member
ring formation. Favorable energy pathways of −135.3 kcal/
mol and −69.1 kcal/mol to the fve-member ring met-aquo
sulfMb structure have been established [82–85]. Tese
mechanisms support the antioxidant role of hydrogen sul-
fde by avoiding the strained formation of the highly reactive
heme compound I (Fe (IV) =O+ •, Cpd I). Upon forming
sulfHb and sulfMb, hemoglobin and myoglobin have an
oxygen reduction afnity of 135 and 2,500 times, re-
spectively [72, 81]. Experimental results suggest that the
diference in charge transfer intensity between sulfMb and
sulfHb in the 620 nm region could be attributed to the lack
of sulfheme formation in oxy-Hb heme centers upon
reaction with H2S [87–89]. As time progresses, the au-
toxidation process leads to the formation of met-aquo-,
hydroxyl, deoxy-, and oxy-sulfheme species, resulting in
energy shifts in the Soret transitions, intensity decrease,
and a broad 623 nm band [72–80]. A possible sulfHb
change in the transition state from R to T, along with the
ligand gateway, plays a role in such an outcome [89]. Tis
idea was benefcial in explaining the 10% to 15% sulfHb
yield in a patient-derived sample [87, 88], but the
mechanistic pathway controlling such behavior remains
unknown. Terefore, there is a practical need, as has been
done for other human hemoglobin derivatives [90–94], to
quantify, with high accuracy and precision, the sulfHb
percentage in the blood as a function of met-aquo Hb and
oxy-Hb concentrations [62–64, 95–100].
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Gas oximeters are the most widely accepted and cost-
efective technique in the biomedical and toxicology
community for addressing this challenge of sulfHb and
met-aquo Hb quantifcation in the presence of oxy-Hb.
However, the concern for this heme quantifcation
method is the overlap between the characteristic elec-
tronic transitions of sulfHb (623 nm) and met-aquo Hb
(635 nm) [62, 101–104]. Alternative techniques have also
been explored [55, 90, 101, 105–107]. For example, high-
pressure liquid chromatography normal phase (NP-
HPLC) and reverse phase (RP-HPCL), coupled with
fuorescence detection, may be used for rapid heme
quantifcation [90]. Te heme Soret is excitable from
390 nm to 410 nm, while its emission is monitored in the
600 nm to 630 nm range. Emission at 662 nm has also been
observed [108]. Similarly, fuorescence spectroscopy with
excitation in the 460 nm region and emission in the
475 nm to 580 nm has been use ranged to investigate the
reaction between the heme system and hydrogen
peroxide-producing oxygen reactive species
[64, 109–114]. However, due to fuorescence signal
quenching by the heme group, UV-vis absorption spec-
troscopy is necessary to monitor these reactions
[62, 102–104]. Terefore, a unique combination of UV-vis
and fuorescence spectroscopy is presented here to
measure sulfhemoglobin formation in the presence of
met-aquo Hb and oxy-Hb. Te results demonstrate
a linear correction between the sulfHb electronic charge
transfer transition at 623 nm and the emission wavelength
of 460 nm upon Soret excitation at 420 nm. Te data
indicate no oxy-Hb or met-aquo Hb interference in this
linear relationship. Furthermore, this new approach en-
ables the measurement of sulfhemoglobin from 0.02% to
13.5% in mixtures of met-aquo hemoglobin with excess
oxy-hemoglobin. Although additional work is needed, the
results strongly suggest that simultaneous monitoring of
sulfHb electronic transition at 623 nm and emission
wavelength 460 nm upon Soret excitation at 420 nm is
a new and revolutionary approach for determining the
percentage of sulfhemoglobin in blood.

2. Methods, Materials, and Sample Preparation

2.1.HEPESBufer 0.05M,pH7.4Preparation. Te bufer was
prepared by adding 2.38 g of 99% HEPES salt (C8H18N2O4S)
to a volumetric fask containing 150mL of ultra-pure
deionized water. Te solution was stirred for about a min-
ute until it completely dissolved. Next, the pH of the solution
was monitored, and NaOH was added until the solution
reached a pH of 7.4. Ten, deionized water was added to
a volume of 200mL of this solution. Te resulting solution
was stored in a crystal bottle in the refrigerator for up to
4months.

2.2. Oxy-Myoglobin, Oxy-Hemoglobin, Met-Aquo Hemoglo-
bin, andHydrogen Sulfde Stock Solutions. Te oxy-Mb stock
solution was prepared by dissolving lyophilized powder of
equine muscle myoglobin (Sigma Aldrich) in 0.05mM
HEPES bufer (pH 7.4) in a sealed vial. Te solution was
degassed by purging it with nitrogen. Aminimum excess (∼2
fold) of sodium dithionite (Na2O4S2) solution was added to
the vial to obtain the deoxy Mb (MbFe(II)) form. Once the
deoxy hemeprotein was obtained, the solution was purged
for 15min with 99% oxygen. A purple-to-red color change
was observed, corresponding to oxy-Mb formation. Te
excess sodium dithionite was removed by passing the so-
lution through Amicon® ultrafltration devices from Mil-
lipore. Te solution spectra were recorded on a UV-vis
Shimadzu 2700 Spectrophotometer using a 1 cm path-
length quartz cuvette (Starna Scientifc) to confrm the
presence of the oxy-myoglobin. Protein concentration was
calculated utilizing the Beer-Lambert law, � A/εb, where c,
A, b, and ε represent concentration (mM), absorbance, path
length (1 cm), and extinction coefcient, respectively. Te
extinction coefcient used for oxy-myoglobin is
136 cm−1·mM−1 at 418 nm [115]. Te oxy-hemoglobin stock
solution was prepared using the same methodology as the
oxy-myoglobin stock solution [71]. Lyophilized human
hemoglobin was obtained from Sigma Aldrich, and the
extinction coefcient used to calculate oxy-hemoglobin
concentrations was 125 cm−1·mM−1 at 415 nm [116]. Te
met-aquo hemoglobin stock solution was prepared by dis-
solving the protein powder in HEPES bufer 0.05mM
(pH 7.4). A 10%molar excess of (K3(Fe(CN)6), ACS reagent,
≥99.0%, was used to fully oxidize the hemeprotein to met-
aquo Hb. A UV-vis spectrophotometer was used to confrm
the presence of met-aquo Hb. Potassium ferricyanide excess
in the solution was removed using Amicon® ultrafltration
devices. Te met-aquo Hb concentration was determined
using the molar extinction coefcient 179 cm−1·mM−1 at
405 nm [117]. Te hydrogen sulfde stock solution (83mM)
was prepared anaerobically in an amber vial by dissolving
0.020 g of sodium sulfde nonahydrate salt (Na2S·9H2O,
≥99.99%, Alfa Aesar) in 1.0mL of HEPES 0.05M bufer at
pH 7.4. Te solution was purged with nitrogen.

2.3. SulfMb and SulfHb Formation Reactions and UV-Vis
Spectrophotometric Measurements. Te samples were pre-
pared using 0.05M HEPES bufer at pH 7.4 and 25°C. Oxy-

Figure 1: Visualization of sulfhemoglobin system containing
partial sulfheme structures.
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myoglobin and oxy-hemoglobin stock solutions were used
to prepare eight individual solutions, each with a concen-
tration of 55 μM, in a 1 cm quartz cuvette with a cap from
Starna Scientifc. To generate sulfMb and sulfHb, aliquots of
the hydrogen sulfde stock solution (83mM) were added to
the oxy-myoglobin or oxy-hemoglobin solutions in a quartz
cuvette, resulting in individual hydrogen sulfde concen-
trations ranging from 55 μM to 1,155 μM. Te formation of
sulfMb and sulfHb was monitored by spectral scanning
using a Shimadzu UV 2700 spectrophotometer every minute
over four hours. Te presence of sulfMb was evaluated by
observing characteristic Q bands around 618 nm, while
sulfHb was identifed by Q-bands around 623 nm as de-
scribed in previous studies [72, 77, 118]. Te formation
reactions of sulfHb and sulfMb using 3–21 fold H2S molar
excess follow a pseudo-frst-order reaction [45]. Using the
OriginLab® Origin 9, the pseudo-frst-order constants (kobs)
values were determined by plotting Ln (A-A∞) versus time
(seconds) for each H2S concentration.Te second-order rate
constant was obtained from the slope of the kobs versus H2S
molar concentration plot. Tis process was performed in
triplicate for each sample. Te corresponding extinction
coefcient used for analysis was 20.8 [97].

2.4. Sulfheme Formation Reaction: Spectrofuorometric
Measurements. Fluorescence spectroscopy measurements
were conducted using a Jasco FP-8500 spectrofuorometer
with the following settings. Excitation and emission slit:
10 nm/10 nm, excitation wavelength: 420 nm, and an
emission wavelength of 460 nm. Measurements were per-
formed at a temperature of 25°C. Initially, an oxy-
hemoglobin solution with a concentration of 55 μM was
mixed with the H2S solution in a concentration ratio of 1 : 21.
Te reaction spectra for sulfhemoglobin formation reaction
were recorded using both UV-vis and fuorescence spec-
troscopy over 65minutes. Next, the spectra of the hemo-
globin species were obtained. Tree 1 cm quartz cuvettes
with caps flled with met-aquo Hb (55.0 μM), oxyHb
(55.0 μM), and sulfHb (5.6 μM), respectively, were analyzed
using a spectrophotometer and spectrofuorometer at 25°C.
Following this, the sulfhemoglobin formation reaction was
initiated by mixing oxy-hemoglobin (55.0 μM), met-aquo
hemoglobin (5.5 μM), and H2S solution (1,155 μM) in a 1 cm
quartz cuvette with a cap. Te cuvette was flled with HEPES
0.05M bufer at pH 7.4 andmaintained at 25°C.Te progress
of the reaction was monitored using UV-vis and fuores-
cence spectroscopy for the frst 65minutes.

3. Results and Discussion

3.1. Optical Absorption of SulfMb and SulfHb Formation at
Prolonged Times. UV-vis spectroscopy was utilized to un-
derstand the conversion from oxy-Mb and oxy-Hb to
sulfMb and sulfHb in the presence of H2S and the pro-
gression of heme byproducts over longer reaction times. Te
aim was to evaluate the formation and stability of sulfMb
and sulfHb over a four-hour reaction period at various
concentrations. In Figure 2(a), the visible transition of

sulfmyoglobin is depicted, with peaks observed at 545 nm
and 582 nm, which are assigned to π to π∗ excitations. A
distinctive charge transfer band is also seen at 618 nm,
representing π to dπ (dyz, dxz) charge transfer transitions
[73, 81, 82]. Te changes in the intensity of these three
electronic transitions are associated with the formation of
met-aquo sulfMb and a mixture of its heme ligand states,
such as sulfMbSH2, deoxy-sulfMb, oxy-sulfMb, and MbSH2
derivatives [72–80]. Teoretical calculations support these
observations [82]. Figure 2(b) displays the 618 nm transition
intensity variation as a function of H2S concentration and
time. Tis analysis enabled the determination of the average
reaction constant, which was found to be 0.61M−1·s−1 for the
process. Tis value provides insight into the rate at which
sulfmyoglobin is formed in the presence of diferent H2S
concentrations.

Similarly, sulfHb formation is observed through the
appearance of the 540 nm and 576 nm electronic transi-
tion, along with the characteristic π to dπ charge transfer
band at 623 nm (Figure 2(c)) [73, 81, 82]. As the reaction
progresses, autoxidation occurs, resulting in the forma-
tion of diferent sulfheme derivatives, which have de-
creased intensities and broadening of their 623 nm bands.
Furthermore, it is noted that not all monomeric subunits
of Hb generate sulfheme, suggesting a mixture of heme
and sulfheme within the tetrameric structure of Hb, which
limits the intensity at 623 nm. Figure 2(d) illustrates the
changes in the strength of the 623 nm transition as
a function of H2S concentration and time. Te data ob-
tained allow for calculating a reaction constant of
1.22M−1·s−1. It should be noted that these constants for
sulfMb (0.61M−1·s−1) and sulfHb (1.22M−1·s−1) do not
fully characterize the kinetics of sulfheme formation.
Instead, they represent the long-term presence of un-
known derivatives. A separate kinetic constant
∼1.0 ×103M−1s−1, determined for the reaction between
met-aquo Mb and hydrogen peroxide (H2O2) in the
presence of H2S, supports the previous assignments [77].

Te energetic barrier to the heme intermediate com-
pound 0 [Fe (III)-OOH, Cpd-0] is 1.9 kcal/mol for the
peroxide reaction between met-aquo hemoglobin and H2O2,
whereas for the oxy-Mb in the presence of H2S, the heme
Cpd-0 has a higher energy of 23.3 kcal/mol [82–85].
However, the relatively small 21.4 kcal/mol diference in
energy barrier cannot account for the kinetic factor difer-
ence of 103. Tis observation further supports the idea that
the low values in the reaction constant represent a mixture of
sulfheme species in sulfMb and sulfHb. Nonetheless, it re-
mains an open question to determine which specifc de-
rivatives could be present that explain the kinetic behavior of
sulfheme in patients displaying symptoms of sulfhemoglo-
binemia. After a reaction time of seven hours between oxy-
Mb, oxy-Hb, and H2S, the spectral changes of sulfMb
(Figure 3(a)) and sulfHb (Figure 3(b)) were analyzed by
converting them into absorbance ratios, namely (A618/A582)
and (A623/A576), as a function of hydrogen sulfde con-
centration. Tese ratios are commonly used to estimate the
yields and purity criteria for sulfheme in samples
[72, 73, 86–88, 118].
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Figure 3 shows that sulfHb exhibits smaller (A623/A576)
ratios than sulfMb (A618/A582). Also, a nonlinear behavior,
specifcally a quasi-sigmoidal curve, is observed for the
sulfhemoglobin formation reaction (Figure 3(b)), whereas

a linear behavior was observed for sulfMb (Figure 3(a)).
Tese observations support the existing literature, which
suggests that these ratios do not follow a linear relationship
with sulfheme concentration. Higher values (1.0 to 3.28)
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than those presented in Figure 3 have been reported for
sulfheme formation [73]. Tese values are associated with
diferent percentages of sulfMb purity (i.e., 90%) and sulfHb
purity (40%, 60%, and 75%) [73, 86, 88]. It has been sug-
gested that as the values of the ratios decrease, indicating
a decrease in the absorbance at higher wavelengths, the
mixture of the sulfheme derivatives increases [86]. Our
fndings suggest that the absorbance ratios (A618/A582) and
(A623/A576) indicate sulfheme formation but do not directly
correlate with sulfheme concentration. Te purity and
mixture of sulfheme derivatives in the samples infuence the
ratios.

Te approach of analyzing the (A623/A576) and (A618/
A582) absorbance ratio has also been applied to examine the
yield of sulfHb in patient-derived samples, ranging from
10% to 15% [73, 87, 88]. Terefore, the smaller ratios ob-
served for sulfHb (A623/A576) and sulfMb (A618/A582) in
Figure 3, after seven hours of reaction times, suggest that this
sulfheme preparation method could provide further insight
into patient-derived sulfHb samples. Te data supports
sulfHb in the presence of sulfHb with inhomogeneity heme
groups, some in their native form and others with the sulfur
atom incorporated. Te factors determining the extent to
which heme groups are sulfurated or remain in their native
state remain challenging to predict [87, 88]. Te presence of
hybrid groups, consisting of sulfurated and native heme
groups, could explain the observed behavior during the
formation of sulfhemoglobin at diferent H2S concentra-
tions. Various factors contribute to this phenomenon, in-
cluding (i) the techniques used for sulfheme synthesis, (ii)
the nature of the oxidizing agent (oxygen or hydrogen
peroxide), (iii) reaction time, (iv) sulfheme ligand species,
(v) autoxidation processes, and (vi) pH. Te (A618/A582) and
(A623/A576) absorbance ratios provide valuable insights into
the concentration of these sulfheme derivates in red blood
cells, but caution should be exercised in interpreting the
results. In summary, analyzing the absorbance ratios can
contribute to understanding the landscape of sulfheme
derivates in red blood cells and provide helpful information
concerning the complexities and factors infuencing their
formation and presence.

3.2. Sulfhemoglobin UV-Vis Absorption and Fluorescence
Response Spectra. In the reaction between oxy-hemoglobin
solution (55 μM) and H2S at a concentration ratio (1 : 21),
sulfhemoglobin formation and additional sulfheme products
were observed using UV-vis and fuorescence spectroscopy
(Figure 4). Te Soret spectrum, which corresponds to the
absorption maximum at 416 nm, suggests the presence of
a mixture of sulfheme derivatives. Pure SHbO2, SHb, and
met-aquoSHb have maximum absorptions at 412 nm,
423 nm, and 403 nm, respectively [73, 81]. A mixture of
sulfHb species is expected in our experiments due to the long
reaction times. In addition, excess hydrogen sulfde in the
reaction plays a signifcant role in product formation as it
can lead to heme reduction under our experimental con-
ditions [45]. For sulfhemoglobin fuorescence detection, the

parameters used were excitation and emission slits 10/10, an
excitation wavelength of 420 nm, and an emission wave-
length of 460 nm. Figure 4 shows a fuorescence profle
signal observed upon sample excitation at 420 nm, with
a maximum emission of 460 nm. Te normalized spectra
show a characteristic Stokes shift of 40 nm (UV-vis ab-
sorption maximum minus fuorescence maximum), which
indicates these processes. It is worth noting that the heme
group typically quenches the fuorescence signal of hemo-
globin. However, in the case of sulfhemoglobin, the sulfur
ring attached to pyrrole B may allow for the observed
fuorescence signal, potentially overcoming, possibly by
another mechanism, the quenching efect.

To investigate the potential of fuorescence spectroscopy
to detect sulfHb in solution, individual UV-vis and fuo-
rescence spectra were obtained for oxy-hemoglobin
(55 0μM), met-aquo hemoglobin (55 μM), and sulfhemo-
globin (5.63 μM), as shown in Figure 5. In the 600 nm region,
the absorption spectra of met-aquo hemoglobin and sulf-
hemoglobin show similar electronic transitions between the
two species. However, the two species have a concentration
diference of approximately tenfold (55 μM and 5.53 μM).
Tis contrast is not observed in the case of oxy-Hb
(Figure 5(a)), where the absorption spectrum difers sig-
nifcantly from those of met-aquo hemoglobin and sulfHb.

As discussed earlier, the smaller intensity of the (A623/
A576) absorbance ratio suggests the presence of a mixture of
sulfHb species. Tis ratio indicates the relative concentra-
tions of the absorbance at 623 nm and 576 nm, respectively,
corresponding to characteristic transitions for sulfHb. Te
diferent ratios observed for met-aquo hemoglobin further
support the notion of a mixture of sulfHb species in the
solution. Tese fndings suggest that fuorescence spec-
troscopy could be a valuable tool for detecting sulfHb in
solution, as the fuorescence properties of sulfHb may difer
from those of the other hemoglobin species. Upon excitation
at 420 nm, which corresponds to the Soret π to π∗ transitions
(415 nm oxy-Hb, 405 nmmet-aquo Hb, and 421 nm sulfHb),
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Figure 5: (a) UV-vis absorption and fuorescence (b) spectra of oxy-hemoglobin (55.0 μM), met-aquo hemoglobin (55.0 μM), and
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a fuorescence response is observed at 460 nm (Figure 5(b)).
Interestingly, the fuorescence response of sulfhemoglobin is
greater in intensity than that of met-aquo hemoglobin or
oxy-hemoglobin, despite the sulfheme species having
a concentration ten times lower than the other hemoglobin
species. Tis fnding further supports the hypothesis that
fuorescence spectroscopy can detect sulfHb. To evaluate
sulfHb formation in a mixture of oxy-hemoglobin (55.0 μM)
and met-aquo hemoglobin (5.5 μM), hydrogen sulfde
(1,155 μM) was added, and the reaction was monitored for
65minutes. Te presence of H2S excess ensures the for-
mation of a mixture of sulfHb derivatives. Under these
conditions, Figures 6(a) and 6(b) show an increase in in-
tensity in the 623 nm and the 460 nm fuorescence spectra,
respectively. Te same experiment was performed without
met-aquo hemoglobin, yielding similar results. Tese results
strongly support the notion that excitation at the sulfheme
Soret transition at 420 nm leads to an increase in fuores-
cence intensity at 460 nm, indicative of sulfHb formation.

3.3. Sulfhemoglobin Correlations of UV-Vis and Fluorescence
Data. Figure 7 illustrates the relationship between the
charge transfer intensity of the transition at 623 nm
(Figure 6(a)) and the fuorescence intensity at 460 nm
(Figure 6(b)) for sulfHb. Te data demonstrate a linear
behavior between these spectroscopic properties. It is worth
noting that a similar trend is observed for the relationship
between the UV-vis spectra of sulfHb formation over time,
as oxy-hemoglobin (55 μM) reacts with H2S solution
(1,155 μM), and the fuorescence intensity at 460 nm. Al-
though this fgure is not shown, the linear relation between
these measurements further supports the signifcance of
sulfHb fuorescence and its correlation with the classical
623 nm sulfheme transition characterized by π to dπ (dyz,
dxz) charge transfer.

Figure 8 demonstrates the relationship between the
fuorescence intensity at 460 nm and the percentage of
sulfHb in the samples, as calculated from Figures 6(a) and
6(b). Physiological levels of sulfHb have been estimated to be
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below 0.037 g/dL (5.5 μM, ∼0.28%), while clinically detect-
able cyanosis symptoms can occur at levels around 0.5 g/dL
(74.4 μM, ∼3.8%) in the blood [1, 57–61]. Severe sulfHb
cyanosis rarely exceeds 10% (200 μM) [62]. Interestingly,
smaller (A623/A576) absorbance ratios have been associated
with a 10% to 15% sulfHb yield in patient-derived sample
[73, 87, 88]. Figure 8 also indicates a direct relationship
between the fuorescence data at 460 nm and the percentage
of sulfheme in the sample. Tese values are similar to the
reported sulfHb range observed in patients. Terefore, this
approach suggests that the relationship between sulfHb
Soret excitation at 420 nm, the induced fuorescence at
460 nm, and its correlation with the charge transfer ab-
sorption at 623 nm is a valuable development that can en-
hance the detection of sulfHb in patients. Nevertheless,
further in vitro and in vivo studies are necessary to better
understand the mixture of sulfheme derivatives present
under the 623 nm transition over extended periods.

4. Conclusion

Te data presented in the study support the idea that the
combination of fuorescence spectroscopy and UV-vis
spectroscopy can be a powerful and efective method for
detecting sulfhemoglobin in the blood. Te fuorescence
response at 460 nm, coupled with the absorbance ratios at
specifc wavelengths, provide valuable information about the
presence and concentration of sulfhemoglobin. Tis ap-
proach ofers a fast and accurate detection method for
sulfhemoglobinemia in patients. Tis technique may allow
healthcare professionals to better understand and determine
sulfhemoglobin levels, allowing for appropriate medical
interventions and treatments as needed.
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