Supplementary File

Design, *in silico* and *in vitro* Evaluations of a Novel Nicotinamide Derivative as a VEGFR-2 inhibitor

Ibrahim H. Eissa^{a*}, Muhammad Abd ElGayed Bkrah^a, Reda G.Yousef^a, Hazem Elkady^a, Eslam B. Elkaeed^{b*}, Bshra A. Alsfouk^c, Ibrahim M. Ibrahim ^d, Ahmed M. Metwaly^{e,f*}, Dalal Z. Husein ^g

^a Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt. <u>muhammad.bkrah@azhar.edu.eg</u>; redayousof@azhar.edu.eg

^bDepartment of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia. <u>ekaeed@um.edu.sa</u>

^c Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia <u>baalsfouk@pnu.edu.sa;</u>

^d Biophysics Department, Faculty of Science, Cairo University. Giza 12613, Egypt. <u>ibrahim_mohamed@cu.edu.eg</u>

^e Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.

^f Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

^g Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt. <u>dalal_husein@sci.nvu.edu.eg</u>

Content

Fig. S.1. Change in the eigenvalues with increasing the eigenvectors (blue). The cumulative

variance retained in the eigenvectors (red)

Fig.S.2. 1st ten eigenvectors' distribution.

Fig. S.3. Cosine content of the 1st ten eigenvectors for the two trajectories.

Method	Molecular Docking		
	MD Simulations		
	MM-GBSA		
	DFT		
	Essential dynamics		
	ADMET studies		
	Synthesis		
	In vitro assays		
Spectral Data	IR and Ms		
	¹ H and ¹³ C NMR		
Toxicity report			

Fig. S.1. Change in the eigenvalues with increasing the eigenvectors (blue). The cumulative variance retained in the eigenvectors (red)

Fig.S.2. 1st ten eigenvectors' distribution.

Fig. S.3. Cosine content of the 1st ten eigenvectors for the two trajectories.

Spectral data

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

-0.2

Ö

0

NH

NH

H₂N∖

-0.9

-0.8

-0.7

29.659.65

|-1.5

f1 (ppm)

Aperture: 150.00

Mon Jun 20 12:01:20 2022 (GMT+02:00)

m/z	Intensity	Rel
-----	-----------	-----

201.46	75.6	52.15
208.37	20.6	14.24
213.78	71.1	49.04
222.35	41.5	28.62
223.00	30.8	21.27
227.42	29.1	20.08

230.67	35.9	24.72
235.84	45.1	31.08
242.32	39.5	27.27
243.69	23.5	16.19
252.94	35.4	24.43
253.60	45.8	31.60
257.07	17.4	12.00
258.77	32.2	22.19
260.70	9.5	6.58
266.16	53.8	37.10
268.96	31.5	21.73
272.67	43.6	30.06
279.88	7.3	5.03
282.02	32.5	22.40
288.27	27.7	19.12
293.75	34.7	23.96
296.27	26.0	17.96
297.38	34.1	23.51
303.23	10.3	7.10
309.74	63.6	43.87
311.74	35.4	24.43
313.37	26.3	18.11
326.89	21.9	15.08
328.93	34.0	23.41
336.21	38.1	26.27
342.61	24.4	16.80
351.21	39.3	27.12

355.95	38.4	26.51
374.80	50.1	34.57
377.14	43.2	29.82
386.19	39.5	27.26
391.76	42.4	29.25
392.80	25.5	17.56
400.33	38.3	26.42
406.19	12.6	8.71
410.88	35.6	24.52
436.67	24.5	16.92
440.48	145.0	100.00
442.96	15.1	10.39
444.46	11.0	7.60
445.27	41.0	28.30
446.25	15.3	10.57
461.79	23.7	16.38
463.33	40.4	27.83
468.02	32.9	22.71
472.87	34.9	24.06
475.39	52.6	36.26
477.81	85.8	59.1

Toxicity Report

C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7 Acceptors: 5 Donors: 3

Model Prediction

Prediction: Non-Mutagen

Probability: 0.714

Enrichment: 1.28

Bayesian Score: -1.18

Mahalanobis Distance: 8.29

Mahalanobis Distance p-value: 0.976

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLYBURIDE	6724-53-4	GLIPIZIDE	
Structure	HN CO HN CO	HO FO		
Actual Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen	
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen	
Distance	0.593	0.616	0.632	
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	PDR 1994	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Mutagen in training set SCFP_12 555539852 0.447 22 out of 24 Image: Display the set of the s

SCFP_12	818445224	(NC(=O)[c](:[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	(''):[cH]:[c](NC(=O)[c](:[')):['):[cH]:['']	0.429	33 out of 37
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	1165971455	(']NC(=0)[c]1:[cH]:1 H]:[cH]:n:[cH]:1	-0.762	0 out of 2
SCFP_12	-331724199	(*)NN=C(/C))(c)(:[*]) ;[*]	-0.762	0 out of 2
SCFP_12	903335088	(']NC(=0)[c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2

Sorafenib

Rotatable Bonds: 6 Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531

Enrichment: 0.0951

Bayesian Score: -19.7

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ames_Mutagenicity

Structural Similar Compounds				
Name	GLYBURIDE	38914-96-4	93957-54-1	
Structure			AND Exandioner	
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen	
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen	
Distance	0.590	0.592	0.600	
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT/ dsstox/sdf_isscan_externa I.html	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-347281112	[*]N[c]3:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.337	18 out of 22

SCFP_12	1208843554	[*]N[c]f:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	0.337	6 out of 7
SCFP_12	-1943080297	[*]N[H]17CH]:[CH]:[C](O[C]2:[CH]:[CH]:[C]:[C]([*]):[CH]:[2):[CH]:[CH]:1	0.304	5 out of 6
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	816802409	$[] \\ [] \\ [] \\ [] \\ [] \\ [] \\ [] \\ [] \\$	-1.82	0 out of 9
SCFP_12	-1903175541	[*][c](:[*])C(F)(F)F	-1.51	3 out of 30
SCFP_12	-300280774	[*]:[c](:[*])C(F)(F)F	-1.51	3 out of 30
TOPKAT_Developmental_Toxicity_Potential

C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Acceptors: 5 Donors: 3

Model Prediction

Prediction: Non-Toxic

Probability: 0.506

Enrichment: 0.963

Bayesian Score: -1.12

Mahalanobis Distance: 9.15

Mahalanobis Distance p-value: 0.136

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Ochratoxin a	Amsacrine	Citreoviridin	
Structure	OH O		HO. TO	
Actual Endpoint	Toxic	Toxic	Toxic	
Predicted Endpoint	Toxic	Toxic	Toxic	
Distance	0.634	0.666	0.680	
Reference	Toxicol Appl Pharmacol 37(2):331-8; 1976	Fundam Appl Toxicol 7(2):214-20; 1986	Food Chem Toxicol 24(12):1315-20; 1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC17 out of range. Value: 2.9151. Training min, max, SD, explained variance: -2.7025, 2.8536, 1.067, 0.0167.

	Top fe	atures for positive o	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	282594097	("]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	0.441	3 out of 3

SCFP_6	1257084377	(*)NC(=O)[c](:[*]):[*	0.362	14 out of 18
SCFP_6	903335088	(*)NC(=0)[c]1:[cH]:[c H]:[*]:n:[cH]:1	0.271	1 out of 1
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	(*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-937094999	(*)1:[cH]:[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	0, C ^N 0, C ^N 0, N ^N 0, N ^N 1, C ^N 1,	-0.289	8 out of 21

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Toxic

Probability: 0.592

Enrichment: 1.13

Bayesian Score: 1.15

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name Chenodiol		Amsacrine	Ochratoxin a		
Structure	OH w w w w w w w w w w w w w	NH NH NH NH	OH OH HOW H		
Actual Endpoint	Тохіс	Toxic	Toxic		
Predicted Endpoint Toxic		Toxic	Toxic		
Distance	0.631	0.637	0.644		
Reference	Arch Int Pharm 246:149- 158; 1980	Fundam Appl Toxicol 7(2):214-20; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	-488587948	[*]:[cH]:[*]:[cH]:[cH]]:1	0.381	2 out of 2
SCFP_6	-347281112	[*]N[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:	0.381	2 out of 2
	Top Feat	ures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1794974220	[*]C([*])([*])F	-0.55	2 out of 8
SCFP_6	-937094999	N ^N →0 F ^F CI [*]1:[cH]:[cH]:[cH]:n :[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	[*]:[cH]:[cH]:n:[*]	-0.289	8 out of 21

 $C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082

Rotatable Bonds: 7

Acceptors: 5

Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.247

Enrichment: 0.771

Bayesian Score: -0.867

Mahalanobis Distance: 13

Mahalanobis Distance p-value: 0.000533

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Sinnia	on detarar onninar oompounds					
Name Glimepride		Glyburide	Glipizide			
Structure						
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen			
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen			
Distance	0.549	0.588	0.634			
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 560380707: [*]NN=C([*])[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-1087070950		0.724	10 out of 14

ECFP_6	544048674	(*)C(=[*])NN=[*]	0.617	2 out of 2
ECFP_6	738938915	(*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
	Top Featu	res for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	2013347047	(*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.805	0 out of 4
ECFP_6	-1818873508	(*][c]1:[cH]:[cH]:1	-0.482	0 out of 2
ECFP_6	764951226	(*)1:[cH]:[cH]:n :[cH]:1	-0.482	0 out of 2

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257

Enrichment: 0.801

Bayesian Score: -0.321

Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glimepride	Glyburide	Fluvastatin		
Structure	NH S S S S S S S S S S S S S S S S S S S	HIN TO THE TO TH			
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.605	0.615	0.625		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	738938915	F _F CI [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2

ECFP_6	1338334141	$F_{F} = C $	0.442	2 out of 3
ECFP_6	1305253718	[*]:[c](:[*])O[c](:[*]):[*]	0.424	1 out of 1
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1335691903	C ² C ²	-0.669	3 out of 22
ECFP_6	-1952889961	[*]:[c](:[*])C(F)(F)F	-0.657	0 out of 3
ECFP_6	1336678434	(*)[C](*])[C](*])[*]	-0.657	0 out of 3

Rotatable Bonds: 7

Acceptors: 5

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.259

Enrichment: 0.633

Bayesian Score: -5.16

Mahalanobis Distance: 12.9

Mahalanobis Distance p-value: 6.51e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds
onaotarar	omnai	Compounds

Name	Glimepride	Labetalol	Primidolol			
Structure		H H H H H H H H H H H H H H H H H H H	T T T T T T T T T T T T			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Distance	0.535	0.761	0.770			
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 560380707: [*]NN=C([*])[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Multiple-Carcinogen in training set ECFP_4 -223149939 0.501 2 out of 2

ECFP_4	-175146122	(*]C(=[*])[C](:[CH]:[*]):[CH]:[*]	0.403	6 out of 9
ECFP_4	1430169877	[*]NC(=O)[c](:[*]):[*]	0.299	2 out of 3
	Top Featu	res for negative c	ontribution	-
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	-1087070950		-1.63	0 out of 10
ECFP_4	866218936	о, С ^N	-1.24	0 out of 6
ECFP_4	888054369	([*])N[c]1:[cH]:[cH]:1	-0.8	0 out of 3

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283

Enrichment: 0.691

Bayesian Score: -3.89

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_Single_vs_Multiple

Structural Similar Compounds

otractara oninar oompoanas						
Name	Glimepride	Labetalol	Lansoprazole			
Structure	f f = f = f = f = f = f = f = f = f = f	HN HN HN H	Z L Z L L L L L L L L L L L L L L L L L			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Distance	0.599	0.808	0.820			
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
ECFP_4	-834094296	[*]:[dH];[d](O[c](:[c H];[*]):[cH]:[*]):[c H]:[*])	0.351	1 out of 1	

ECFP_4	1407472008	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.351	1 out of 1
ECFP_4	143734695	[*][0]1¢*]:[cH]:[cH] :[c](0[c](:[*]):[*]) :[cH]:1	0.351	1 out of 1
-	Top Fea	tures for negative of	contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.8	0 out of 3
ECFP_4	888054369	[*]N[c]]:[cH]:[cH]:[c]	-0.8	0 out of 3
ECFP_4	738938915	N P P P C [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.597	0 out of 2

 $C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082

Rotatable Bonds: 7

Acceptors: 5 Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.266

Enrichment: 0.905

Bayesian Score: -1.56

Mahalanobis Distance: 13.9

Mahalanobis Distance p-value: 1.01e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glimepride	Glyburide	Bicalutamide		
Structure		HN CO	F HO HO HN The HN The HN The HN The HN The HO HO HO HO HO HO HO HO HO HO HO HO HO		
Actual Endpoint	Carcinogen	Non-Carcinogen	Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen		
Distance	0.538	0.581	0.612		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sent 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	-581879738	(*)NC(=0)(c)1:(cH):(c H):(1):(cH):(cH):1	0.77	4 out of 5		

FCFP_6	-1838187238	(*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	1294255210	(*]C(=[*])N[c](:[*]): [*]	0.441	12 out of 28
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-885520711	(*]C(=[*])NN=[*]	-0.839	0 out of 5
FCFP_6	1153798395	(*]C(=[*])[c]1:[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822	(*)/N=C(/C)/(c](:[']) :[']	-0.489	3 out of 21

Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444

Enrichment: 1.51

Bayesian Score: 4.21

Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Glyburide	Glimepride	Fluvastatin
Structure		A C C C C C C C C C C C C C C C C C C C	
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.594	0.599	0.603
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fe	atures for positive contribution	on		
Fingerprint	Bit/Smiles	Feature Structure Score	Carcinogen in training set		
FCFP_6	71953198	$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	12 out of 23		
		I			

FCFP_6	-1838187238	FF CI [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	140656626	[*]0[c]f![cH]:[cH]:n: [c](:[cH]:1)C(=[*])[*]	0.46	1 out of 1
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	2104062943	[*]C([*])([*])[c]1:[c H]:[*]:[cH]:[c] :1Cl	-1.01	1 out of 17
FCFP_6	551850122	[*][c]1:[*]:[c]([*]): [c](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	N ^N →O N ^N →O FF C [*]:[c](:[*])Cl	-0.406	10 out of 59

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Acceptors: 5

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.151

Enrichment: 0.503

Bayesian Score: -11.8

Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 9.06e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glimepride	Bicalutamide	Primidolol		
Structure	A Constant of the second secon	HO HO HIN THE F	NH NH NH NH		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.551	0.682	0.795		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

- 2. Unknown FCFP_2 feature: 581019816: [*]NN=C([*])[*]
- 3. Unknown FCFP_2 feature: -885520711: [*]C(=[*])NN=[*]

Res.) Sept. 1997

Feature Contribution Top features for positive contribution **Bit/Smiles** Fingerprint Feature Structure Score Multiple-Carcinogen in training set FCFP 12 547884906 0.4 out of 1 [*][c]1:[*]:[cH]:[cH] :n:[cH]:1

FCFP_12	-581879738	(')NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[c]	0.239	2 out of 4
FCFP_12	-1549103449	(*)NC(=O)[c](:[*]):[*	0.168	3 out of 7
	Top Feat	ures for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	(*)C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877	C ^N NHYC ^N H C ^N N ^N C ^N HYC ^N H C ^N C ^N C ^N HYC ^N H (*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	(*)C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139

Enrichment: 0.461

Bayesian Score: -14.7

Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Glimepride	Bicalutamide	Lansoprazole		
Structure	NH S S S S S S S S S S S S S S S S S S S	F HO HO HN the f HN the N	F _F _F		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.626	0.700	0.866		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	eature Contribution				
	Top fea	atures for positive c	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	1499521844	[*]NC(=0)N[*]	0.39	5 out of 9	

FCFP_12	-904785030	[*]:[cH]:[c](:n:[*])C (=O)NC	0.174	1 out of 2
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*]	0.168	3 out of 7
	Top Featu	ires for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	$[*]^{C(=[*])N[c](:[*]):}$	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1462709112	PFF CI [*]C(=["])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.994	0 out of 5

Structural Similar Compounds

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO)- 4-(METHYLAMINO)-
Structure	HN AN ON H 2	HN nt NH 2	OH HN W N HN N H
Actual Endpoint	Mild	Mild	Mild
Predicted Endpoint	Mild	Mild	Mild
Distance	0.724	0.783	0.796
Reference	28ZPAK-;125;72	28ZPAK-;124;72	28ZPAK 245;72

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 581019816: [*]NN=C([*])[*]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4

Model Prediction

Prediction: Mild

Donors: 3

Probability: 0.132

Enrichment: 0.191

Bayesian Score: -10.3

Mahalanobis Distance: 7.9

Mahalanobis Distance p-value: 0.942

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

FCFP_10	-1695756380	(*)1:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
FCFP_10	-124655670	(*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
	Top Feat	tures for negative of	contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*]	-1.29	0 out of 4
FCFP_10	241406177	(*):[cH]:[c](NC(=0)]c]1:[cH]:[cH]:[1]:[cH]:[7]	-1.29	0 out of 4
FCFP_10	-581879738	(')NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	-1.29	0 out of 4

Model Prediction

Prediction: Mild

Probability: 0.776

Enrichment: 1.13

Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds Name 4;4'-DIAMINO-1;1' 5-NORBORNEN

Name	ame 4;4'-DIAMINO-1;1'- DIANTHRIMIDE		METHANE;TRIS(4- AMINOPHENYL)-
Structure	NH 2 NH 2	OHCI CI OHCI CI OHCI CI OH	NH ₂ H ₂ N NH ₂
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe
Distance	0.799	0.816	0.827
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1695756380	[*]1:[cH]:[cH]:1	0.285	10 out of 11	

FCFP_10	-124655670	FF CI [*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]C(=[*])NC	0.239	54 out of 64
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*][C([*])([*])[c]1:[c H]:[*]:[cH]:[c] :1Cl	-0.745	7 out of 24
FCFP_10	-174293376	[*]N[[c]]:[cH]:[cH]:[c] ['])[[c]]:[c]:[cH]:1)C(['])(['])[']	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=0)[c](:[*]):[*]	-0.504	2 out of 6

Structural Similar Compounds

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO) -4-(METHYLAMINO)-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	
Structure	HN AN HN AN H 2 HN AN H 2 HN H 2 HN AN H 2 H	OH HN TH O THE N N H H	HN rts HNH 2	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.716	0.780	0.781	
Reference	28ZPAK-;125;72	28ZPAK 245;72	28ZPAK-;124;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 581019816: [*]NN=C([*])[*]

Feature Contribution

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	0, € ^N 0, € ^N 0, 6 ^N 0, 6 ^N H (*]:[cH]:n:[cH]:[*]	0.208	44 out of 44	

Acceptors: 5

Donors: 3

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 1.72

Mahalanobis Distance: 7.1

Mahalanobis Distance p-value: 0.997

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

FCFP_12	-124655670	0, ^N NNH () ^N O ^H 0 [*]:[cH]:[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1695756380	(*)1:[cH]:[cH]:1	0.194	11 out of 11
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	(*)[cH]:[cH]:[cH]:1	-0.0964	107 out of 146
FCFP_12	1		0	872 out of 1051
FCFP_12	0	°, ^N °, ^N °, ^N ^N ^N ^N ^N ^N ^N ^N	0	1184 out of 1397

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.04

Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Structural Similar Compounds					
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-		
Structure		NH 2 NH 2 HN rtu HN rtu O HN rtu O HN rtu O HN rtu O HN rtu O HN rtu O HN rtu O O HN 2 HN 2			
Actual Endpoint	Non-Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Irritant	Irritant		
Distance	0.743	0.791	0.801		
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	F _F Ci [*]:[cH]:n:[cH]:[*]	0.208	44 out of 44	

FCFP_12	-124655670	P _F C _I [*]:[cH]:[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1539132615		0.197	13 out of 13
	Top Feat	ures for negative o	ontribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-747629521	[']N[6]f?[cH]:[cH]:[c](O[c](:[*]):[1]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	702861189	[*]NH113CH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	-0.268	1 out of 2
FCFP_12	859018953	[*][c]1:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	0	7 out of 9

 $C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Acceptors: 5 Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.296

Enrichment: 0.92

Bayesian Score: -0.121

Mahalanobis Distance: 12

Mahalanobis Distance p-value: 0.00462

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glimepride	Glyburide Glipizide			
Name Structure		HN TO C			
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.562	0.603	0.656		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

Res.) Sept. 1997

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	-223149939	(*)NC(=0)[c]1:[cH]:[c H]:[']:[cH]:1	0.613	2 out of 2

ECFP_12	-177077903	(*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	(*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1571214559	(*]1:[cH]:[cH]:[cH]:[cH]:1	-0.56	11 out of 64
ECFP_12	-281505363	(*][cH]:[cH]:[cH]:1	-0.56	11 out of 64
ECFP_12	1997021792	(*):[cH]:[cH]:[*]	-0.296	36 out of 156

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236

Enrichment: 0.734

Bayesian Score: -3.76

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glimepride	Glyburide	Fluvastatin		
Structure					
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.620	0.635	0.635		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-970385855	[*]N[c]3:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.613	2 out of 2	

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	$[*]^{C(=[*])N[c](:[*]):}$	0.46	9 out of 17
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](Cl): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	N N P F F F C [*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1413420509	[*]C(=[*])[c](:[cH]:[*]):n:[*]	-0.661	0 out of 3
C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Acceptors: 5

Donors: 3

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.605

Enrichment: 1.62

Bayesian Score: 3.33

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 0.000192

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Bicalutamide	Torsemide	Ursodiol	
Structure	HO HN ALL CARK	HN O HN NH HN O HN O H HN O H H H HN O H H H H H H H H H H H H H H H H H H H	OH WITH OH WITH OH	
Actual Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Distance	0.638	0.714	0.738	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	1631845520	(*]C(=[*])N[c](:[*]): [*]	0.601	6 out of 9	

SCFP_4	-1375926917	0, ↓ 0, ↓ 0, ↓ 0, ↓ 0, ↓ 1, ↓ 0, ↓ 0, ↓ 0, ↓ 0, ↓ 1, ↓ 0, ↓ 1, ↓ 0, ↓ 1, ↓ 0, ↓ 1, ↓	0.522	6 out of 10
SCFP_4	1205586762	(*]N[c](:[cH]:[*]):[c H]:[*]	0.451	7 out of 13
	Top Fea	tures for negative of	ontributior	า
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1188429584	(*][c]1:[*]:[cH]:[cH] :n:[cH]:1	-0.666	0 out of 3
SCFP_4	-758850909	0, CN 0, CN 0, CN NNA CN H (*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.489	0 out of 2
SCFP_4	-937094999	(*]1:[cH]:[cH]:[cH]:n :[cH]:1	-0.368	1 out of 6

C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Acceptors: 5 Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.342

Enrichment: 1.02

Bayesian Score: -0.494

Mahalanobis Distance: 14.5

Mahalanobis Distance p-value: 5.99e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Glimepride	Glyburide	Glipizide	
Structure	NH SH SH SH SH SH SH SH SH SH SH SH SH SH	HIN CO		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.546	0.585	0.632	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	(*)C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7	

SCFP_6	698322229	(*]C(=[*])NN=[*]	0.415	1 out of 1
SCFP_6	-105808146	(*][c]1:[cH]:[cH]:1	0.415	1 out of 1
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1653911926	(*][cH]:[cH]:[cH]:1	-0.504	12 out of 64
SCFP_6	1257084377	(*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	124026986	0, N N N [*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*]	-0.278	0 out of 1

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293

Enrichment: 0.878

Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glyburide	Glimepride	Fluvastatin
Structure		A MH	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.593	0.600	0.615
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	ntribution			
	Top fea	atures for positive o	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-754059116	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-531283893	[*]O[c]f2[cH]:[cH]:[c](NC(=[*])[*]):[cH]: [cH]:1	0.273	2 out of 4
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-827073191	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	-0.674	0 out of 3
SCFP_6	-488587948	[*]:[cH]:[*]:[cH]:[cH]:[cH]:[cH]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*	-0.496	0 out of 2
SCFP_6	-975241316	[*][c]1:[cH]:[c] (O[c](:[cH]:[*]):[cH]:[1]]:[*]):[cH]:[cH]:[1]	-0.496	0 out of 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.911

Enrichment: 0.989

Bayesian Score: -2.62

Mahalanobis Distance: 7.39

Mahalanobis Distance p-value: 0.981

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	
Structure	C C C C C C C C C C C C C C C C C C C	H 2 N 4 H		
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant	
Distance	0.833	0.865	0.910	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
			•	·	

FCFP_12	-124655670	ېر.	0.0821	13 out of 13
		N CONFACT H		
		[*]:[cH]:[cH]:n:[*]		
FCFP_12	-1695756380		0.0772	7 out of 7
		[*]1:[cH]:[cH]:[cH]:n :[cH]:1		
FCFP_12	730557100		0.0756	6 out of 6
		[*][c]1:[*]:n:[cH]:[c H]:[cH]:1		
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	°,↓°	-0.692	5 out of 12
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1		
FCFP_12	1294255210		-0.486	12 out of 22
		(*)C(=[*])N[c](:[*]): [*]		
	I	I	1	1

FCFP_12	-773983804		-0.444	46 out of 79
		<u>م</u> ب		
		([*]):[cH]:[cH]:1		

TOPKAT_Skin_Irritancy_None_vs_Irritant

Model Prediction

Prediction: Non-Irritant

Probability: 0.264

Enrichment: 0.287

Bayesian Score: -5.23

Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-
Structure			And the same of the office of the same of
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.844	0.871	0.884
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		•	•	L.	

FCFP_12	-124655670		0.0821	13 out of 13
FCFP 12	-1539132615		0.0795	9 out of 9
]):n:[]		
FCFP_12	-1695756380		0.0772	7 out of 7
		FF CI [*]1:[cH]:[cH]:[cH]:n :[cH]:1		
	Top Feat	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	N ^M O ^O C ^N ^M O	-1.54	0 out of 4
		[*]O[c]f2[cH]:[cH]:[c](NC(=[*])[*]):[cH]: [cH]:1		
FCFP_12	-1838187238		-0.692	5 out of 12
		F _F Ci [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1		

FCFP_12	1294255210	Ň	-0.486	12 out of 22
		N ⁴ 0		
		5		
		F [*] F CI [*]C(=[*])N[c](:[*]):		
		[*]		

$C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7 Acceptors: 5

Donors: 3

Model Prediction

Prediction: 13.5

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.000154

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Ochratoxin A	542	Tamoxifen citrate
Structure		AND Examinant $ \begin{array}{c} $	
Actual Endpoint (-log C)	4.79932	4.79932	5.05965
Predicted Endpoint (-log C)	3.6353	3.6353	4.24168
Distance	0.816	0.816	0.866
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC23 out of range. Value: -2.85. Training min, max, SD, explained variance: -2.6901, 3.3252, 1.05, 0.0138.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 560380707: [*]NN=C([*])[*]

Feature Contribution Top features for positive contribution

	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385		0.229	
		[*]:n:[*]		

Model Prediction

Prediction: 19.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Carcinogenic_Potency_TD50_Mouse

Structural Similar Compounds

Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide
Structure		AND Enantioner	CI N N N HO HO
Actual Endpoint (-log C)	4.79932	4.79932	3.91517
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186
Distance	0.718	0.718	0.738
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	[*]:n:[*]	0.229	

ECFP_6	-817402818	N N N N O F F C I (*]CI	0.129
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.0818
	Top Features for ne	egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392	[*]:[cH]:[*]	-0.232

Acceptors: 5

Donors: 3

Model Prediction

Prediction: 45.4

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13

Mahalanobis Distance p-value: 5.88e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	913	Fluvastatin	Ochratoxin A	
Structure				
Actual Endpoint (-log C)	3.51742	3.51742	6.47264	
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501	
Distance	0.730	0.730	0.767	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score FCFP_6 1 $\int_{\mathcal{F}} \mathcal{O}_{\mathcal{N}} \mathcal{O}_{\mathcal{H}} \mathcal{O}_{\mathcal$

FCFP_6	730557100	(*)[c]1:[*]:n:[cH]:[c H]:[cH]:1	0.141
FCFP_6	203677720	(*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.137
	Top Features f	or negative contribution	n b
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_0	991735244	(*)[c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.422
FCFP_6	-2093839777	(*][c]1:[cH]:[cH]:[cH]:1	-0.378
FCFP_6	16	(*]:[cH]:[*]	-0.354

Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluvastatin	913	Ochratoxin A
Structure		P P	HO HO HO HO HO HO HO HO HO HO HO HO HO H
Actual Endpoint (-log C)	3.51742	3.51742	6.47264
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501
Distance	0.597	0.597	0.666
Reference	СРДВ	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

 $C_{28}H_{23}N_5O_3$ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7 Acceptors: 5

Model Prediction

Prediction: 0.336

Donors: 3

Unit: g/kg_body_weight

Mahalanobis Distance: 31.9

Mahalanobis Distance p-value: 3.77e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	GLYBURIDE	GLIPIZIDE	C.I.PIGMENT RED 23
Structure			HN CO HN CO
Actual Endpoint (-log C)	4.21661	3.94991	2.28997
Predicted Endpoint (-log C)	4.21035	3.95594	3.52921
Distance	0.787	0.790	0.837
Reference	UPJ-26452	NDA-17583	NTP 411 146

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 3. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 4. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 5. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 6. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 10. Unknown ECFP_6 feature: 560380707: [*]NN=C([*])[*]
- 11. Unknown ECFP_6 feature: 544048674: [*]C(=[*])NN=[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
		- ·		

FCFP_6	3		
		[*]N[*]	
FCFP_6	-2093839777	0.078	
ECFP_6	2099970318		
		()**° [*]C(=O)[*]	
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure Score	
FCFP_6	991735244	-0.134	
ECFP_6	1564392544	-0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133 -0.133	

FCFP_6	1	₀ , ↓ \	-0.102
		[*]N=[*]	

Acceptors: 4

Donors: 3

Model Prediction

Prediction: 0.00483

Unit: g/kg_body_weight

Mahalanobis Distance: 30

Mahalanobis Distance p-value: 1.21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN	
Structure	HN CO HN CO	WNXNW C	F F F Cl MO MO O H O O H	
Actual Endpoint (-log C)	4.21661	3.87715	4.16036	
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915	
Distance	0.636	0.722	0.736	
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- 5. Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution

Top features for positive contribution

TOPKAT_Chronic_LOAEL

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	FF CI [*]O[c](:[cH]:[*]):[c H]:[*]	0.106
FCFP_6	32	$F_{F} = CI$ [*]CI	0.101
FCFP_6	3	$F_{F \in CI}^{N}$	0.0924
	Top Features	for negative contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	F_{F-CI}^{N}	-0.102

ECFP_6	-1236483485	$[^*]C(=[^*])N[c](:[^*]):$	-0.0747
FCFP_6	203677720	N N P F C [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0713

Structural Similar Compounds

Name	SALICYLAZOSULFAPYRI DINE	FUROSEMIDE	E C.I.PIGMENT RED 23	
Structure	HN I CONTRACTOR	HO HO H H CI O H CI	of the second se	
Actual Endpoint (-log C)	3.375	4.04236	2.30052	
Predicted Endpoint (-log C)	2.80292	2.8614	3.55333	
Distance	0.711	0.831	0.868	
Reference	NCI/NTP TR-457	NCI/NTP TR-356	NCI/NTP TR-411	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

	Top features for positive contribution					
ingerprint	Bit/Smiles	Feature Structure	Score			
CFP_2	3		0.0737			

C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7

Model Prediction

Prediction: 0.117

Acceptors: 5 Donors: 3

Unit: g/kg_body_weight

Mahalanobis Distance: 9.42

Mahalanobis Distance p-value: 0.000352

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

FCFP_2	17		0.0441
FCFP_2	590925877	(*]N[c](:[cH]:[*]):[c H]:[*]	0.00762
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	(*]C(=O)[*]	-0.105
FCFP_2	203677720	(*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829
FCFP_2	1		-0.0796

Donors: 3

Model Prediction

Prediction: 0.0885

Unit: g/kg_body_weight

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3
Structure	HO O H H C C	O O HO	OH NH
Actual Endpoint (-log C)	4.04236	2.20184	2.77703
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195
Distance	0.741	0.780	0.799
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222

TOPKAT Rat Maximum Tolerated Dose Feed

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

FCFP_2	3	PF CI [*]N[*]	0.0737
FCFP_2	332760439	N ^H O FFCI [*]O[c](:[cH]:[*]):[c H]:[*]	0.0611
Top Features for negative contribution			
	71476542		-0 13/
		N ^N	
FCFP_2	1872154524	$F_{F} = CI$ $[*]C(=O)[*]$	-0.105
FCFP_2	203677720	[*]C(=[*])[c]:[*]	-0.0829
C₂₈H₂₃N₅O₃ Molecular Weight: 477.51391 ALogP: 3.082 Rotatable Bonds: 7 Acceptors: 5 Donors: 3

Model Prediction

Prediction: 0.148

Unit: g/kg_body_weight

Mahalanobis Distance: 12.3

Mahalanobis Distance p-value: 3.08e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH OH HOW WILL			
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.921	1.081	1.282	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 477.51. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 4. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC6 out of range. Value: -2.6475. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 4. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 5. Unknown FCFP_2 feature: 581019816: [*]NN=C([*])[*]
- 6. Unknown FCFP_2 feature: -885520711: [*]C(=[*])NN=[*]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
		·		

Sorafenib

Model Prediction

Prediction: 0.000918

Unit: g/kg_body_weight

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

Structural Similar Compounds

Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH OH HOW WILL			
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.758	0.997	1.159	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
	I			

FCFP_2	0	Ņ "	-0.29
		N ^{ij} o ji	
		[*]C(=[*])[*]	

Model Prediction

Prediction: 2.81

Unit: g/kg_body_weight

Mahalanobis Distance: 22.1

Mahalanobis Distance p-value: 1.54e-016

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	BENZENESULFONIC ACID; 2;2'-(4;4'- BIPHENYLYLENEDIVINYL ENE)DI-; DISODIUM SALT (Na STRIPPED)	bis-OXATIN ACETATE	CARBAMIC ACID; N-(5- BENZOYLBENZIMIDAZOL -2-YL)-; METHYL ESTER	
Structure				
Actual Endpoint (-log C)	1.968	1.717	2.617	
Predicted Endpoint (-log C)	1.72109	2.40947	2.2368	
Distance	0.834	0.851	0.861	
Reference	MVCRB3 2;193;73	NIIRDN 6;609;82	IYKEDH 19;735;88	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 1618154665: [*]:[cH]:[cH]:[cH]:[cH]:[*]
- 5. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]
- 6. Unknown FCFP_6 feature: 581019816: [*]NN=C([*])[*]
- 7. Unknown FCFP_6 feature: -885520711: [*]C(=[*])NN=[*]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_6	-1549103449		-0.117
		₀,८⊅	
		[*]NC(=O)[c](:[*]):[*]	
		, '	

Sorafenib

Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight

Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE	
Structure	P P P P P P P P P P P P P P P P P P P			
Actual Endpoint (-log C)	2.088	5.006	1.946	
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395	
Distance	0.697	0.703	0.721	
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

- All properties and OPS components are within expected ranges. 1.
- 2. Unknown FCFP 6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*] 4.
- Unknown FCFP_6 feature: 1618154665: [*]:[cH]:[cH]:[cH]:[*] 5.
- Unknown FCFP_6 feature: 136686699: [*]NC 6.

Feature Contribution Top features for positive contribution Figure Structure Structure						

FCFP_6	71953198		0.392
		[*]C([*])([*])F	
ECFP_6	-1046436026		0.349
		[*]F	
ECFP_6	642810091		0.281
		[*][c](:[*]):[*]	
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	[*]C([*])([*])F	-0.32
ECFP_6	-817402818		-0.263

ECFP_6	-176455838	Ņ	-0.257
		N NO	
		[*]O[c](:[cH]:[*]):[c	
		H]:[*]	