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Aldose reductase has received extensive research as a key enzyme in the development of long-term problems linked to diabetes
mellitus. Overexpression of this enzyme or with exceeded glucose concentration in the blood increases sorbitol on the retina
leading to retinopathy, which is the adverse efect of type II diabetes. Approximately 100million people are sufering from diabetic
retinopathy globally. Tis research is focused on studying the total phenolic content (TPC), total favonoid content (TFC),
antioxidant potential, and aldose reductase inhibiting properties of selected medicinal plants such as Anacyclus pyrethrum,
Bergenia ciliata, Rhododendron arboreum, and Swertia chirayita. In addition, ADMET analysis and molecular docking of seven
previously identifed compounds from the chosen medicinal plants were carried out against human aldose reductase (PDB ID:
4JIR). Te ethanol extract of S. chirayita exhibited the highest TPC (4.63± 0.16mg GAE/g) and TFC (0.90± 0.06mg QE/g).
Analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-based antioxidant assay showed that IC50 of the ethanolic extract of B. cilata
and R. arboreum showed a signifcant antioxidant activity with IC50 value of 0.05mg/mL. Te percentage inhibition of AR by
extract of B. ciliata (94.74± 0.01%) was higher than other plant extracts. A molecular docking study showed that morin isolated
from B. ciliata showed a good binding interaction with AR. Tis study showed that the extracts of A. pyrethrum, B. ciliata, and
R. arboreum could be potential sources of inhibitors against AR to treat retinopathy.

1. Introduction

Aldose reductase (AR) is an NADPH-dependent oxidore-
ductase that metabolizes the transformation of glucose to
sorbitol in the polyol pathway [1]. In hyperglycemic states, an
increased fux of glucose through the polyol pathway has been
thought to harm tissues via diferent processes, including
sorbitol accumulation leading to an osmotic imbalance [2]
and pyridine nucleotide redox state dysregulation decreasing
cellular antioxidant capacity [3], as well as a rise in advanced
glycated end products [4, 5]. In diabetes mellitus, the polyol
pathway produces more sorbitol than normal, which does not
easily difuse across the cell membranes, and the intracellular

sorbitol accumulation has also been linked to the develop-
ment of chronic complications of diabetes, including cata-
racts, neuropathy, and retinopathy (Figure 1) [6–8]. A
complication of diabetes called diabetic retinopathy (DR) is
brought on by high blood sugar levels harming the retina. If
not identifed and treated early, it might result in blindness. In
adults aged 20 to 74, DR is the most common factor in new
instances of blindness [9] and is a leading cause of preventable
blindness among the working population of adults. Ap-
proximately 100million adults worldwide sufer fromDR and
that number is expected to rise to 160.5 million by 2045 [10].
According to the Global Burden of Disease Study, DR is the
ffth leading cause of blindness and vision impairment among
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adults aged 50 and older. Between 1990 and 2020, the age-
standardized global prevalence of blindness caused by diabetic
eye disease increased from 14.9% to 18.5% [9–11].

Inhibitors of AR, including epalrestat, alrestatin, zen-
arestat, ponalrestat, lidorestat, tolrestat, sorbinil, minalrestat,
and fdarestat, were synthesized [12, 13]. Te AR inhibitors
come from two distinct chemical subgroups; sorbinil, Di-
lantin, and minalrestat are examples of hydantoin derivatives.
Similarly, epalrestat, alrestatin, and tolrestat are examples of
carboxylic acid derivatives [14]. Te only commercially ac-
cessible synthetic aldose reductase inhibitor is epalrestat [15].
Te adverse efects of epalrestat have caused it to be taken of
the market in some countries, and all other inhibitors have
failed in clinical studies due to poor pharmacokinetic qualities
[16]. Terefore, it is necessary to investigate the natural
sources to fnd safer therapeutic chemicals. Naturally oc-
curring compounds and medicinal plant extracts exhibit AR
inhibitory efects, and their preclinical ability to treat diabetes
problems is promising [12]. For instance, fowers of the
Rhododendron arboreum are of very highmedicinal value. It is
well known for its versatility and efcacy in treating various
disorders, including eczema, diarrhea, menstrual problems,
choleretic, diuretic, antispasmodic, and anti-infammatory
disorder, and as it acts as an antioxidant [17]. Diferent
pharmacological activities of Swertia chirayita include an-
thelmintic activities [18], hypoglycemic and antipyretic
properties [19], antiviral activities [20], anticancer activities
[21], and hypoglycemic and anti-infammatory activities [22].
Te medicinal plant Bergenia ciliata treats a variety of dis-
orders, including diabetes, cancer, respiratory problems, di-
arrhea, fever, cough, vomiting, and is also used for wound
healing [23]. Te roots of Anacyclus pyrethrum are advocated
for use in folk medicine to treat a variety of ailments,

including angina, digestive issues, female infertility, lethargy,
and even paralysis of the tongue and limbs [24]. A. pyrethrum
roots also exhibit sialagogue [25], aphrodisiac [26], immu-
nostimulant [27], anti-infammatory [28], anticonvulsant,
antioxidant [29], antidiabetic, and memory-improving efects
[30]. Some computational analyses have been developed to
support the in vitro assays investigating the potential binding
mechanisms of compounds. Molecular docking helps in the
feld of in silico drug design by identifying the molecules that
can bind to a protein’s active site. It illustrates how a prom-
ising therapeutic candidate (ligand) interacts with the target
receptor’s binding site and inhibits the target receptor’s bi-
ological and catalytic activities [31]. Likewise, before chemical
synthesis and biological testing, the prediction of biological
activity for substances (PASS) can be used to estimate the
biological activity profles of compounds [32]. In this study,
we focused on some medicinal plants, which contain im-
portant bioactive compounds that could inhibit the catalytic
activity of an enzyme aldose reductase (AR) thereby pre-
venting diabetic complications through in vitro and in silico
studies.

2. Materials and Methods

2.1. Chemicals. Most of the chemicals and solvents were of
the analytical grade. Gallic acid and 2,2-diphenyl-1-pic-
rylhydrazyl (DPPH) were purchased from Molychem and
Hi-Media (India), respectively.

Quercetin, dimethyl sulfoxide (DMSO), ethanol, ace-
tone, and other solvents were purchased from Fisher Sci-
entifc (India), E. Merck, and Qualigens. Sorbinil and DL-
glyceraldehyde were purchased from Sigma-Aldrich and
NADPH from Calbiochem.
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Figure 1: Role of aldose reductase in diabetic complications.
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2.2. Collection of Plant Materials. Diferent parts (leaves,
rhizomes, fowers, and fruits) of plants were collected from
various parts of Nepal based on the ethnomedicinal and
traditional medicinal practices, as shown in Table 1. Rho-
dodendron arboreum was collected from Kathmandu while
Anacyclus pyrethrum, Bergenia ciliata, and Swertia chirayita
were collected from the Kaski district of Nepal. Te plant
samples got identifed at the National Herbarium and Plant
Laboratories at Godawari, Lalitpur, Nepal.

2.3. Preparation of Plant Extract. Te plant materials were
grounded into a fne powder after being air-dried for
a month at room temperature in a shady place. Te mac-
eration method was applied for preparing a crude extract of
medicinal plants. For this, 160mL of 95% ethanol and 60 g of
fne powder were mixed at room temperature for three days.
Te dissolved components were fltered daily and kept in
a glass bottle. Te fnal collection of the dissolved parts was
then evaporated at a reduced pressure at 50°C using a rotary
evaporator to yield the crude extracts.

Percentage yield �
Dry weight of   extract
Dry weight of   sample

× 100%. (1)

2.4. Phytochemical Screening. Phytochemicals are a variety
of primary and secondary metabolites responsible for
antihyperglycemic, anti-infammatory, antidiabetic, and
antimicrobial action along with other recognized biological
activities which are abundant in medicinal plants and herbs
[36]. Major phytoconstituents present in the crude extracts
ofA. pyrethrum, B. ciliata, S. chirayita, and R. arboreumwere
screened by using standard qualitative methods as presented
in [37, 38] and [39]. Assays were carried out to ascertain
favonoids, alkaloids, phenolic compounds, steroids, car-
bohydrates, saponins, tannins, and terpenoids. Flavonoids
were detected based on the Shinoda test and alkaline test.
Braemer’s test, Salkowski’ test, and foam test were per-
formed for the detection of tannins, terpenoids, and sapo-
nins, respectively. Phenolic compounds and alkaloids were
determined by the ferric chloride test and Mayer’s test,
respectively. Fehling’s test and steroid test were performed to
detect carbohydrates and steroids.

2.5. Determination of the Total Phenolic Content and Total
Flavonoid Content. Te naturally occurring phenolic and
favonoid components have an antioxidant ability, which in
turn prevents the chain reaction of reactive oxygen species.
Reactive oxygen species have the potential to induce oxi-
dative stress [40]. Te total phenolic content of the extracts
was determined by using the Folin−Ciocalteu colorimetric
method [41, 42]. Initially, 0.5mL of 95% ethanol extract was
mixed with 5mL of 10% Folin−Ciocalteau reagent, and 4mL
of 1M Na2CO3 solution was added. Te mixture was sub-
sequently left to stand for 15minutes at room temperature.
Te absorbance of the reaction mixture was measured at
765 nm by using a spectrophotometer.

Similarly, the total favonoid content was determined
according to the colorimetric method [43, 44]. For this,
0.5mL of the extract (5mg/mL) was mixed with 1.5mL of
95% ethanol and 0.1mL of aluminum trichloride (AlCl3,
10%). Subsequently, 0.1mL of 1M potassium acetate and
2.8mL of distilled water were added to each bottle, and the
reaction mixture was allowed to stand for 30minutes. Te
UV-visible spectrophotometer was used to measure the
absorbance at 415 nm. Te standard curve for quercetin
(10–50 µg/mL) was utilized for TFC and standard gallic acid
(10–80 µg/mL) was used for TPC. Te amount of all poly-
phenolic and favonoid components in the extracts was
represented as milligrams of gallic acid and quercetin
equivalent per gram of dry weight, respectively.

2.6. Determination of Antioxidant Activity. Antioxidants
interact with free radicals and prevent the oxidative stress
induced by excess free radicals. One of the stable free radicals
is 2,2-diphenyl-1-picrylhydrazyl (DPPH), which shows
a strong absorption band at 517 nm, and the absorption
decreases when reduced by an oxidant [45]. Based on the
radical scavenging properties of DPPH, the antioxidant
activity of the extracts and the standard (ascorbic acid) were
evaluated following the protocol of Alabri et al. [46]. Various
concentrations of the plant extract (sample solutions) and
ascorbic acid (reference samples) were prepared in ethanol
(1000, 500, 100, and 50 µg/mL). To the various concentra-
tions of the sample plant extracts and ascorbic acid solutions,
4mL of a 0.1mM DPPH solution in ethanol was mixed. Te
mixture was left in the dark for 30minutes. Similarly, 1mL
of ethanol (solvent) was added to 4mL of 0.1mM DPPH as
a control, and themixture was left in the dark for 30minutes.
Te absorbance was measured at 517 nm after 30minutes.
Te following equation is used to determine the ability to
scavenge the DPPH radical [47]:

Percentage  scavenging �
Ao–At

Ao

× 100%, (2)

where Ao � absorbance of DPPH solution (control, without
samples) and At � absorbance of solution mixture of the test
or reference sample and DPPH.

Te percentage scavenging was then plotted against
concentration and a regression equation was obtained from
which IC50 values were calculated for each plant extract by
the formula given in Microsoft Excel 2007 software.

2.7. Inhibition of Aldose Reductase. Te aldose reductase
inhibition activity of the selected plant extract was accessed
spectrophotometrically, by using glyceraldehyde as a sub-
strate and NADPH as a cofactor following the protocol of
Nakano and Petrash [48]. Initially, 100 μL of potassium
phosphate bufer (pH 7.0), 755 μL of double distilled water,
20 μL of 1mM DL-glyceraldehyde, 100 μL of 1.5mM
NADPH, and 20 μL of plant extract were added to the
cuvette. Similarly, the blank solution contains 20 μL of
double distilled water instead of plant extract. After that,
5 μL of RHAR was added and sorbinil was used as a positive
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control for the inhibitor study. Te optical density (OD) of
the reaction was monitored at 340 nm for 5minutes at the
interval of 30 seconds and the percentage inhibition was

calculated. A decrease of OD/min represents the inhibition
activity.

Percentage  inhibition �
OD of blank solution –ODof plant extract

ODof blank solution
× 100%. (3)

2.8. Statistical Analysis. All the experiments were performed
in triplicates and data were presented in mean± standard
error from three independent assays. Microsoft Excel 2007
software was used to calculate TPC, TFC, and antioxidant
assay. All the chemical structures were prepared by using
ChemDraw Ultra 12.0 software. Principle component
analysis (PCA) and correlation analysis were performed by
using R (version 4.2.1) and R Studio (version 2022.07.1).

2.9.Molecular Docking Studies and Pharmacokinetic Analysis

2.9.1. Determination of Ligands and Receptors. A list of
isolated compounds from the diferent parts (i.e., rhizome,
fower, and whole plant) of the selected medicinal plants was
prepared through a literature review. Te bioactive com-
pounds were chosen based on earlier in vitro research. Te
selected compounds were morin, catechin, coumaric acid,
arbutin, ursolic acid, kaempferol, and swertiamarin which
are shown in Table S1 with their IC50 or percentage in-
hibition and their chemical structures are shown in Figure 2.

2.9.2. Receptor and Ligand Preparation. Te crystal struc-
ture of the protein was retrieved from Protein Data Bank
(https://www.rcsb.org/) and prepared using BIOVIA Dis-
covery Studio Visualizer 2020. Te water, ligands, and
heteroatoms were deleted, while polar hydrogens and
Kollman’s charges were added. Before removing the com-
plex ligands, their attributes were observed and noted. Te
PubChem database was searched for the ligands. Tey were
optimized for docking and were saved in .pdbqt format by
using the AutoDock tool.

2.9.3. Molecular Docking. Molecular docking was carried
out using AutoDock Vina software version 1.5.7. Te
characteristics, including the position and size of the grid
box, were defned in a confguration fle. Te obtained grid
box had the following dimensions: x� −8.4388, y� 8.820,
and z� 18.683; size X� 40, Y� 40, and Z� 40; and
exhaustiveness� 8. Te cocrystalized ligand was removed
from the cocrystal structure and redocked with the same

receptor (i.e., 4JIR) to validate the docking structure. Te
docking studies were carried out for the selected ligands
along with standard epalrestat. After docking, the pose with
the lowest binding energy (kcal/mol) and most H-bonds was
determined to be the best. Te binding interaction between
the ligand and receptor was examined using BIOVIA Dis-
covery Visualizer.

2.9.4. Pharmacokinetic and ADMET Profle. To reduce side
efects, ADMET and drug-likeness of potential hit com-
pounds are essential for the pharmaceutical industry [49].
Te pharmacokinetic parameters were predicted using the
web-based program SwissADME (https://www.swissadme.
ch) [50]. Te rule of fve, commonly known as Lipinski’s
rule, is used to determine drug-likeness [51]. Another web
server, ProTox-II, was used for the toxicity analysis [52].

2.10. Estimation of Biological Activity. Te selected phyto-
chemical’s biological activity was predicted by using the
mainWay2Drug server. It predicts a wide range of biological
activity based on the structure of molecules instantaneously.
Te activity is determined using the variables Pa (probable
activity) and Pi (probable inactivity). For a specifc phar-
macological activity, only substances with a Pa greater than
Pi were examined [32]. As a result, it is possible to forecast
whether ligands are potentially active or inactive based on
their Pa and Pi values.

Te detailed experimental procedure of this research
work is shown in Figure 3.

3. Results

3.1. Phytochemical Analysis. Te extract prepared from
dissolving 60 g of dry weight in ethanol showed variation in
the percentage yield from 18% to 42%. Out of the four
extracts, R. arboreum showed the highest percentage yield
with 42% followed by A. pyrethrum (37%), B. ciliata (30%),
and S. chirayita (18%) as shown in Table 2. Similarly, the
phytochemical analysis of plant crude extracts displayed the
presence of favonoids, glycosides, tannins, and terpenoids
in all plants. However, proteins, amino acids, and saponins

Table 1: Description of the selected medicinal plants.

Scientifc name Family Parts used Traditional usage References
Anacyclus pyrethrum Asteraceae Rhizome Used to treat toothaches, salivary secretions, and digestive problems [33]
Bergenia ciliata Saxifragaceae Rhizome Used to treat fever and cough [34]
Rhododendron arboreum Ericaceae Flower Used to cure fever, stomach ache, and blood dysentery [17]
Swertia chirayita Gentianaceae Whole plant Used to treat liver disorders, malaria, and diabetes [35]
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were found in all plants except R. arboreum. All these
fndings of plant crude extracts are shown in Table S2.

3.2. Determination of TPC and TFC. Te total phenolic
content (TPC) of the extract is expressed in terms of gallic
acid equivalent (mg GAE/g dry weight of extract) with
a calibration curve of gallic acid ((y� 0.001x+ 0.001,
R2 � 0.989) and (y� 0.014x, R2 � 0.988)). Similarly, the total
favonoid content (TFC) of the diferent plants in ethanol
extract is expressed in terms of quercetin equivalent (mgQE/
g) with a calibration curve of quercetin (y� 0.012x− 0.007,
R2 � 0.997).

Te ethanol extract of S. chirayita showed the highest TPC
(4.63± 0.16mg GAE/g) and TFC content (0.90± 0.06mg QE/
g) followed by R. arboreum and A. pyrethrum, respectively
(Table 2).

3.3. DPPH Free Radical Scavenging Activity. Free radical
scavenging was performed to evaluate the antioxidant ac-
tivity of plant extracts, and the result was expressed as IC50
(half inhibitory concentration). Stable 1, 1-diphenyl-2-pic-
rylhydrazyl (DPPH) was used to measure the free radical
scavenging activity. Te results were compared with the
standard ascorbic acid with an IC50 value of 0.015mg/mL.
Te ethanolic extract of B. ciliata and R. arboreum showed
signifcant antioxidant activity with an IC50 value of 0.05mg/
mL, while A. pyrethrum and S. chirayita extract exhibited
a poor antioxidant activity with IC50 of 0.28mg/mL and
0.54mg/ml, respectively.

3.4. Aldose Reductase Inhibitory Activity. Te crude ethanol
extracts of all four plants were found potent towards RHAR.
Te ethanolic extract of B. ciliata showed a greater inhibitory
efect on RHAR (94.74± 0.01%) followed by A. pyrethrum,
R. arboreum, and S. chirayita (89.47± 0.01%, 63.64± 0.01%,
and 56.25± 0.01%), respectively.

3.5. Statistical Analyses

3.5.1. Correlation. Te Shapiro−Wilk test has indicated that
all data are normally distributed (having a p value greater
than 0.05), as shown in Table 3.

Since data are normally distributed, the Karl−Pearson
correlation coefcient was evaluated (Table 4).

Te Karl−Pearson coefcient demonstrates a strong
positive correlation between TPC and IC50 and a strong
negative correlation between TPC and RHAR. However,
TPC and TFC are weakly correlated and RHAR shows

a strong negative correlation with all three components, i.e.,
TPC, TFC, and IC50.

3.5.2. Principal Component Analysis. Te scree plot of
principal component analysis is shown in Figure 4, and it
shows that only two components have an eigenvalue greater
or equal to 1. So, only principal components 1 and 2 were
used for further analysis as they account for the majority of
variance in data. Tables S3 and S4 show that all the variables
except RHAR are negatively correlated to PC1. In addition,
only TPC is negatively correlated to PC2.

3.6. Molecular Docking Analysis. Table 5 shows the ligand’s
binding afnities (docking scores) and H-bonding catalytic
residues for human aldose reductase (PDB ID: 4JIR). Te
results of the docking analysis suggested that morin
(−9.2 kcal/mol), ursolic acid (−8.9 kcal/mol), and kaemp-
ferol (−8.2 kcal/mol) were the potential candidates that
could inhibit the target protein. Te active sites of the re-
ceptor are shown in bold in Table 5. Morin was observed to
form fve conventional hydrogen bonds at LYS-21, TYR-48,
GLN-183, SER-214, and CYS-298, whereas two pi-pi stacked
bonds formed at TRP-20 and TYR-289. Similarly, the
control drug epalrestat was stabilized by one conventional
hydrogen bond at TRP-111. Along with H-bonding, addi-
tional interactions between the epalrestat andmorin with the
receptor included pi-pi, alkyl, and pi-alkyl, as shown in
Figure 5. Similarly, the 2D and 3D interactions of other
compounds are shown in Figure S1.

3.7. Pharmacokinetic and ADMET Properties. Te phar-
macokinetics and drug-like characteristics of the chosen
compounds are shown in Table S5. Ursolic acid breaks one
out of the fve rules, but all other compounds were found

Table 2: Physical characteristics, percentage yield, TPC, and TFC of plants in the ethanol extract.

Plants Color
of crude extract Percentage yield (%) TPC (mg GAE/g) TFC (mg QE/g)

S. chirayita Dark brown 18 4.63± 0.16 0.90± 0.06
R. arboreum Red 42 4.56± 0.06 0.45± 0.05
A. pyrethrum Dark brown 37 3.07± 0.07 0.62± 0.01
B. ciliata Dark brown 30 2.86± 0.21 0.48± 0.08

Table 3: Shapiro−Wilk test for normality.

TPC TFC RHAR IC50

W 0.79965 0.87305 0.87918 0.8607
P value 0.1016 0.3098 0.3351 0.2627

Table 4: Karl−Pearson correlation coefcient.

TPC TFC RHAR IC50

TPC 1 0.4018469 −0.991292 0.9002571
TFC 0.4018469 1 −0.5184795 0.7193974
RHAR −0.991292 −0.5184795 1 −0.9458361
IC50 0.9002571 0.7193974 ₋ 0.9458361 1
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Figure 4: (a) Scree plot of principal component analysis and (b) principal component plot.

Table 5: Docking score results for human aldose reductase (PDB ID: 4JIR) receptor and selected metabolites.

Compound Docking score (kcal/mol) Interacting residue Interaction type Bond separation (Å)

Epalrestat −8.1

TRP-111 Conventional hydrogen bond 2.67
PHE-122 Pi-pi stacked 4.96

TRP-219 Pi-sulfur 5.83
Pi-pi T-shaped 4.97

ALA-299 Pi-alkyl 5.36
LEU-301 Pi-alkyl 4.56

Morin −9.2

GLY-18 Carbon H-bond 3.66
TRP-20 Pi-pi stacked 5.61
LYS-21 Conventional hydrogen bond 1.96
TYR-48 Conventional hydrogen bond 2.53
GLN-183 Conventional hydrogen bond 2.44
TYR-209 Pi-pi T-shaped 3.97

SER-210 Carbon hydrogen bond 2.88
Pi-sigma 3.97

PRO-211 Pi-alkyl 5.33
LEU-212 Pi-alkyl 5.49
SER-214 Conventional hydrogen bond 1.96
PRO-215 Pi-donor hydrogen bond 3.35
CYS-262 Carbon hydrogen bond 3.08
CYS-298 Conventional hydrogen bond 3.35

Catechin −8.4

HIS-110 Conventional hydrogen bond 2.21

TRP-111 Conventional hydrogen bond 2.0
Pi-pi T-shaped 2.31

PHE-122 Pi-pi stacked 4.17
CYS-298 Pi-alkyl 4.76
SER-302 Conventional hydrogen bond 2.30

Coumaric acid −7.4
HIS-110 Conventional hydrogen bond 1.90
TYR-209 Pi-sigma 3.78
SER-210 Pi-donor hydrogen bond 3.04

Arbutin −6.6

TRP-111 Conventional hydrogen bond 2.20
Pi-pi T-shaped 5.43

PHE-122 Pi-donor hydrogen bond 2.96
CYS-298 Pi-alkyl 4.98
ALA-299 Conventional hydrogen bond 2.30
LEU-300 Conventional hydrogen bond 2.87
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with no violations, indicating greater drug-like character-
istics. Te standard compound, epalrestat, also showed zero
violation of the Lipinski’s rule but fell under toxicity class
two. Table S6 shows the results of ADMET and toxicity
analysis.

3.8.PASSActivityAnalysis. Teprediction of activity spectra
for substances (PASS) was analyzed with selected phyto-
chemicals as shown in Table S7. Pa and Pi are the two
parameters that played a role in PASS prediction, and their
values ranged from 0 to 1. Table S3 shows that all our
phytocompounds except ursolic acid showed activity of

aldose reductase inhibitor. Among the phytocompounds,
morin had the highest value of Pa 0.456.

4. Discussion

Many people worldwide are attempting to fnd efective
drugs to treat diabetes and related illnesses as a result of the
growing attention given to the global challenges of diabetes
and related disorders over the past few decades. Te de-
velopment of new drugs is greatly aided by medicinal plants.
Te use of medicinal plants in the treatment of diabetes and
their efectiveness in reducing its secondary consequences
are topics that have attracted a lot of research in the recent

Table 5: Continued.

Compound Docking score (kcal/mol) Interacting residue Interaction type Bond separation (Å)

Kaempferol −8.2

TRP-20 Pi-pi stacked 5.68
TYR-48 Conventional hydrogen bond 1.82
TRP-111 Pi-pi T-shaped 5.61

TRP-219 Pi-pi T-shaped 5.36
Pi-pi stacked 5.86

LEU-301 Conventional hydrogen bond 2.99
SER-302 Conventional hydrogen bond 2.28

Ursolic acid −8.9 TRP-20 Pi-sigma 3.97
HIS-110 Conventional hydrogen bond 2.92

Swertiamarin −6.8

TRP-111 Conventional hydrogen bond 2.45
TRP-219 Pi-alkyl bond 5.15
ALA-299 Alkyl bond 4.45

LEU-300 Carbon hydrogen bond 3.55
Pi-sigma bond 3.87

LEU-301 Alkyl bond 4.40
SER-302 Conventional hydrogen bond 2.36

Lidorestat −8.5

TRP-20
Conventional hydrogen bond 2.24

Pi-pi stacked 7.29
Pi-pi T-shaped 6.10

HIS-110 Pi-cation 4.58
TRP-111 Pi-pi T-shaped 5.43

TRP-219 Pi-pi stacked 4.58
Pi-pi T-shaped 5.46

VAL-297 Halogen (fuorine) 2.02
CYS-298 Pi-alkyl 4.93
ALA-299 Conventional hydrogen bond 2.02
LEU-300 Conventional hydrogen bond 2.54
LEU-301 Pi-alkyl 5.39

Sorbinil −8.1

TRP-20 Pi-pi T-shaped bond 5.49
Pi-alkyl bond 6.03

HIS-110 Pi-cation bond 4.27
TRP-111 Conventional hydrogen bond 2.81
CYS-298 Alkyl bond 4.54, 5.49
ALA-299 Conventional hydrogen bond 2.91
LEU-300 Conventional hydrogen bond 2.08

RG7774 −7.6

PHE-122 Pi-alkyl bond 5.33

TRP-219 Pi-pi stacked 4.56, 4.85
Pi-alkyl 3.93, 4.47

ALA-299 Conventional hydrogen bond 1.92
Pi-alkyl 4.82, 5.00

LEU-300 Pi-alkyl 5.10

LEU-301
Conventional hydrogen bond 2.56

Pi-alkyl 4.55
Pi-sigma 3.60
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years [53]. For more than 40 years, extensive research has
been conducted on the signifcant enzyme known as AR. It
has repeatedly been linked to the etiology of diabetic
problems and acts as a rate-limiting enzyme in the polyol
pathway. Te reduction of glucose to sorbitol is catalyzed by
this enzyme [54]. In the present study, we have selected four
diferent medicinal plants which are evaluated for the

inhibition of AR. Results of a study showing inhibition of
RHAR by ethanolic extracts of B. ciliata, R. arboreum,
A. pyrethrum, and S. chirayita indicated signifcant outputs.
Te ethanolic extracts of B. ciliata exhibited greater
(94.74± 0.01%) inhibition of RHAR followed by
A. pyrethrum, R. arboreum, and S. chirayita (89.47± 0.01%,
63.64± 0.01%, and 56.25± 0.01%), respectively. But

Interactions
Conventional Hydrogen Bond
Pi-Sulfur
Pi-Pi Stacked

Pi-Pi T-shaped
Pi-Alkyl

(a)

Interactions
Conventional Hydrogen Bond
Pi-Sulfur
Pi-Pi Stacked

Pi-Pi T-shaped
Pi-Alkyl

(b)

Interactions
Conventional Hydrogen Bond
Pi-Sulfur
Pi-Pi Stacked

Pi-Pi T-shaped
Pi-Alkyl

(c)

Interactions
Conventional Hydrogen Bond
Pi-Sulfur
Pi-Pi Stacked

Pi-Pi T-shaped
Pi-Alkyl

(d)

Figure 5: (a–d) Te 2D and 3D interactions of epalrestat and morin with 4JIR, respectively.
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comparatively, the solvent used to dissolve the extracts of
dimethyl sulfoxide (DMSO) showed a low (33.33± 0.01%)
inhibition of RHAR. Besides the signifcant AR inhibition,
all plants demonstrated the presence of a considerable
number of diversifed components. Te essential phyto-
chemicals and several secondary plant metabolites found in
the medicinal plants are crucial for their antibacterial, anti-
infammatory, and other known biological efects [55]. Tis
investigation reported reliable amounts of phenols, favo-
noids, tannins, and alkaloids detected from the ethanolic
extracts of plants. Te presence of secondary metabolites is
usually associated with potential biological efects [56]. Te
vast variety of physiologically active substances make up the
main secondary metabolites known as phenolic compounds
which function as reducing and antioxidant agents because
of their redox characteristics [57]. In addition, favonoids are
also recognized as signifcant biological compounds with
a variety of biological efects, including antioxidant, anti-
cancer, anti-infammatory, antiangiogenic, and antiallergic
properties [58]. Moreover, in the plant system, antioxidants
are responsible for detoxifying reactive oxygen in-
termediates. Commonly, DPPH is used to screen antioxi-
dants. Te extract’s ability to scavenge free radicals is
evidenced by the DPPH solution’s discoloration [59]. Table 6
compares the antioxidant, TPC, and TFC activity of the
selected plants with data from earlier studies and current
fndings.

On the other hand, docking analysis showed that out of
seven selected phytocompounds, morin and ursolic acid
showed signifcant interaction (ΔG<−8.0 kcal/mol) with the
receptor. Morin had the best docking score (ΔG� −9.2 kcal/
mol), forming fve H-bonds, two with active residues
(TYR-48 and CYS-298) and three with nonactive residues
(LYS-21, GLN-183, and SER-214). Arbutin showed a good
afnity (ΔG� −6.6 kcal/mol) for forming H-bonds with
TRP-111, ALA-299, and LEU-300. Te coumaric acid and
ursolic acid showed only one H-bond (HIS-110) with a re-
ceptor. In our study among the docked compounds, morin
had the highest binding afnity (−9.2 kcal/mol), out-
performing the clinically tested ARIs lidorestat (−8.5 kcal/
mol), sorbinil (−8.1 kcal/mol), and RG7774 (−7.6 kcal/mol),
as well as the commercial drug epalrestat (−8.1 kcal/mol).
Te catalytic residue contains H-bonding with TRP-20,
TYR-48, HIS-110, TRP-111, CYS-298, ALA-299, LEU-300,
and SER-302, which resembles the previously described
active residues [63]. TYR-48 and HIS-110 are positioned
adjacent to the C4 of the nicotinamide ring in structural

models of human aldose reductase complexed with NADPH,
suggesting that one of these residues may serve as the proton
donor in the reaction process. A hydrogen-bonding network
that comprises LYS-77 and ASP-43 also includes TYR-48.
So, ASP-43, LYS-77, and HIS-110 are important active sites
for aldose reductase inhibition [64]. While ADMETanalysis
showed that all compounds get absorbed readily in the
intestine, Cytochrome CYP450 (1A2, 2C9, 2C19, 2D6, and
3A4), which is primarily in-charge of the biotransformation
of more than 90% of the drugs in phase-1 metabolism, has
a considerable impact on drug metabolism [65]. Morin
showed CYP1A2, CYP2D6, and CYP3A4 inhibitions, and
kaempferol showed CYP2D6 and CYP3A4 inhibitions.
Coumaric acid readily crossed the BBB while other com-
pounds were not found to cross the BBB. Morin and ursolic
acid showed immune toxicity, while only ursolic acid
showed hepatotoxicity. None of the compounds showed
cytotoxicity. From the toxicity class and LD50 analysis, it can
be concluded that catechin (having LD50 10,000) was safer to
use. Besides this, from PASS analysis, all phytochemicals
showed antidiabetic activity.

Several in vitro studies were also performed on the se-
lected phytochemicals for AR inhibition. For example,
morin showed 75% inhibition at 10−5M against lens AR
[66]. Catechin showed inhibition against porcine AR with an
IC50 value of 280 µm/L [67]. Coumaric acid showed in-
hibition against cataracted human eye lens AR and rat
kidney AR with IC50 values of 162.31± 12.6 µg/mL and
0.057mM, respectively [68, 69]. Arbutin showed 45.25%
inhibition by 10 gm/mL against rat AR [70]. Ursolic acid
showed inhibition against RHAR with an IC50 value of
9.69 µM [71]. Kaempferol and swertiamarin showed in-
hibition with IC50 of 6.94 g/mL and 7.59 µg/mL, respectively,
against rat lens AR [70, 72].

Furthermore, the correlation among TPC, TFC, anti-
oxidant activity, and RHAR inhibition property was de-
termined by principal component analysis (PCA). PCA was
carried out to break the dataset for the reduction of di-
mensionality. Tough principal component analysis was
carried out for four components, only two components
showed an eigenvalue greater than 1. So, only two com-
ponents were chosen for further analysis. Tese two com-
ponents were responsible for 99.8% of the variance of data.
From, the factor loading score, it can be concluded that PC1
is primarily a measure of RHAR, and PC2 is primarily
a measure of TFC, as only these variables have a positive
factor loading greater than 0.5.

Table 6: Comparative study of TPC, TFC, and antioxidant activity between the previous study and current fndings.

Plants

Present study Previous study

ReferencesTPC (mg
GAE/g)

TFC (mg
QE/g)

Antioxidant
activity
(mg/mL)

TPC (mg
GAE/g)

TFC (mg
QE/g)

Antioxidant
activity

A. pyrethrum 3.07± 0.07 0.62± 0.01 0.28 25.96 0.88 0.18mg/mL [60]
B. ciliata 2.86± 0.21 0.48± 0.08 0.05 63.49 72.70 122 µg/mL [23]
R. arboreum 4.56± 0.06 0.45± 0.05 0.05 123.6 — 102.06 µg/mL [61]

S. chirayita 4.63± 0.16 0.90± 0.06 0.54 243.02± 4.70 4.98± 0.40mg rutin
equivalent/g 267.80 µg/mL [62]

10 Journal of Chemistry



5. Conclusion

Since antiquity, several diseases have been treated with
traditional medicinal plants. About 90% of the Nepalese
population residing in rural areas depends on traditional
medicine as they lack governmental healthcare facilities.Tis
study focused on the evaluation of phytochemicals and
biological activity of four diferent plants collected from
diferent places in Nepal. From in vitro analysis, we found
that the ethanolic extract of the selected plant has signifcant
aldose reductase inhibition. Tis was confrmed by a mo-
lecular docking analysis of the human aldose reductase
protein.Te ethanolic extract of B. ciliata, A. pyrethrum, and
R. arboreum exhibits a signifcant antioxidant activity with
a high TPC and exhibited greater inhibition of RHAR. Te
previously isolated morin from B. ciliata showed a high
binding afnity with a greater number of H-bonding to-
wards catalytic residues by docking analysis. Although
in vitro results of this study may have limited implications,
these fndings provide the direction for exploring medicinal
plants taken under study to avert or delay the onset of di-
abetic complications. Further studies on animal models and
the isolation of pure compounds are required to support
these fndings [73].
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