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Herein, zinc oxide nanoparticles (ZnO NPs) were synthesized using Parthenium hysterophorus whole plant aqueous extract as
reducing and capping agents. Te synthesized ZnO NPs were characterized via UV-Vis spectroscopy, Fourier-transform infrared
spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray difraction (XRD),
and dynamic light scattering (DLS). An intrinsic optical absorbance of ZnO NPs occurred at 337 nm in the UV-Vis spectrum.Te
FTIR analysis revealed the presence of secondary metabolites responsible for reducing and stabilizing the nanoparticles. Fur-
thermore, SEM and TEM images revealed that ZnO NPs were spherical with an average particle size of 38 nm. Te XRD analysis
revealed that ZnO NPs had a hexagonal wurtzite crystal structure with a crystallite size of 42.6 nm. Te synthesized nanoparticles
were investigated for degradation ability against methylene blue dye at varying conditions of ZnO NPs’ dosage, methylene blue
concentrations, pH, temperature, and interaction time. Degradation efciency of 55.69%was obtained at optimal conditions using
50mg of ZnO NPs, 5mg/L of MB dye concentration, and pH 12 and at 65°C within 32minutes. Due to their novel green synthesis
route, Parthenium hysterophorus-mediated ZnO NPs are promising candidates for removing persistent organic dyes from aquatic
environments.

1. Introduction

Aquatic pollution by industrial efuents and emissions from
wastewater treatment plants is a serious threat facing hu-
manity and the ecosystem [1, 2]. Among the industrial
wastewater contaminating our water systems are organic
dyes from textile, cosmetic, paper, plastic, and pharma-
ceutical factories [3–5]. Tese organic dyes endanger water
quality, and some, such as methylene blue, are non-
biodegradable and toxic because of their mutagenic and
carcinogenic properties, threatening human health [6].

Chemical, physical, and biological methods are con-
ventional methods employed in wastewater treatment to
remove contaminants, including dyes [5]. However, these
methods have drawbacks in removing the contaminants at
low concentrations. Recently, researchers have embraced
green nanotechnology to develop materials in nanoscale size

that can efectively remediate the pollutants before being
discharged into the water system [7–11]. Chemical, bi-
ological, and physical methods are the primary methods
employed in the synthesis of nanoparticles [11, 12].
Chemical and physical processes of synthesizing nano-
particles include coprecipitation, pyrolysis, thermal de-
composition, sol-gel, solvothermal, laser ablation, and ball
milling [13, 14]. However, both chemical and physical
processes of synthesizing nanomaterials have drawbacks of
using toxic chemicals and being time-consuming, energy
inefcient, and cost-inefective [14–16]. Researchers fnd
biological methods for synthesizing nanomaterials more
attractive because they are environmentally friendly and
cost-efective [16, 17]. Biological methods involve the use of
microorganisms and plants. However, the use of microor-
ganisms is characterized to be labor-intensive and involves
delicate procedures in microbe isolation, growth,
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maintenance, longer synthesis time, and the possibility of
forming toxic byproducts [18, 19]. To promote environ-
mentally friendly chemistry, using aqueous plant extracts in
synthesizing metallic nanoparticles is preferred because of
their cost-efectiveness, simplicity, little or no toxicity in
products, and ease in large-scale production of nanoparticles
[15, 18–21].

Zinc oxide nanoparticles (ZnO NPs) fnd wide appli-
cation in cosmetic, photocatalysis, plasmonic, sensors, pure
water technologies, and optoelectronics, among others
[14, 22]. Te ZnO NPs possess improved chemical and
physical properties which make them suitable for removing
pollutants from the environmental compartments [14, 22].
Te use of plant extracts for synthesizing ZnO NPs makes
the process cost-efective and nontoxic to carry out [23].

Terefore, this study reports a simple, cost-efective,
environmentally friendly, and easy approach to decon-
taminating a highly toxic MB dye from our wastewater
system using readily available plant materials, Parthenium
hysterophorus, as raw materials, which are renewable and
biodegradable, for preparing the ZnO NPs. Parthenium
hysterophorus plant is an invasive weed that abundantly
grows in cultivated and agricultural lands and along the
roadsides [24]. Previous studies report that Parthenium
hysterophorus possesses medicinal and bioherbicidal prop-
erties [25, 26]. Te phytochemical profling of the Parthe-
nium hysterophorus shows the presence of tannins,
favonoids, phenols, saponins, and terpenoids, essential for
reducing, capping, and stabilizing metal ions from high
oxidation state to zero-valent species [25]. Te synthesized
ZnO NPs were characterized via UV-Vis spectroscopy,
FTIR, SEM, TEM, XRD, and DLS techniques and in-
vestigated on their ability to degrade methylene blue (MB)
dye. Te catalytic properties of ZnO NPs against MB dye
were also explored at varying conditions of pH, ZnO NP
dosage, MB dye concentration, interaction time, and tem-
perature. Te study places ZnO NPs obtained in Parthenium
hysterophorus-mediated synthesis as powerful plant-based
nanoparticles that aim to reduce increasing aquatic pollution
from dyes, a signifcant issue currently pressing humanity. In
this light, a comparative overview of the efciency of Par-
thenium hysterophorus-mediated ZnONPs in the removal of
MB dye with other nanomaterials that have previously been
studied for the removal of MB dye in aquatic systems is
provided in this study.

2. Experimental Methods

2.1. Materials. Zinc nitrate hexahydrate (96%), hydrogen
peroxide (30% w/w), and methylene blue dye (82%) were
procured from Legacy Lab Africa Limited, Kenya. Te
materials were used as procured without any form of
purifcation.

2.2. Sample Collection and Preparation. Te Parthenium
hysterophorus plant sample was collected from Kalimoni,
Juja, Kiambu County, Kenya. Mr. John Kamau authenti-
cated the plant sample, and a voucher specimen was

deposited at Jomo Kenyatta University of Agriculture and
Technology (JKUAT) Botany Herbarium and assigned ac-
cession number DMN-JKUATBH/001/2023A-C as de-
scribed in our previous study [24]. Te sample was washed
with running tap water, rinsed with distilled water, and
shed-dried for two weeks at room temperature [26]. We
followed the methods of Datta et al. in which the dry sample
was ground to a fne powder by using a milling machine,
after which the phytochemicals were extracted by dissolving
20 g of the plant sample in 200mL of distilled water [26].Te
extraction was carried out at 45°C for 45minutes and stored
at 4°C in a freeze drier before further being used to syn-
thesize zinc oxide nanoparticles [26].

2.3. Preparation of Zn Ions Solution and Synthesis of ZnONPs.
0.01M zinc solution of zinc nitrate hexahydrate (Zn (NO3)
2.6H2O) was prepared by using distilled water. Te nano-
particles were synthesized by modifcation of a previously
established protocol of Iqbal et al. and Naseer et al. in which
the zinc ions solution was mixed with plant extract in a ratio
of 1 : 4 and heated in a hot plate at 60°C for 1 hour with
constant stirring [27, 28]. Te formation of ZnO NPs was
monitored by color change and UV-Vis spectrophotometric
measurement [28–30].

2.4. Characterization of ZnO Nanoparticles

2.4.1. UV-Vis Analysis. Te UV-Vis absorption analysis of
ZnO NPs was performed by scanning a double beam UV
1800 UV-Vis spectrophotometer (Shimadzu, Japan) to
confrm their surface plasmonic resonance at 200–800 nm
wavelength range [24].

2.4.2. FTIR Analysis. Te functional groups present on the
surface of the ZnO NPs were acquired by Bruker Tensor II
FT-IR spectrophotometer (Bruker, Ettlingen, Germany).
Te samples were directly placed on the sample holder,
pressed, and scanned in the frequency range of
4000−400 cm−1 [31, 32].

2.4.3. XRD Analysis. Te crystallinity nature of the nano-
particles was determined by using X-ray difraction, and the
difractograms were obtained by using a Bruker D8 Advance
Difractometer (Bruker, Ettlingen, Germany) with a copper
tube operating under a voltage and current of 40 kV and
40mA. Te samples were irradiated with a monochromatic
CuKα radiation of 0.1542 nm, and the difractograms were
acquired between 2θ values of 5°–90° at 0.05° intervals with
a measurement time of 1 second per 2θ intervals. Te
nanoparticles’ crystalline size was calculated by using the
Debye Scherrer’s equation as follows:

D �
Kλ

β cos θ
􏼠 􏼡, (1)

where D is the average particle size (nm), K is a constant
equal to 0.94, λ is the wavelength of X-ray radiation, β is
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full-width at half maximum of the peak in radians, and theta
is the difraction angle (degree) [24, 29, 33].

2.4.4. SEM Analysis. Te surface morphology analysis of the
nanoparticles was visualized by using the Tescan Mira3 LM
FE scanning electron microscope (Tescan, Brno-
Kohoutovice, Czech Republic), operating under an accel-
erating voltage of 3 kV. Before analysis, the samples were
sputter coated with 4 nm gold to avoid charging efects by
using a AGB7340 Agar Sputter Coater (Agar Scientifc,
Essex, United Kingdom) [32, 34].

2.4.5. TEM Analysis. Surface morphology and shape of the
nanoparticles were observed using TEM and was performed
on a Tecnai G2 Spirit (Termo Fischer Scientifc, Oregon
USA) under an operating voltage of 120 kV equipped with
Veleta 2048× 2048 wide angle and Eagle 4096× 4096 bottom
mount detectors. Te dry samples were suspended in ul-
trapure water (Barnstead GenPure, Termo Scientifc,
Germany) and ultrasonicated to obtain a solution that was
drop casted on 300 mesh carbon flms before analysis
[32, 34].

2.4.6. DLS Analysis. To determine the particle size distri-
bution and polydispersity index of the suspended nano-
particles, the metallic nanoparticles were resuspended in
ultrapure water (18MΩ·cm Barnstead GenPure UV-TOC,
Termo Scientifc, Germany) and ultrasonicated to obtain
a solution of suspended nanoparticles. Te solutions were
fltered through 0.25 μM PTFE syringes into glass vials, and
45 μL of each solution was transferred onto quartz cuvettes
before analysis. Te particle size distribution and poly-
dispersity index were then measured by using a Beckman
Coulter DelsaMax PRO dynamic light scattering analyzer
(Beckman Coulter, Indianapolis, United States) [35, 36].

2.5.DegradationStudies. Methylene blue (MB) dye was used
as a model organic dye in the degradation studies using ZnO
NPs. Te degradation of MB dye was monitored by using
a UV-Vis spectrophotometer by measuring the change in
absorbance of the dye alone; the dye spiked with hydrogen
peroxide and the dye spiked with hydrogen peroxide and
ZnONPs at a constant time of 150minutes.Te degradation
studies of MB dye by ZnO NPs were also conducted at
varying reaction conditions, including the concentration of
the MB dye solution, the dosage of ZnO NPs, interaction
time, pH, and temperature [37–39]. Te recyclability ca-
pability of ZnO NPs in the degradation of MB dye was also
investigated in this study [17, 39–42]. For this study, 5mg/L
of the MB dye solution was prepared as the standard MB
concentration except where the variation of MB concen-
tration was studied. Te degradation efciency was calcu-
lated by using the following equation, where Ao is the
absorbance of MB at time� 0, and At is the absorbance after
a particular time, t [24]:

%D(Degradation ) �
(Ao − At)

Ao
× 100. (2)

Te kinetics of degradation of MB dye was determined
by assuming a pseudo-frst-order kinetic model (equation
(3)) and a pseudo-second-order kinetic model (equation (4))
[38, 40, 41].

ln[A]t � −k.t + ln[A]o, (3)

1
[A]t

� −k.t +
1

[A]o
, (4)

where Ao � is the absorbance of MB at time� 0, At � is the
absorbance after a particular time, and t� is the time in
minutes.

Te thermodynamics of the degradation reaction was
determined by using the linear form of Van’t Hof ‘s
equation to obtain the change in heat and enthalpy of the
reaction as follows:

lnKeq �
∆H

RT
+
∆S

R
, (5)

where ∆H and ∆S are the change in heat and entropy of the
degradation reaction, respectively. Te T is the temperature
in Kelvin, and R is the universal gas constant [38, 43].

3. Results and Discussion

3.1. Biosynthesis of ZnO NPs. Parthenium hysterophorus
aqueous extract contains phytochemicals such as saponins,
favonoids, terpenoids, and phenols [25]. Tese phyto-
chemicals contain functional groups, which, upon reaction
with zinc metal solution, reduce Zn2+ to Zn0, as previously
described in the biosynthesis mechanism of metallic
nanoparticles [44–46]. Figure 1 illustrates a generalized
mechanism for the synthesis of Parthenium hysterophorus-
mediated ZnO NPs.

3.2. Visual and UV-Vis Spectral Analysis of ZnO NPs.
Figure 2 depicts the formation of ZnO NPs by color change
and observation of the intrinsic optical absorbance band by
UV-Vis spectrum.

As can be seen in Figure 2, the color changed from
brown to dark brown after the zinc ion solution was mixed
with Parthenium hysterophorus aqueous extract. Tis color
change can be attributed to secondary metabolites in the
aqueous extract that reduces zinc ions (Zn2+) into Zn0
species [47]. Furthermore, the formation of ZnO NPs was
confrmed by its intrinsic optical absorbance band by UV-
Vis spectrophotometer centered at 337 nm. Our synthesis of
ZnO NPs agreed with UV-Vis results from previous studies
[27, 28, 47, 48].

3.3. FTIR Analysis. Figure 3 compares the IR spectra of
Parthenium hysterophorus aqueous extract and ZnO NPs
identifed by infrared spectrometry.
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As can be seen in Figure 3, the plant extract has peaks at
3299 cm−1, 1632 cm−1, 1362 cm−1, and 1222 cm−1. Tese
peaks are attributable to broad O-H, C�O, and C-N
stretching bands characterized by phenols, favonoids, and
amine metabolites in the plant extract [26]. A slight shift in
the functional groups present in the extract was evident in
the IR spectra of the ZnO NPs, indicating that some me-
tabolites bonded or capped ZnO during its formation [49].
Observable vibration bands in ZnO NPs spectra were at
3173 cm−1, 2923 cm−1, 1591 cm−1, 1375 cm−1, 1259 cm−1,
1001 cm−1, 809 cm−1, and 543 cm−1. Tree new peaks
appeared in the IR spectra of ZnO NPs at 1001 cm−1,
809 cm−1, and 543 cm−1. Te peak at 1001 cm−1 showed that

ZnO NPs underwent C-H bending. Te peak at 543 cm−1

was characteristic of the Zn-O stretching vibration band.Te
FTIR analysis showed the role of functional groups in the
plant metabolites as reducing and capping agents in forming
ZnO NPs, which were consistent with previous studies using
plant extracts as sources of reducing and capping agents in
the formation of ZnO NPs [28, 40, 47, 49].

3.4. SEM Analysis. Figure 4 shows the SEM micrograph of
ZnO NPs and the histogram used to determine particle size
distribution using ImageJ software.
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Figure 1: Schematic representation of the plausible mechanism of biosynthesis of ZnO NPs using aqueous extracts of Parthenium
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Te surface morphology from the SEM micrograph
revealed that the ZnO NPs were nearly spherical. Tese
fndings agreed with previous studies, which showed that
ZnO NPs synthesized using the cofee leaf extract and
Elaeagnus angustifolia leaf extracts were spherical [27, 48].
Te micrograph revealed less evidence of agglomeration of
the nanoparticles, which indicates that the synthesis method
was efective in obtaining highly homogenous nanoparticles
with desired catalytic properties [26, 49, 50]. Te particle
diameter size ranged from 10 to 70 nm, with the average
particle size diameter of the ZnO NPs calculated using
ImageJ software being 38.47 nm. Te particle diameter size
was in the range of previously prepared ZnO NPs [12, 51].

3.5. TEM Analysis. Figure 5 depicts the TEM images and
particle diameter size distribution histogram of the syn-
thesized ZnO NPs.

As shown in Figure 5, the TEM images were spherical
with little agglomeration evidence, which agrees with SEM
image results. Te average particle size of the nanoparticles
was calculated from ImageJ data to be 7.54 nm.Tese results
agree with previous studies that synthesized ZnO NPs using
cofee leaf extract [48].

3.6. XRD Analysis. Figure 6 illustrates the XRD difracto-
gram patterns of ZnO NPs obtained from a powder
difractometer.

Te XRD difractogram reveals 11 peaks at 31.74°, 34.40°,
36.4°, 47.56°, 56.73°, 62.88°, 66.55°, 68.05°, 69.22°, 72.54°, and
77.05° obtained between 20 and 80 2θ degrees. Te 2θ values
correspond to (100), (002), (101), (102), (110), (103), (200),
(112), (201), (004), and (202) crystallographic planes, re-
spectively, which correspond to the International Center for
Difraction Data (ICDD) database for ZnO NPs [27, 48, 49].
Tese crystallographic planes reveal that the ZnO NPs had
a hexagonal wurtzite structure [12, 48, 49]. Te crystallite
size was calculated by using the Debye Scherrer equation and
was found to be of 42.6 nm. In a previous study, the particle

size of ZnO NPs was 66.43 nm [52]. In another study, the
crystalline particle size of ZnO NPs was calculated to be
52.23 nm [47]. Terefore, we confrm the formation of ZnO
NPs from the XRD pattern.

3.7. DLS Analysis. Figure 7 depicts the size distribution of
ZnO NPs as observed by using the dynamic light scattering
(DLS) technique.

Te particle size distribution revealed that the particles
were polydisperse, with most of the particles below 500 nm.
Te polydispersity index (PDI) obtained in the DLS de-
termination was ≤0.3, which proved that the particles were
polydisperse. In contrast, individual groups of particles were
monodisperse, supporting possible particle agglomeration
[49, 53]. Te monodispersity of the particles shows that the
particles were homogenous, which is desired in the catalytic
activity of the nanoparticles.

4. Degradation Studies of Methylene Blue Dye

Figure 8(a) shows the UV-Vis spectrum of MB alone ob-
served after 150min, Figure 8(b) shows the changes in
absorbance intensity of MB after it is reacted with 1mL of
H2O2, and Figure 8(c) shows the changes in absorbance
intensity of MB after it is reacted with 1mL of H2O2 and
10mg of ZnO NPs.

As shown in Figure 8(a), there was no observable change
in absorption intensity for the MB dye after 150minutes.
However, spiking the same amount of MB dye with 1mL
hydrogen peroxide, there was a slight decrease in the ab-
sorbance intensity of the dye as shown in Figure 8(b). A
signifcant change in the absorbance intensity of the MB dye
was obtained when the same amount of the MB dye was
reacted with 1mL of H2O2 and 10mg of ZnO NPs as shown
in Figure 8(c). Tis indicated that the ZnO NPs have the
catalytic properties to degrade the MB dye [39, 54]. Te
degradation studies were then investigated by varying MB
dye concentration, pH, ZnO NP dosage, temperature, and
interaction time [37–39].
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Figure 4: SEM micrograph and particle size distribution histogram of ZnO NPs.
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4.1. Efect ofMBDye Concentration onDegradation Efciency
of ZnONPs. To study the infuence of dye concentration on
the degradation efciency of ZnO NPs, the study was

conducted using 2.5mg/L, 5mg/L, 7.5mg/L, 10mg/L, and
12.5mg/L concentrations, and their efect on degradation
efciency is depicted in Figure 9.
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Figure 5: TEM micrographs and particle size distribution histogram of ZnO NPs.
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Te concentration of dyes afects the activity of the
nanoparticles because of the saturation of active sites at
higher dye concentrations. It was observed that the per-
centage of degradation of MB dye decreased as the dye
concentration increased. At 2.5mg/L of MB dye, the deg-
radation percentage was 35.03%, while at 12.5mg/L (the
highest concentration of MB dye used for this study), the
degradation percentage was 14.68%. Te decrease in the
efciency of ZnO NPs in MB degradation studies can be
attributed to the saturation of the nanoparticles’ active sites
by more MB dye molecules [40, 55]. Simultaneously, more
molecules of MB dye were available with insufcient active
sites on the surface of the nanoparticles because the ZnO
NPs were saturated [55]. Te MB solution’s absorbance
increased as the MB dye concentration increased. Tis
means that the nanoparticles become highly saturated at
higher concentrations of MB dye, and little dye breakdown
occurs.

4.2. Efect of Nanoparticle Dosage onDegradation Efciency of
ZnO NPs. In this study, the dosage of ZnO NPs was con-
ducted at 10mg, 20mg, 30mg, 40mg, and 50mg, and their
degradation efciency was determined within 2.5 hours, and
the results are illustrated in Figure 10.

It was observed that the percentage of degradation of
MB dye increased proportionally to the dosage of the ZnO
NPs. Te degradation percentage increased from 22.32% at
10mg to 44.52% at 50mg within 2.5 hours. Te increase in
degradation percentage of MB upon increasing the amount
of ZnO NPs was probable because, at higher ZnO NPs
dosage, the total surface area of the nanoparticles was
higher, making more active sites available to bind the MB
dye molecules [3, 56]. Te decrease in absorbance at
a higher nanoparticle dose (50mg) revealed that the MB
dye molecules were degrading towards completion because
more active sites were present on the surface of the
nanoparticles to bind, interact, and result in the

degradation of MB dye [40]. Our results agreed with
previous studies which reported that the degradation ef-
fciency increased as the amount of the nanoparticles was
increased against the same amount of the pollutant
[3, 24, 40, 50, 55, 56].

4.3. Efect of Interaction Time on Degradation Efciency of
ZnO NPs. Figure 11 illustrates the efect of interaction
time on the percentage of degradation of MB dye by
ZnO NPs.

It was observed that as the interaction time of MB dye
with ZnO NPs was increased, the degradation percentage
increased from 18.09% at 30min to 56.87% within
360minutes. Te corresponding absorbance of MB de-
creased as the reaction time increased, implying that mol-
ecules were allowed enough time to interact with the surface
of ZnO NPs and break down. Te increase in the degra-
dation percentage of MB dye was also supported in previous
studies employing ZnO NPs [12, 50].

4.4. Efect of pH on Degradation Efciency of ZnO NPs.
To monitor the optimal pH that results in the higher deg-
radation of MB using ZnO NPs, the solution pH was ad-
justed to pH 2, 4, 8, and 12, and their efect on the
degradation efciency is depicted in Figure 12.

Te acidic conditions of the MB dye solution were ad-
justed using 0.1M of HCl, while the basic conditions of the
MB dye were adjusted using 0.1M of NaOH. At pH 2 and 4,
the degradation efciency was 26.00% and 29.91%, re-
spectively. At pH 8 and 12, the degradation efciency was
45.34% and −114.72%, respectively. Te interaction of the
acid and the base resulted in the generation of free radicals
from the hydrogen peroxide used as a catalyst and radical
generator for this reaction. In acidic pH 2 and 4, the deg-
radation efciency could be attributed to the increase in
hydrogen radicals generated from H2O2 and the positive
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Figure 10: Efect of nanoparticle dosage on the degradation ef-
ciency of ZnO NPs against MB dye.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

Absorbance
% Degradation

MB concentration (mg/L)

A
bs

or
ba

nc
e (

a.u
)

10

15

20

25

30

35

40

 %
 D

eg
ra

da
tio

n

2.5 hours

Figure 9: Efect of concentration of MB dye on degradation ef-
fciency of ZnO NPs.

8 Journal of Chemistry



charge imparted on the surface of nanoparticles, which
activates the active sites to improve reaction with the dye
molecules [55]. In basic pH 8 and 12, degradation efciency
was attributed to the generation of hydroxyl radicals, which
increased the degradation ability of the nanoparticles to-
wards the MB molecules [3]. Uniquely, at pH 12, a negative
percentage of degradation was observed within the 2.5 hours
used for this study. At pH 12, it implies that MB dye
molecules were destroyed to yield probable degradation
products with higher absorbance than those obtained in
other pH values.

4.5. Efect of Temperature on Degradation Efciency of ZnO
NPs. Te temperature of the MB dyes was varied at 25°C,
35°C, 45°C, 55°C, and 65°C, and the highest degradation
efciency was observed at higher temperatures, as illustrated
in Figure 13.

Te temperature signifcantly infuences the activation of
the surface of nanoparticles and, therefore, improves the
degradation efciency of ZnONPs on the degradation ofMB
dye. Te increase in temperature was observed to increase
the percentage of degradation of MB dye to 53.08% at 65°C,
which is attributed to the Brownian motion, which increases
the kinetic energy of MB dye molecules [38]. Another
probable reason for the increase in degradation efciency at
higher temperatures is that the MB dye molecules have
enough energy to react and undergo degradation [53].

Te change in heat and entropy of the reaction was
obtained by Van’t Hof’s plot of lnK v(1/T), as shown in
Figure 14.

Figure 14 shows that the degradation of MB dye using
ZnO NPs was an endothermic reaction, demonstrating that
the MB degradation rate increases as the temperature in-
creases. Te change in the heat of the degradation reaction
was determined experimentally and calculated from the
slope of Van’t Hof’s plot to be 14.199 kJ·mol−1, and the
change in entropy was calculated from the intercept value to
be 1.37264 J·K−1. Te entropy indicated enhanced system
disorder due to the increase in temperature resulting from
the breakdown of the MB dye molecules [57].

4.6. Degradation of MB Dye Using ZnO NPs at Optimal
Conditions. Te degradation of MB dye by ZnO NPs was
also investigated by combining all the conditions that
resulted in the highest degradation efciency of MB dye, as
described in the previous section. Figure 15 depicts the
change in absorption intensity of MB dye obtained using
5mg/L concentration of MB dye, temperature maintained at
65°C, 50mg of ZnO NPs, and solution at pH 12.

As shown in Figure 15, a signifcant change in the ab-
sorption intensity of MB dye was observed to occur within
32minutes in optimal conditions described in this study.
Degradation efciency of 55.69% was obtained under the
combined optimal conditions.
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5. Kinetics of Degradation of Methylene
Blue Dye

Te kinetics of degradation of MB dye using ZnO NPs was
determined by ftting the pseudo-frst-order and pseudo-
second-order kinetics at 298, 308, 318 328, and 338K, and
the results are depicted in Table 1 and Figures 16 and 17.

Te kinetic data were analyzed to ft the pseudo-frst-
order other than the pseudo-second-order because most R2

(correlation coefcient) values were higher compared to the

R2 of the pseudo-second-order kinetic model. From this
determination, it can be concluded that the degradation of
MB was highly dependent on temperature. Te increase in
temperature increases the reacting molecules’ Brownian
motion, resulting in the highest degradation efciency
[58, 59]. Figure 16 shows the frst-order kinetic plots of
ln(At/Ao)v T, and Figure 17 shows the second-order kinetic
plots of (1/At) v T.

6. Functional Group Analysis of ZnO NPs after
Degradation Studies

Te analysis of changes in the frequencies of functional
groups present in ZnO NPs after degradation studies with
MB dye was investigated. Te IR spectra in Figure 18 show
changes in the peaks before and after degradation studies.

Te frequencies of functional groups in the IR spec-
trum of ZnO NPs before degradation were observed at
3173 cm−1, 2923 cm−1, 1591 cm−1, 1375 cm−1, 1259 cm−1,
1001 cm−1, 809 cm−1, and 543 cm−1. Te peak at 3173 cm−1

was attributed to the O-H group of phenols and 2923 cm−1

was due to the C-H band, while the bands at 1375 cm−1

and 1259 cm−1 were characteristic of C-N. Te peak at
1001 cm−1 and 809 cm−1 was attributed to C�C bending
vibration. Te peak at 543 cm−1 was characteristic of Zn-O
stretching vibration [3, 49]. Te shifts in the IR spectrum
of ZnO NPs after degradation studies with MB dye were
observed at 3023 cm−1, 2958 cm−1, 1734 cm−1, 1447 cm−1,
1364 cm−1, 1215 cm−1, 1095 cm−1, 891 cm−1, and 521 cm−1.
Te peaks at 3023 cm−1 were due to O-H of phenols, the
band at 2958 cm−1 was due to C-H band, 1734 cm−1 was
attributable to C�O, 1445 cm−1 band was attributable to
C-H bending, and the bands at 1364 cm−1 and 1215 cm−1

were attributable to C-N stretching band. Te 1095 cm−1

and 891 cm−1 peaks were due to C-O and C�C bending
bands, respectively. Te characteristic peak at 521 cm−1 was
associated with Zn-O vibration bands.Te slight changes in
the frequencies of the functional groups after reaction with
MB dye indicated that a molecule of MB was adsorbed onto
the surface of the ZnO NPs, which resulted in a slight shift
in the functional group frequencies and their intensities
after degradation [60].

7. Recyclability of ZnO NPs

Te recyclability ability of ZnO NPs was investigated ex-
perimentally in four cycles for MB dye degradation. Te
recyclability studies were conducted under the same con-
ditions (20mg of ZnO NPs and 5mg/L of MB concentra-
tion). Te degradation cycle was determined at constant
time (2.5 hours), after which the solution was decanted and
washed with water, and the nanoparticles were dried at 80°C
in an oven for 6 hours [48]. Te degradation of MB was
observed by the change in intensity of the absorbance
monitored using a UV-Vis spectrophotometer, and the
results are plotted as shown in Figure 19. After each cycle,
fresh 5mg/L of MB solution was spiked with 1mL of H2O2.
As observed in Figure 19, the percentage of degradation of
MB decreased after each cycle of using the ZnO NPs.
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Te decrease in the degradation efciency of ZnO NPs
with multiple uses in the recyclability process indicates a loss
in the catalytic potential of the nanoparticles [17]. Te
reduction in degradation efciency of ZnO NPs can be
attributed to the loss of nanoparticle catalytic ability during
the separation, washing, and drying procedures after each
application cycle [45, 61]. Tese procedures result in
a decrease in the number of active sites available on the

surface of ZnO NPs to interact with the fresh MB dye
molecules. We also performed FTIR analysis to get insights
into the stability of the nanoparticles by observing struc-
tural changes of ZnO NPs after their use in the frst cycle
and after their fourth cycle, and the results are depicted in
Figure 20.

Te structure of ZnONPs from the IR spectrum revealed
that no remarkable changes in the functional groups were

Table 1: Experimental data ftted assuming pseudo-frst-order kinetics and pseudo-second-order kinetic models at diferent temperatures.

Temperature (K)
Pseudo-frst-order kinetics Pseudo-second-order kinetics

Rate constant (min−1) R2 Rate constant (min−1) R2

298 −0.00271 −0.98203 0.00552 0.97305
308 −0.00339 −0.97307 0.0074 0.95715
318 −0.00385 −0.99156 0.00886 0.98896
328 −0.00483 −0.99318 0.01238 0.98201
338 −0.00529 −0.99532 0.0154 0.99618
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Figure 16: Pseudo-frst-order kinetics for degradation of MB dye and ZnO NPs at varying temperatures.
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observed for a single cycle and when four recyclability
processes were used during the degradation of MB dye. Tis
can support that the ZnO NPs exhibited strong stability and
were not altered after several uses, a valuable characteristic of
nanoparticles [13, 62].

8. MechanismofDegradationofMethyleneBlue
Dye Using ZnO NPs

Te mechanism of degradation of MB dye by ZnO NPs has
been explained in previous studies [11, 50, 63–66]. Te
incident light leads to the excitation of an electron from the
valence band (VB) to the conduction band (CB) on the ZnO

NPs surface, leading to the creation of a positive hole in the
VB (h+

VB) [50, 63, 64]. Te electron on the CB (e−
CB) is taken

up by oxygen adsorbed onto the surface of ZnO NPs,
generating a superoxide anion radical (O∙−2 ).Te (O∙−2 ) anion
radical is then involved in the degradation of MB dye
[64, 67]. Te positive holes in the valence band react with
H2O2 used as a radical generator on the surface of ZnO NPs
to produce OH radical which reacts with the dye, leading to
the generation of degradation products. Te positive hole in
the VB then moves onto the surface of ZnO NPs, releasing
more oxygen that produces (O∙−2 ). A similar process repeats
itself to produce OH radicals, which are involved in the
degradation of MB dye. Consequently, the (h+

VB) acts as the

-20 0 20 40 60 80 100 120 140 160
1.6

1.8

2.0

2.2

2.4

2.6
1/

A
t

1/
A

t

1/
A

t

1/
A

t

1/
A

t

Time (min)

-20 0 20 40 60 80 100 120 140 160
Time (Min)

25°C y = 1.59265 + 0.00552x
R2 = 0.97305

-20 0 20 40 60 80 100 120 140 160
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Time (min)

35°C y = 1.57093 + 0.0074x
R2 = 0.95715

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2
45°C y = 1.65217 + 0.00886x

R2 = 0.98896 

-20 0 20 40 60 80 100 120 140 160
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

Time (min)

55°C y = 1.62405 + 0.01238x
R2 = 0.98201

-20 0 20 40 60 80 100 120 140 160
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Time (min)

65°C y = 1.84748 + 0.0154x
R2 = 0.99618

Figure 17: Pseudo-second-order kinetics for degradation of MB dye using ZnO NPs at varying temperatures.
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oxidizing agent and interacts with the OH− , leading to the
signifcant generation of OH radicals that react with MB dye
adsorbed onto the surface of the ZnO NPs, enhancing the

oxidation of MB dye [65].Temechanisms of degradation of
MB dye by ZnONPs can be illustrated using the steps shown
in the following equations:

ZnONPs + hv⟶ ZnONPs e
−
CB( 􏼁 + ZnONPs h

+
VB( 􏼁

ZnONPs e−
CB( 􏼁 + O2⟶ ZnONPs + O∙−2

O∙−2 + H+⟶ HO.
2

HO.
2 + H+

+ O∙−2 or ZnONPs e−
CB( 􏼁⟶ H2O2 + O2 + ZnONPs

ZnONPs h
+
VB( 􏼁 + H2O⟶ ZnONPs + H+

+ HO∙

ZnONPs h
+
VB( 􏼁 + OH− ⟶ ZnONPs + OH∙

MBdye + OH∙⟶ degradation products

(6)
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Figure 21 further provides an illustration of the probable
mechanism of degradation of MB by ZnO NPs.

Te ZnO NPs prepared using plant extracts have been
reported to be less toxic than chemically prepared ZnO NPs
[68, 69]. Te reducing agents such as hydroxyl radicals and
superoxide radical anions reduce the methylene blue dye to
less toxic degradation products such as carbon dioxide and
water which are less harmful and environmentally friendly
[33, 50, 68–71].

9. Comparative Overview of Degradation
Efficiency of MB Dye Using Other
Nanomaterials

Table 2 provides an overview of previously utilized nano-
materials in removing MB dye from aquatic systems and
their performance efciency. From Table 2, it can be con-
cluded that ZnO NPs prepared from Parthenium hyster-
ophorus aqueous extract are attractive in the degradation of
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MB dye and thus are promising in future exploitation of
biosynthesized nanoparticles in environmental remediation
of dyes.

Our study confrms that aqueous extract from the
Parthenium hysterophorus plant can act as reducing, cap-
ping, and stabilizing agents in the formation of ZnO
nanoparticles. Te presence of secondary metabolites makes
Parthenium hysterophorus a potential universal candidate in
the formation of other nanoparticles in an eco-friendly and
cost-efective manner.

10. Conclusion

ZnO NPs were successfully synthesized using an aqueous
extract of the Parthenium hysterophorus plant as a re-
ducing, capping, and stabilizing agent. Te ZnO NPs were
analyzed via UV-Vis spectroscopy, which revealed an
intrinsic optical absorbance band associated with ZnO
NPs that occurred at 337 nm. Te functional group
analysis by FTIR confrmed the presence of secondary
metabolites in the extract, which were responsible for
reducing Zn2+ to Zn0, with a characteristic Zn-O vibration
band being observed at 543 cm−1. SEM and TEM analyses
revealed that the ZnO NPs were spherical with an average
particle size of 38 nm. Te XRD analysis confrmed the
hexagonal wurtzite structure of ZnO NPs, and the crys-
tallite size calculated using the Debye Scherrer equation
was 42 nm. Te pH, temperature, dosage of ZnO NPs,
concentration of MB solution, and interaction time
infuenced the degradation ability of ZnO NPs against MB
dye. Under optimal conditions set at 65°C, pH 12, 50mg of
ZnO NPs, and 5mg/L of MB dye concentration, a deg-
radation efciency of 55.69% was obtained within
32minutes. Te stability of ZnO NPs after multiple uses
was confrmed by running an FTIR analysis in which there
were no observable changes in the position of the func-
tional groups. Terefore, Parthenium hysterophorus-me-
diated ZnO NPs demonstrated to be fruitful in degrading
MB dye making the nanoparticles suitable for addressing
aquatic pollution by dyes. However, future prospects
should consider understanding the toxicity profle of the
degradation products on the environment and encapsu-
lation of the ZnO NPs with polymeric adsorbents to
enhance their degradation efciency, recyclability, and
large-scale application. Te green synthesis of ZnO NPs is
still in its early stages and should be exploited by using
other plant materials and studied in the degradation of
other organic dyes before they are deployed in large-scale
waste water treatment.
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