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Many operational parameters, either discretely or collectively, can infuence the biodegradation performance towards enhancing
biogas yield and quality. Among the operating parameters, organic loading rate (OLR), inoculum-substrate ratio, and carbon-
nitrogen ratio (C/N) are the most critical parameters in the optimization and enhancement of biogas yield. Optimization of the
biogas production processes depends on the ability of anaerobic microorganisms to respond to variations in operational pa-
rameters such as pH, redox potential, and intermediate products to enhance the biogas yield.Tis review article focuses on the role
of process parameters, kinetic models, artifcial intelligence, Aspen Plus (AP), and anaerobic digestion model no. 1 (ADM1) in
optimizing biogas yield via an anaerobic codigestion (AcoD) process. Te review showed that biomaterials codigestion upgraded
biogas yield to the extent of 400%, and organic removal efciency reached up to 90% compared to a single substrate. In addition,
the current work has verifed that the kinetic model is the most efective tool for signifying that the hydrolysis phase is the rate-
limiting step, whereas AP is the most efective tool in the design and optimization of the AcoD process parameters. Te reviewed
kinetic and AI models show strong correlation values ranging from 0.931 to 0.9991 and 0.8700 to 0.9998, respectively. Te AcoD
system involves complex chemical reactions, but APmight have limitations in representing such complex chemical processes with
nonideal behavior and complicated reactionmechanisms.Te design and optimization of AcoDwith reliable input parameters are
highly limited or nonexistent. Te AcoD process design with AP opens fresh research opportunities, including improved ef-
fciency, fnding appropriate retention time, and saving time, as well as fnding the optimum biogas yield. Tis review article gives
an insightful understanding of AcoD process parameter optimization and valuable strategies for policy development enhancing
sustainability in the biogas sector.

1. Introduction

Te global energy crisis, fast population growth, and rapid
depletion of nonrenewable energy sources coupled with
global warming caused by greenhouse gas (GHG) emissions,
particularly carbon dioxide (CO2), press the concerned
bodies to fnd an environmentally sound alternative energy
source to reduce the dependence on fossil fuels [1]. Bio-
energy can be obtained from any biologically decomposable
organic matter, such as plants or animals, terrestrial plants,

aquatic plants, wastes from wood processing, organic
fractions of municipal solid wastes, animal manures, crop
residues, sewage sludge, and debris from forestry, are only
a few examples of biomass energy sources [2]. As compared
to other waste treatment technologies, biogas plants emit
fewer GHG into the atmosphere. Anaerobic digestion (AD)
technology has received widespread global acceptance and
appears to have strong prospects [3–5]. Te use of biogas
technology in the industry and at home, as well as fertilizers
in agriculture, is a wonderful example of a circular green
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economy. It also minimizes the use of nonrenewable fuels,
including wood and charcoal, and indirectly helps to con-
serve the forests and biodiversity resources. Terefore, waste
conversion into bioenergy is just more than an issue of clean
energy production. It has a broader impact because it
minimizes groundwater pollution [6], solves a waste disposal
problem and its associated costs, and reduces greenhouse gas
emissions by moderating methane emissions [7]. Te
treatment of wastewater or liquid/solid waste from livestock
contributes to the reduction of pollution in lakes and
rivers [8].

AD is the biochemical decomposition of organic ma-
terials by groups of archaea under an oxygen-free envi-
ronment to produce gaseous compounds, mainly consisting
of 50–75% methane [9]. However, anaerobic monodigestion
does not produce sufcient biogas yields due to several is-
sues, such as nutrient imbalance, fuctuations in feedstock,
inhibitory compounds, lack of diversifed microbes, and the
efect of operating conditions [10]. AcoD ofers an oppor-
tunity to overcome the failures of monodigestion by si-
multaneously degrading more than two substrates in one
bioreactor. In addition, AcoD may serve the purpose of
improving system stability and neutralizing toxic com-
pounds [11]. Te synergistic efects of AcoD encourage
microbial consortia, better nutrient balance (right C/N ratio
and delivery of trace elements) [12], provision of the needed
amount of moisture for the bioreactor [13], increasing the
OLRs [14], and improving the speed of biodegradations [15].
Despite its complexity, several computational models have
been developed to symbolize the biochemical trans-
formation of organic waste during the AD process to predict
and optimize the mixing ratios and OLRs, avoid process
variability and costs, lower the energy loss [16, 17], and
reduce the process time to maximize biogas production
[18–20]. Te mathematical models used to describe the
kinetic parameters include the Monod model, frst-order
kinetic, modifed Gompertz models [21], and transference
function [22]. In addition, the models applied to forecast and
simulate the mono AD process include artifcial intelligence
(artifcial neural networks (ANNs), ant colony optimization
(ACO), genetic algorithms (GAs), and particle swarm op-
timization (PSO)), and hybrids of these models [23, 24].
Furthermore, a variety of diferent common software pro-
grams have been applied to simulate and optimize the AcoD
process, such as Aspen Plus (AP), AQUASIM, ADM1, and
sewage treatment operation analysis over time (STOAT)
[20, 25, 26]. Among the relevant software tools, ADM1 and
Aspen Plus are found to be the most favorable in predicting
suitable working environments. Tese interactive and reli-
able models ofer better data optimization and process
simulation around the AcoD system [20].

Te general objective of this work is to comprehensively
review and analyze the experimental and modeling ap-
proaches used in the optimization of biogas production
through an AcoD system with better efciency. While ex-
ploring the previous works, evolution, and predictions of the
AD process in an attempt to improve biogas yields, much
focus is given to process parameters, codigestion, modeling,
simulation, and optimization. Te present review is unique

in the sense that none of the previous review articles in-
tegrated biogas production process parameters and simu-
lation models as a way forward for understanding biogas
yield optimization. Tis review adds an insightful body of
knowledge besides opening up new research opportunities
in the biogas feld.Te output of the current work can beneft
households and medium-scale and commercial-level biogas
plants in adapting to the technology. Efcient biochemical
conversion can greatly help increase the acceptance and
adoption of biogas technology, accelerating the global shift
towards green energy technologies. Tis shift can signif-
cantly contribute to climate change mitigation in the current
context.

2. Stages of the Anaerobic Codigestion Process

Te concept behind the AcoD process is complex, as the
biological breakdown of organic waste is performed in
a multistep process by groups of anaerobic microbes in an
oxygen-limited condition. Biogas is the end-product of AD,
which is composed of 50–75% methane the energy carrier,
25–50% CO2, and other trace compounds of hydrogen
sulfde, nitrogen, ammonia, and hydrogen [9].Te anaerobic
conditions include hydrolysis, acidogenesis, acetogenesis,
and methanogenesis. Figure 1 represents the steps involved
for groups of anaerobic microbes to produce biogas from
waste materials [10].

In the frst step (hydrolysis stage), extracellular enzymes
released by microorganisms degrade long-chain polymers
and other complex organic materials, such as carbohydrates,
proteins, and lipids, into their respective simple forms [27].
In the acidogenesis step, most hydrolysis products are still
macromolecules which must be transformed into smaller
units such as acetic acid. In the second stage, acidogenic
bacteria convert simple sugars, amino acids, and fatty acids
to acetate, CO2, and other trace products. Also, volatile fatty
acids (VFAs) such as acetic acid, butyric acid, propionic acid,
and other organic acids are produced in this stage [28].
Furthermore, the organic compounds are converted to ac-
etone, glycerol, and alcohols. Acidogenesis is a fast exo-
thermic step that occurs during AD. In a well-functioning
anaerobic system, about 70–80% of the hydrolysis products
are converted to hydrogen, CO2, and acetate, which are
easily available to methanogenic microbes. In comparison,
the remainder of 20–30% is translated to other intermediate
products [29]. In the acetogenesis stage, either hydrogen-
producing or hydrogen-consuming agents produce acetate.
Hydrogen-producing agents oxidize the acids to acetate.
Tis oxidation reaction produces electrons, which are
transformed to H+ to form H2 and formate [30]. In the fnal
stage, methanogenic microbes use acetate, H2, and CO2 in
the synthesis of methane. Tis process occurs in one of the
two ways: acetoclastic methanogenesis or hydrogenotrophic
methanogenesis [31]. In the former approach, acetate is the
main feed for producing methane, but in the latter method,
hydrogen is engaged to decrease CO2. Adjusting the ideal
pH value is crucial to guarantee maximum activity for the
acidifying and methanogenic bacteria [10]. For example, the
methanogenesis step should occur at a pH of over 6.6, ideally
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between 6.8 and 7.2, to produce the maximum amount of
methane [30]. Caruso et al. [32] identifed some conditions
that can delay bacterial growth and activity, including
a shortage of nutrients and the existence of inhibitory
chemicals such as sulfde, which causes a drop in pH and
VFA accumulation.

3. Process Parameters

Numerous factors infuence the efciency of anaerobic di-
gestion and the feasibility of codigestion in situations where
adequate management is required to avoid reactor failure.
Chemical compositions of the substrate, mixing, inoculum-
substrate ratio (ISR), biological oxygen demand (BOD) and
chemical oxygen demand (COD), OLR, substrate mixing
ratio, nutritional balance, hydraulic retention time (HRT),
and operating temperature in the digester are a few of the key
factors that have a signifcant infuence on performance
during codigestion. Tese factors are also further evaluated,
reviewed, and discussed in the following sections to obtain
a better understanding of a way forward, while referring to
Tables 1 and 2. Te summarized optimal operating condi-
tions are also highlighted.

3.1. Chemical Composition of Substrates. Chemical compo-
sition refers to the specifc elements, compounds, and or-
ganic contents present in the substrates that are being used
as a feedstock for biogas production. Te specifc chemical
compositions of organic materials may vary depending on
numerous factors, including the waste or biomass type, its
origin or source, and its regional location [44]. Typically,
substrates utilized in the generation of biogas comprise the
following components: water content provides the necessary

moisture for microbial activity and the AD process. In-
organic components, such as salts and minerals present in
organic materials, can infuence alkalinity, pH, and bufering
capacity. Organic matter (fractions), which includes car-
bohydrates, proteins, lipids, and other complex organic
compounds [21], constitutes the primary energy source for
microbes [10]. Essential nutrients, including nitrogen [45],
potassium, phosphorus (P), sulfur, and trace elements such
asmagnesium, iron, and calcium, are necessary formicrobial
growth and metabolism. Te chemical composition of
substrates has signifcant efects on the process parameters,
including OLR, pH, and alkalinity [46].Tus, understanding
the specifc composition of substrates is essential as it aids in
assessing the suitability of substrates for methane pro-
duction, forecasting biogas production potential, and op-
timizing process parameters. In addition, by carefully
picking and mixing the substrates, it is possible to obtain
upgraded nutrient balance, higher biogas yields, and better
overall process performance in AcoD systems.

3.2. Agitation/Mixing Rate. Agitation/mixing rate refers to
the intensity at which the organic materials inside the di-
gester are mixed. It involves the movement of the organic
waste and the inoculum to create a well-mixed environment,
promoting efcient biogas production [47]. Mixing stimulates
contact between microorganisms and substrates and provides
uniform temperature distribution in the digester. Adequate
mixing can reduce foaming caused by foating fat, flamentous
microorganisms, or by adhering to gas bubbles. Mixing in the
bioreactor is aimed at solid accumulation, foating layers, and
the release of the entrapped biogas in the digestate. Adequate
contact between nutrients and microorganisms requires
proper mixing. As they have negative infuences on biogas
production and higher power consumption, continuously
mixed digesters are no longer encouraged. It has been re-
ported that biomethane production increased by 220% with
160 rpm bidirectional mixing [48]. Mixing may be profcient
by employing hydraulic (liquid recirculation), mechanical
(manually or using a mixer), and pneumatic (recirculation of
gases) systems at various frequencies (continuously or in-
termittently several times in an hour during a day) and
strengths (intermittent, gentle, and rotation speed) [49].

Te agitation/mixing rate can vary depending on pa-
rameters, including the digester size, design, substrate
characteristics, and process requirements [50]. It is normally
attained using mechanical pumps, stirrers, or recirculation
systems that form turbulence and circulation inside the
digester. Te optimal mixing rate should be balanced to
ensure enough mixing without high energy consumption. A
high agitation rate may increase energy demands and stress
on microorganisms [51], while a low agitation rate may
result in insufcient substrate contact and partial digestion
[48]. Generally, even though the prominence of mixing to
enhance process performance is prominent by several in-
vestigators, the optimum mixing practice is still a ques-
tionable issue, so it is difcult to tell the optimum mixing
intensity because sufcient mixing is subject to a large
number of parameters, which vary for all the experiments.

Complex organic feedstock
(Carbohydrate, Protein, Lipid)

Simple sugar, Amino acid, Long chain fatty acid

Hydrolysis

Acidogenesis

Acetogenesis

Intermediate products
(Organic acid, Alcohol)

H2 & CO2 Acetate

Methanogens

CH4 & CO2

Figure 1: Te steps involved in biogas production (modifed
from [10]).
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3.3. Inoculum-Substrate Ratio. Te ISR refers to the pro-
portion of inoculum (also called seed material) to the
substrate in AD processes. Te inoculum is a mixture of
microorganisms, which kick-start the reaction process by
providing the essential microbes and enzymes to degrade
organic waste. To obtain the maximum biomethane pro-
duction rate and high biomethane yield, the correct balance
between the substrate and inoculum is crucial [21]. Te ratio
decides the initial microbial community and its ability to
degrade the substrate biologically [52]. Ideally, the methane
yield might be independent of the ISR, and the ISR only
afects the reaction rates. However, experimental data in-
dicate that ISR may afect both due to the real evidence that
the proportion directly afects microbial growth patterns.
Too low ISR below the optimum value may prevent the
induction of the enzyme required for biodegradation and
thus a small amount of biogas is produced, which could
afect the conversion and methane yield. It is suggested that
for substrates with poor organic matter concentration that is
not easy to degrade, a substrate-inoculum ratio could be set
at higher ranges over substrates with high organic com-
positions that are easily biodegradable. Te German stan-
dard, VDI 4630, recommends a substrate-inoculum ratio of
less than 0.50 [33]. For example, Ibro et al. [23] evaluated the
efect of the inoculum-substrate ratio on biogas production
performance, and the highest biodegradability and biogas
production was attained at an ISR of 2. Despite their po-
tential to initiate the start-up of the biochemical reaction, it
is not easy to compare kinetic parameters due to the complex
nature of each experimental setup (inoculum source and
temperature) [53].

3.4. Biochemical Oxygen Demand and Chemical Oxygen
Demand. BOD is a parameter that is used to measure the
oxygen consumed by the microorganisms to degrade the
organic matter in the wastewater. It indicates the amount of
oxygen required to oxidize the organic material existing in
organic wastewater biochemically [54]. COD is used to
evaluate the amount of organic matter in waste, including
the oxygen demand formed by biodegradable and non-
biodegradable organic materials. Terefore, COD values are
larger than BOD [55]. In addition, COD is a useful indicator
of the biogas conversion efciency of the bioreactor. Te
quantity of biogas yield increased gradually with the in-
crement of COD concentration [56]. AD includes most
alternatives as a former treatment of waste on environmental

and energy security, potentially leading to COD and BOD
removals as high as 90 and 95% at optimum conditions [56].
For a given sample, the COD value after biodegradation
specifes only the amount of the nonbiodegradable organic
matter. Terefore, it is obvious that the diference in COD
before and after microbial degradation (ΔCOD) equals the
BOD value because both represent the amount of bio-
degradable organic materials. In addition, COD can improve
the defciencies of BOD, which is defned as the oxygen
amount consumed when organic matter in waste is
decomposed by external oxidants under certain conditions
[55]. Te intensity of the chemical composition of organic
material directly infuences the concentration of the biogas
production. In addition, COD balance indicates the syn-
ergistic efect of codigestion due to a blend of supplement
materials (available here). All experiments indicated that the
results of COD and BOD are proportional to the biogas
output of the bioreactor. So, the nature and composition of
the organic matter available in the waste may directly afect
biogas production [57].

3.5. Carbon-Nitrogen Ratios. In AD systems, the C/N ratio
refers to the ratio of carbon to nitrogen content in the
organic materials being treated. Te C/N ratio indicates the
level of the nutritional content of feedstocks that are sig-
nifcantly exposed to microorganisms. To improve process
performance and stability, the C/N ratio must be optimized,
like other parameters. Te system becomes unstable, and
biogas generation falls as the C/N ratio deviates from the
ideal C/N ratios. Tus, identifying C/N levels is important
for decreasing or eliminating ammonia build-up during the
AD process [34]. A low C/N ratio implies insufcient carbon
content or nitrogen underuse, which causes an excessive
ammonia concentration, phenolic compounds production,
and a drop in pH [58]. Carbon-rich substrates such as
kitchen wastes and energy crops can be added to enhance
biogas yield. In contrast, if the C/N ratio is too high, it
indicates a defciency of nitrogen relative to carbon, which
can slow down the microbial activity leading to a longer
retention time in the reactor and lower biogas production
rates [59]. In this case, nitrogenous substrates, such as an-
imal dung and poultry droppings, can be employed to in-
crease biogas production. Table 1 shows the ideal C/N ratio,
which is adequate to maintain the system stability and
satisfes anticipated energy and nutritional needs for the
efcient metabolic activities of the microbial groups [60].

Table 1: Optimum ranges of operational parameters for the optimization of the anaerobic codigestion process.

Operational parameter Optimal values References
ISR >2 :1 [33]
C/N ratio 20–30 :1 [34]
pH 6–8.50 [30, 35]
OLR 1–6 g VS or COD/l.d [32, 36]
Temperature Cryophilic (15–25°C), mesophilic (35–40°C), and thermophilic (50–60°C) [37]
VFA/TA ratio 0.20–0.40 [14]
TA 1000–5000mg CaCO3/l [27]
d, day; TA, alkalinity; l, litter; mg, milligram; g, gram.
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For example, Lama et al. [22] codigested alga Rugu-
lopteryx okamura (R. okamura) with olive mill solid residues
(OMSW) to identify their feasibility for biogas production.
Tey observed the maximum methane yield for the mixture
at a C/N ratio of 27.4, enhancing the methane yield of
macroalgae alone by 157%. In other work, biogas yield
improved by 179.7% at a C/N ratio of 23.7 for codigestion of
cofee husk (CH), water hyacinth (WH), and food waste
(FW) [43]. Furthermore, operative parameters, such as pH,
temperature, and factors such as VFA and ammonia con-
centrations may extremely infuence the carbon and ni-
trogen contents in a feedstock [61]. Tus, choosing the right
C/N ratio is challenging because various factors, including
substrate type, trace elements, chemical components, and
biodegradability, might afect the ideal values.

3.6. Organic Loading Rates. OLR is another important op-
erating parameter in AD processes that determines a bio-
reactor’s capacity to treat organic waste efciently. OLR
refers to the amount of organic content (usually measured as
COD) that can be fed into the reactor per unit volume within
a given time (e.g., g COD/ml/d). Under the continuous
mode of the AD process, it is the daily amount of organic
substrate added to the anaerobic reactors. Increasing OLR
promotes microbial activity, which may improve biogas
production [62]. However, feeding the substrate into the
digester without considering the optimum OLR mentioned
in Table 1 resulted in a biogas volume reduction. In the
overloaded biodigester, the free motion of microorganisms
would be restricted, and they have an excessive concen-
tration of VFA, which may afect the CH4-producing
methanogens [63]. For example, increasing OLR showed
a drop in biogas production by 168% [14]. Low loads (in-
troducing little organic material) cause the digester to be-
come alkaline and produce poor biogas [13]. Te optimal
OLR for an anaerobic reactor depends on some factors,
including the feedstock type, reactor confguration, and
HRT. In addition, the operating temperatures, substrate
composition, and biodegradability may afect the OLRs.
AcoD allows for the adjustment of the overall composition
of the substrate to optimize the OLR and attain maximum
biogas volumes. For instance, the maximum methane yield
and the highest biodegradability of 98% were obtained from
the mixture of cabbage, caulifower, and food waste at an
OLR of 0.06 kg VS/m3/h [41].

3.7. Hydraulic Retention Time andTemperature. Te average
time interval that a soluble organic compound (sludge)
remains in a biodigester is referred to as the hydraulic re-
tention time. HRT may signifcantly infuence microor-
ganisms and biogas yields. Classical biodigesters require
long HRTs of 20–200 d and large areas, and the biogas is
released directly into the atmosphere, contributing to
greenhouse gases [64]. Tis problem can be overcome by
using a fast cooker with a small footprint and short residence
time. A short HRT helps reduce capital costs and bioreactor
volumes but leads to the washing away of active microbes.
Diferent studies indicate that HRT infuences degradation

efciency, methanogenesis, and microbial community dis-
tribution. For example, the AcoD experiment performed at
the HRT between 10 and 20 d showed a removal efciency of
the VS and COD up to 90% due to the synergistic efects of
codigestion of cattle manure with other biowaste matter
[32]. In addition, the review report showed 77% high-quality
biogas and 87% COD removal at a lower retention of
12 h [61].

In addition, the time it takes for an anaerobic digestion
to break down the waste depends on environmental factors
such as temperature, which refers to the operating condition
of the AD system. Temperature is an important parameter
afecting the methane content in biogas, biogas production
rate, and system performance. Te AD process can operate
primarily under three diferent temperature conditions, such
as cryophilic (15–25°C), mesophilic (35–40°C), and ther-
mophilic (50–60°C) [37]. Te biogas yield produced in
thermophilic anaerobic digestion conditions was slightly
higher than that produced in mesophilic conditions. At high
temperatures, the production of H2 from the oxidation of
organic acids becomes energetically more favorable, while
the consumption of H2 due to hydrogenotrophic meth-
anogenesis becomes less clear [65]. Mahanti and Ghatak [66]
evaluated the efects of temperature on kinetic rates of AD of
lignocellulosic biomass. Te results specifed that the biogas
production rate increased with increasing temperature. In
another experiment, a 400% increment in biogas generation
was reported under mesophilic conditions when 4% of
glycerol was codigested with pig manure, compared to
monodigestion [67]. However, instability issues might crop
up during thermophilic operation. Another limitation is the
additional heating expense in thermophilic digestion [10].
Franqueto et al. [68] also investigated the infuence of
temperature variation on biogas production from codiges-
tion of rice straw and animal waste in bench-scale bio-
reactors. Regarding temperature, all bioreactors were shown
to adapt to the mesophilic and thermophilic conditions due
to the synergism between the substrates tested. Mesophilic
conditions were determined to be the most promising for
biogas generation due to the higher stability and lower
energy consumption. In addition, Rahman et al. [69]
experimented on codigestion of poultry manure and kitchen
wastes to assess the efects of temperature and mixing ratio
on biogas production under room temperature (28°C) and
mesophilic conditions (37°C) and maximum biogas yield
was achieved at mesophilic condition. Tey suggested that
codigestion could be a promising way to increase methane
yields by ensuring nutrient balance, reactor stability, and
bufering capacity under controlled mesophilic temperature.

3.8. pH and VFA/TA Ratios. Te pH, VFA, and VFA/TA
(total akalinity) ratios are the most important factors that
require measurement to determine the stability and per-
formance of the AcoD process for maximum biogas gen-
eration. Te pH value is one of the operational parameters
that infuence microbial activity and methane yield. It is an
indicator of biodigester stability. Te optimum pH value
depends on the type of anaerobic microbes that participate
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in the system. In the process of producing methane, most
bacteria prefer a neutral pH. Kornaros et al. [70] experi-
mented with the AcoD of CM and sorghum aimed at
studying the infuence of initial pH value on CH4 and H2
production in a two-stage digester. Tey achieved the
highest H2 yield of 0.92mol H2/mol carbohydrates con-
sumed at pH 5. Furthermore, a crucial indicator of the
stability of an anaerobic bioreactor is VFA. Te VFAs are
organic acids produced during the acidogenesis phase of
AD, primarily including propionic acid, acetic acid, and
butyric acid that serve as precursors for CH4 production. In
biodigester, excessive VFA formation can lower pH levels,
which can afect active methanogens and disrupt the stability
of the digester. Notably, undesirable VFA accumulation
occurred because of active microbial washout, digester
overfeeding, or formation of inhibitory compounds in the
system. In addition, when the amount of water required for
microbial conversion is insufcient, it leads to high VFA or
ammonia production. In such conditions, codigestion with
a competitive material prevents fuid dispersion routes and
drastically reduces the severe rise and production of toxin
compounds in the slurry [71]. A bufering capacity of
a molar ratio of at least 1 :1.4 of VFA to bicarbonate is
necessary to ensure a stable and well-bufered digesting
process [60].

TA is defned as an aqueous solution’s capacity to
neutralize acids. Compared to direct pH measurement, it is
a more responsible indicator of digester imbalance. An-
aerobic microbes produce TA that prevents the pH drop in
the form of CO2 and bicarbonate. For optimal methane
production, alkalinity should be maintained within the
range shown in Table 1 [27]. Te VFA/TA ratio is a critical
parameter, which is also used to assess the overall per-
formance of the AcoD process. It provides valuable in-
formation about the acidifcation and bufering capacity
of the digester. In an anaerobic system, a loss in alkalinity
or an increase in the amount of VFA causes a rapid drop
in pH [72]. Yang et al. [35] codigested maize stalk and
swine manure to evaluate the infuence of initial pH on the
process stability and methane (CH4) production under
thermophilic conditions for 35 days. Tey confrmed
the VFA/TA ratio of 0.10-0.30 and the initial pH of 6.81 as
optimum anaerobic reaction conditions for methanogen
activity. Te VFA/TA ratio is the early detection of
process failure if the optimum range defned in Table 1 is
exceeded [14]. Table 2 summarizes some important
process parameters for AcoD optimization and their
achievements.

3.9. Digester Dimensions. Te biogas digester dimensions
include parameters such as height, length, diameter, width,
or depth [50]. Tese measurements give evidence about the
extent and capacity of the anaerobic digester, which is es-
sential for deciding the OLR and the biogas generation
potential. A particular waste stream treatment requires an
appropriate reactor confguration. Te main feedstock
qualities, specifcally the organic loading rate and total solids
content, are used to determine which digester type is

appropriate for maximum biogas production [50]. Tus, to
construct a biodigester, the three main requirements must be
addressed: managing a high OLR continuously, having
a short HRT, and producing a large volume of methane-
rich biogas. Upfow anaerobic sludge blanket (UASB) re-
actors [73], plug-fow systems, anaerobic sequencing batch
reactors (ASB3Rs), Anaerobic Bafed Reactor (ABR), an-
aerobic flters, and tubular reactors are among the other
biodigester types currently available. Fu et al. [73] com-
pared the efects of the reactor confguration on biogas
production, such as a leaching bed upfow anaerobic sludge
blanket (UASB) and a semicontinuous continuously stirred
tank reactor (CSTR). Te results showed that the specifc
methane yields were 370 and 248ml/gVS in the CSTR and
the leach bed-UASB processes, respectively, after a pro-
cessing time of 29-30 days. CSTRs are high-rate digesters
that are perhaps the most utilized digesters to handle
slurries with a total solids content of 5–10% in biogas
production. As mentioned above, most reactor confgu-
rations have been studied to accomplish a high OLR. For
instance, an anaerobic membrane bioreactor with internal
circulation and a superhigh-rate reactor are some of the
innovative confgurations publicized to assist a high-solid
feed treatment efciently.

In addition, digester shapes may govern the fow pat-
terns, velocity, and viscosity distribution in the active
volume of a digester. It also infuences microbial mobility,
nutrient accessibility, fow rate, and temperature [74].
Vesvikar et al. [75] compared two conical bottom digester
confgurations. Te frst bioreactor had a 25° angle and the
other bioreactor had a 60° angle. Te authors concluded
that the lower slope angle could aid in achieving homo-
geneity and improve mixing efciency in a shorter time.
Similarly, Oloko-Obo et al. [76] studied the infuence of
biodigester shape on biogas yield. To do so, they considered
a biodigester volume of 15l with three diferent forms
(cubical, conical, and cylindrical) that operated with
a substrate consisting of cow manure, poultry droppings,
and hog waste under steady-state conditions. Te biogas
production from the cubical, cylindrical, and conical-
shaped digesters began on the seventh and sixth days,
respectively. Te diference in the lag phase was due to the
diference in time required by diferent microbial com-
munities to adapt to changed environmental conditions.
Temaximum volume of biogas (23.4 l) was produced from
a cylindrical digester, whereas the conical and the cubical
digesters produced 14.4 and 18.2 dm3, respectively. Fur-
thermore, the cylindrical-shaped digester yields higher
biogas production compared to other digesters. In con-
tinuous processes, employing divided digesters leads to
signifcant increases in methane yields by facilitating
proper microbial processes across diferent phases of an-
aerobic digestion. Terefore, the design of the digester
should be studied alongside its operational parameters,
including hydraulic retention time (HRT), temperature,
organic loading rates (OLRs), substrate composition, and
functional units. Figure 2 shows the innovative approaches
applied to optimize and simulate the AcoD process to
optimize biogas production.
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4. Kinetic Models and Artificial Intelligence for
the AcoD System Optimization

4.1. Models. Table 3 summarizes the theoretical models
applied for the simulation of biodegradation kinetics and
their mathematical equations. Te frst-order kinetic model
(FOKM) is a high-production-level dynamic modeling ap-
proach that considers the global response of production.
Raw material digestibility is analyzed by the frst-order
natural calculation formulation of the batch system high-
lighted by Yusuf et al. [77], as shown in Table 3. Tis model
helps to predict how the system will react to changes in mass
and energy over time, as well as manage and optimize the
system’s performance with a diferent substrate introduction
[82]. It can provide a reasonable ft for the exponential phase
of anaerobic digestion, where the production rate is pro-
portional to the substrate concentration. Tis model as-
sumes a linear relation between reaction rate and substrate
concentration. In the biogas production process, the kinetic
rate can be infuenced by diferent factors, such as tem-
perature, substrate inhibition, pH, and microbial in-
teractions. Nevertheless, it may not accurately refect
complicated dynamics and may also not be appropriate for
systems with various constraints. In addition, it does not
clearly consider the lag and stationary stages of AD, limiting
its accuracy in describing the complete dynamics of the AD
process.

Te Cone model (CM, Table 3) is the modifed Monod
model (MM) that involves a factor for process inhibition at
a higher substrate concentration [78]. CM fts well when
there is a linear decline in biogas generation after getting
a threshold point. Like FOKM, the CM does not account for
the lag and exponential phases, whichmay limit its capability
to capture the complete dynamics of the AD process. CM
assumes a linear decline, which may not perfectly describe
the complexities of the stationary phase. Also, it may not
capture the gradients of substrate concentration, pH, and

microbial activity that are present in real biogas production
systems. Te Haldane model (HM, Table 3) is a more so-
phisticated equation with terms for both substrate inhibition
and substrate limiting [79]. HM can inspect systems with
many substrates and the possibility of inhibitory efects. It
can ft diferent phases of the AD process, such as the lag,
exponential, and stationary phases. However, it cannot
perfectly elucidate the actual behavior in AD systems,
wherein growth rates of microbial groups can be more
complex, involving manifold limiting factors, inhibitions,
and interactions. Te MM (Table 3) is a commonly applied
model in biogas kinetic simulations due to its simplicity [78].
MM accounts for substrate limitation, which is often de-
tected in the exponential phase of the AD process and often
used to characterize microbial growth in response to sub-
strate concentration. However, the MM does not clearly
refect the lag and stationary phases of the AD system,
limiting its accuracy in apprehending the complete dy-
namics of the process. Te Weibull model (WM, Table 3) is
fexible and can ft a varied range of biogas production
phases, including lag, exponential, and stationary phases
[80]. It can represent the nonlinear reduction in biogas
production rate, which may better refect the dynamics of
the stationary phase. However, this model assumes a specifc
shape parameter that determines the biogas production rate
decay. In practice, various factors, such as changes in
substrate composition, pH, and temperature, can afect
biogas production, and these factors may not be accurately
represented by a single shape parameter. Te transference
function model (TFM, Table 3) is a linear model that de-
scribes the input and output parameters based on transfer
functions, providing a more detailed kinetics of the biogas
production process. It can ft diferent stages of the biogas
production process (lag, exponential, and stationary phases)
[81]. While this model can provide insights into the dynamic
behavior of the AD process, it may not fully capture the
nonlinearity and complexities related to substrate

Introducing compitable substrates:
Lignocellelulosic biomass

Food Waste Animal Manure Aquatic or algal biomass

CH4-rich
biogas

Heat

Fuel

Electricity
Nutrient rich

bio fertilizer

AcoD plant
Process parameters

optimization such as,
VFA/TA, OLR, HRT, pH,

temperature, C/N, Agitation,
ISR and mixing ratios

Optimization with Kinetic model,
AI model, Aspen Plus, and

ADM1 software

Figure 2: Integrating process parameters, mathematical models, and simulative tools to optimize AcoD systems and application of biogas.
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degradation, microbial growth, and biogas production rates.
For example, Robert et al. [78] analyzed the kinetics of the
codigestion of rendering industry and food wastes in two-
phase anaerobic digestion. Tey identifed that the frst-
order kinetic model efectively matched the experimental
data with an increment of kinetic reaction constant from
0.135/d to 0.150/d. Another study evaluated the efects of
inoculum types on CH4 yield in the codigestion of primary
sewage sludge and hydrothermally treated waste-activated
sludge through experimental and kinetic methods (Cone,
modifed Gompertz, Gompertz, frst-order, and Weibull
models) under mesophilic conditions. Te results showed
that except for MGM, all models describe the evolution of
gas production well for both inoculums, with high corre-
lation (R2 > 0.976), as shown in Table 4. In addition, Zhen
et al. [87] combined food waste and microalgae to evaluate
synergistic efects through experimental and kinetic studies
(i.e., FOKM, MGM, and CM) at diferent mixing ratios. CM
had the best ftness to the experimental data and could
elucidate the codigestion process kinetics more sensibly
(R2 > 0.963).

4.2. Bacterial Growth Curve Models. Several sigmoidal
functions (Gompertz, logistic, and Richards) are developed
to describe a bacterial growth curve under diferent physi-
cochemical conditions.Tese models allow the estimation of
microbial safety, the detection of critical points of the
production and distribution process, and production opti-
mization. Unlike the FOKM, the modifed Gompertz
(MGM), logistic function model (LFM), and Richards
(MRM) models predict the cumulative methane production
rate and lag-phase time, a crucial indicator refecting the
productivity of the biogas production process. Table 3
represents the modifed Gompertz and logistic function
models, respectively [88].

Te MGM and LFM are the most commonly used
models to fnd the biogas kinetic parameters as they ft the
three stages of biodigestion processes: the lag, exponential,
and stationary phases with a high degree and accuracy. Te
MGM and LFMwere more often utilized than the frst-order
model since they were connected with two biological re-
action parameters, Rm and λ (Table 3). Furthermore, both
models provide details about the exponential curve asso-
ciated with the exponential bacteriological growth. Both
models seem to be similar. Te main diference between
them is that the curve of MGM is symmetrical, whereas the
LFM is asymmetrical [89]. However, the intrinsic short-
coming of both models is that when used to represent biogas
production (Table 3), neither achieves the initial condition
(M= 0 at t= 0) [90] unless the parameter approaches infnity
for MGM. Both models have been developed to depict
bacterial and biological growth rather than biogas pro-
duction, because the two scenarios had diferent initial
conditions [88]. In addition, these models explain only the
quantity of microorganisms but do not include the substrate
consumption as a model based on the Monod function
would do [88]. In the case of methane production from
wastewater, the initial microbial mass is not zero due to the

input of anaerobic-activated sludge seeds to the bioreactor
(Table 3 is diferent from at t= 0), although the gas volume
(methane) is zero. In addition, another issue with the MGM
for product generation is that the lag time ftted from ex-
perimental data is occasionally negative, which occurs when
products are formed nearly instantly without lag day.Te gas
is formed quickly during wastewater AD that is fermented
with acclimatized anaerobic sludge. Tus, it is important to
develop emerging models that simulate substrate con-
sumption, microbial growth, and biogas production [90].
Te Richards model (Table 3) is commonly used to describe
the growth and activities of microbiological systems. It is
adept at capturing a wide range of growth patterns, in-
cluding sigmoidal and nonsigmoidal stages [88]. Tis fex-
ibility suits it to possibly ft the diferent phases of biogas
production, including lag, exponential, and stationary
stages. Similar to the MGM andMLM, the parameters in the
Richards equation often have clear biological interpretations
[81]. For example, the maximum growth rate and lag time
can be related to microbial activity and substrate availability.
It is a generalization of the logistic model, and it presents
four parameters, including a curve shape coefcient [81].
Te model’s fexibility makes it a valuable tool, but the
limitations associated with parameter estimation challenges,
model complexity, and interpretation might be considered
when applying the Richards model to biogas production
process simulations. In addition, like modifed Gompertz
and logistic models, the MRM may be sensitive to the initial
condition estimates [88], leading to potential difculties in
accomplishing reliable parameter estimation. For example,
Ali et al. applied the Gompertz, logistic, and Richard models
for the modeling of the cumulative biogas production ki-
netics. Te result showed that the Richards model best fts
the experimental data with the lowest error value
(RMSE= 1.077) for cow manures, among other sinusoidal
growth function models, while the frst-order model
exhibited the maximum diference between the actual and
predicted data (11–43%) [85]. In another work, Yu et al. [84]
compared four biogas kinetic models (FOKM, LFM, CM,
and MGM) to evaluate the biokinetics of biogas production
from wheat straw (WS), sugarcane bagasse (SB), and rice
straw (RS) codigestions. Te overall kinetic parameters
dictate the LFM to reproduce the experimental results with
higher accuracy, followed by the MGM. Te selection of the
model is determined by the specifc characteristics of the
system, available data, and the research objectives. Tus, it is
important to calibrate and validate the selected model using
experimentally measured data from the specifc AcoD
process of interest to ensure its reliability in prediction. A
brief overview of the models and their typical applications
are shown in Table 4.

In Section 4.2, the benefts and limitations of diferent
models in simulating biogas production kinetics, consid-
ering their ftness for each stage, were summarized. In terms
of reliability for biogas simulation and optimization in the
AcoD process, there is no one-size-fts-all answer. In real
cases, the reaction kinetics can be biased by diferent factors
such as substrate availability, temperature, pH, and mi-
crobial interactions. However, some of them assume
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a constant kinetic rate throughout the process, which may
not precisely represent the complex biogas production dy-
namics. In addition, the relationships between specifc
microbiological processes and kinetic parameters may not
always be forthright or easily discernible. Tus, the kinetic
model does not sufciently capture the interactions and
competition between diferent microbes or the infuences of
multiple substrates on the AcoD performances. Besides, it is
essential to develop novel models, which properly describe
the AcoD process for real applications.

4.3. Role of Artifcial Intelligence (AI) in AcoD Processes.
Te AcoD has several advantages over mono anaerobic
digestion, including improved biodegradation and system
stability, which in turn boost the biogas production and
methane yield. An efcient AcoD performance requires
a full understanding of the efect of process parameters and
the kinetics of biodegradation. Te actual process control
and optimization could not be achieved without predicting
the performance of the system precisely [91]. So far, various
hypothetical and mechanistic models have been developed
to control and monitor the AcoD process, elucidate process
inhibition, and optimize biogas production. However, such
traditional approaches not only require prior knowledge but
also are complex, laborious, and depend on very few sce-
narios. Tus, AI-based algorithms are found to be suitable
for capturing the complex and nonlinear nature of AcoD
processes, which could not be achieved mechanistically [92].
Tey have made the nonlinear, mathematically complex,
laborious, and time-consuming AcoD process quite easy and
manageable. In the subsequent subsections, the role of ANN,
GA, and hybrid models are discussed concerning the AcoD
process controlling, monitoring, and biogas production
optimization [93].

4.3.1. ANN Models. ANN models have been developed to
predict the yield, rate, energy content, and composition of
biogas produced from diferent types of inputs. In this case,
the experimental data arrangements need to be divided into
three diferent sets: training, testing, and validation datasets.
ANNs can take in multiple inputs and process them to
produce single or multiple outputs [93]. Te accuracy of the
developed ANN models is measured using statistical mea-
sures, such as the mean absolute deviation (MAD), mean
square error (MSE), RMSE [94], and R2 [95]. ANN models
are used to model the behavior of diferent linear and
nonlinear processes with higher accuracy. ANN is the most
recent and popular model used to simulate the complex
AcoD processes and parameters and to predict biogas
production and the composition of biogas produced. Te
efectiveness of an ANN model in predicting biogas pro-
duction depends on the quality and quantity of data used for
its training. Te ANN models may predict biogas pro-
duction, H2S, and NH3 traces [93] based on several input
parameters, such as feed type, soluble COD, pH, HRT,
OLRs, C/N, and mixing ratios (Table 5). Several researchers
have developed ANN models to predict biogas production.
For instance, Kola et al. [94] used process parameters such as

total dissolved solids (TDS), pH, mass of the slurry, tem-
perature, dissolved oxygen (DO), and BOD as input pa-
rameters to model biogas production from the codigestion
of cattle dung and poultry droppings using MATLAB R2015
tool. Similarly, Wang et al. [95] developed an ANN-based
model for monitoring alkalinity online from the codigestion
of maize straw, fruit, and vegetable wastes with cow dung.
Te researchers inserted electrical conductivity, redox po-
tential (ORP), oxidation, and pH as input parameters with
the soft sensor method based on ANN. Tey demonstrated
the reliability of the developed ANN model through sen-
sitivity and accuracy analyses. In another study, Seo et al.
[101] integrated a process-based approach with a recurrent
neural network black-box model to forecast biogas pro-
duction and organic loading rates from AD of food waste.
Te results show that the developed model precisely esti-
mated the biogas production rate with inputs as soluble
COD, retention time, and VFA. Figure 3 illustrates the
simple neural network architecture with three layers
(multiple input, hidden layers, and output) to predict
products.

Some researchers achieved remarkable outcomes when
neural network techniques were integrated with fuzzy-logic
approaches, sometimes known as neuroadaptive fuzzy logic.
Te adaptive network-based fuzzy inference system (ANFIS)
algorithm is a class of ANNs that solve problems related to
functional approximation. For example, Najaf and Ardabili
digested spent mushroom compost (SMC) and modeled the
experimental data to determine the biogas yield at meso-
philic and thermophilic temperatures using ANFIS, ANN,
and logistic models for comparison.Te statistical references
such as RMSE and R2 were reported to be 0.1940 and 0.9998
for the ANFIS network, 0.780 and 0.9981 for the multilayer
perceptron (MLP) network, and 0.5111 and 0.9992 for the
logistic model at a mesophilic temperature of 35°C. Simi-
larly, the RMSE andR2 values were reported to be 0.3033 and
0.9997 for the ANFIS network, 0.3430, and 0.9992 for the
MLP network, and 0.5506 and 0.9991 for the logistics model,
respectively, at a thermophilic temperature of 55°C. Based on
a comparative analysis using the RMSE and R2 values as
a standard for comparison, it was determined that the
ANFIS network yielded more accurate and dependable
biogas yield predictions at bothmesophilic and thermophilic
temperatures [24]. In another study, Rafee et al. [103]
applied ANN and ANFIS models to estimate biogas pro-
duction from wastewater treatment at a laboratory scale in
an anaerobic reactor. Te results revealed that the two
models successfully predicted biogas production with high
accuracy. An overview of other related literature reveals that
the ANN model is an infuential tool for simulating and
forecasting the infuences of various process parameters and
substrate composition on biogas production (Table 5).
However, the application of ANNs in modeling AcoD
systems is hindered by challenges such as poor general-
ization (the ANN models’ ability to adapt to previously
unseen data) and a limited dataset of standalone ANN
models. In addition, the black-box nature of multiple-layer
models and the lack of interpretability of developed ANN
models when applied to the design, simulation, and
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optimization of AcoD processes for enhancing biogas
production are challenging. Tis lack of interpretability
makes it difcult to gain insights into the specifc factors
infuencing biogas production or to detect potential points
for process enhancement [23]. Another limitation of the
ANN model is the requirement for large and representative
datasets. Te ANN model requires a substantial amount of
data to be trained efciently and accurately in order to
demonstrate the underlying confgurations and relation-
ships. In the case of the AcoD process, acquiring wide-
ranging and high-quality datasets may be challenging due to
the inherent inconsistency in substrate composition, envi-
ronmental conditions, and digester performance [93].
Furthermore, whether the dataset is small or the model is
extremely sophisticated, ANN models are prone to over-
ftting, as they are based on training data and often fail to
generalize to previously unseen data. Consequently, this can
lead to poor performance when using the trained ANN
model to simulate or optimize various operating parameters
in the AcoD process [95]. To address these challenges, it is
critical to carefully preprocess and refne the dataset, ensure
data representativeness, and routinely check the ANN tool
against independent experimental data. Furthermore, hy-
bridizing the ANN model with other approaches and
methodologies, such as mechanistic models or optimization
algorithms, may give a comprehensive and reliable method
for modeling AcoD processes to monitor, control, and
optimize biogas production.

4.3.2. Genetic Algorithm. From the viewpoint of AI research,
the learning mechanism ofered by GA is noteworthy. Te
typical strategies employed in all GAs are inheritance and
birth traits, mutation and change to prevent resemblance,
natural selection, and variation to improve longevity and
crossover. Te GA is an efective domain-independent
search method based on biological principles [93]. GAs
ofer several benefts, making them a common option for the
optimization of biogas production in AcoD systems. Te
advantage of GAs is that they use a population-based

approach rather than a single solution. Tis approach
helps protect the algorithm from getting stuck in suboptimal
solutions and promotes the detection of several potential
solutions [93]. Te objective function of GAs may exhibit
multiple troughs or peaks, rendering them highly efective in
addressing nonlinear and multimodal optimization prob-
lems. In addition, GAs can be applied to optimization
problems where the underlying system is treated as a black
box, requiring no detailed knowledge of its internal work-
ings. Tis characteristic makes GAs suitable for real-world
applications in which the system’s behavior may be complex
or not fully understood [104]. Despite these benefts, GAs
have some limitations in the context of predicting biogas
production, such as dynamic changes in substrate compo-
sition, microbial populations, and environmental conditions
associated with AcoD. GAs involve the evaluation and it-
eration of multiple candidate solutions, which makes the
procedure computationally intensive, especially when
dealing with large datasets. GAs may face challenges in
adapting rapidly to dynamic changes, and their static nature
may not capture the embryonic nature of the biogas pro-
duction process [23]. GAs often requires problem-specifc
tuning to attain optimal results, which can make them less
user-friendly for practitioners lacking expertise in algorithm
parameterization [105]. However, the algorithm’s perfor-
mance can be afected by the selection of initial parameters,
and identifying an optimal parameter set may entail addi-
tional computational efort [104]. In addition, the efec-
tiveness of GAs can be afected by how the problem is
represented, such as the encoding of parameters and the
selection of a specifc genetic operator. Integrating GAs with
other optimizing models may help mitigate some of these
challenges [106]. Table 5 shows the diferent achievements
with GA tools.

4.3.3. Hybrid Models. Integrating an ANN with evolu-
tionary algorithms predicts and optimizes various nonlinear
bioprocesses. Te common evolutionary algorithms include
GA, ACO, and PSO [99]. Tese algorithms have been
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Figure 3: Simple artifcial neural network architecture (adapted with permission from [82]).
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hybridized with the ANNmodel to estimate biogas yield and
percentage of methane content in the produced gas. Zaied
et al. [102] integrated ANN with PSO to simulate the AcoD
process in a solar-aided biodigester. Te researchers con-
frmed that the proposed model was fexible and efective in
forecasting biogas production. Similarly, Beltramo et al.
[107] coupled the ANN with optimized ACO to predict
biogas production. Tey revealed that the hybrid model
provided a reliable approach to analyzing the AcoD process.
In another study, Beltramo et al. [99] simulated the biogas
production process and predicted the biogas production rate
by integrating ANN, GA, and ACO models. ACO and GA
were employed to select variables. As input parameters, they
used volatile fatty acids, volatile solids, acid detergent fber,
total solids, acid detergent lignin, neutral detergent fber,
ammonium nitrogen, hydraulic retention time (HRT), and
organic loading rate (OLR). Tese researchers confrmed
that the model dimension reduction enhanced the capacity
of ANN models to forecast biogas production rates, as in-
dicated by R2.

5. Modeling and Optimization of AcoD Process

Te diference between modeling using kinetic models and
software, such as AP and ADM1, lies primarily in the level of
detail, the complexity of the models, and the fexibility and
computational capabilities of the software. While kinetic
models focus on the detailed representation of reaction
kinetics in specifc systems, AP and ADM1 ofer a broader
scope for modeling complex biochemical processes, in-
cluding AcoD processes, while considering a wide range of
factors beyond kinetics. Tis software allows one to simulate
and analyze complex biochemical processes involving
multiple unit operations, fuid fow, heat and mass transfer,
and phase equilibria. AP and ADM1 models also provide
a more user-friendly interface, extensive libraries of prebuilt
models, and computational capabilities for comprehensive
process simulation and analysis, making them suitable for
process design, optimization, and scale-up studies. Opti-
mizing a variety of AcoD process parameters with objectives
such as maximizing biogas production, reducing energy
consumption, and avoiding environmental impacts can be
carried out using diferent modeling and simulation tools. In
this work, the role of AP and ADM1 models in the simu-
lation and optimization of the AcoD process, as well as their
limitations and advantages, is discussed in the following
sections.

5.1. Aspen Plus (AP). Understanding diferent factors in
a controlled condition is important to form a proper en-
vironment for anaerobic microorganisms to function
properly for the desired biogas production [20]. Te
chemical contents and biodegradability of substrates may
vary to classify and predict the system, but they are the
fundamental issue in modeling the AcoD process correctly
[108]. Moreover, experimental techniques may occasionally
be costly and time-consuming, and outputs might be in-
correct; therefore, process simulations are essential.

However, an inadequate simulation method might give
inaccurate results if proper assumptions are not used.
Terefore, more research eforts should be made to identify
the best simulation models that may optimize the AcoD
process to enhance biogas production.Tis reduces time and
excessive resource usage. Several researchers have used
diferent models to simulate the AD process reaction paths,
including AP [109, 110], ADM1 [111, 112], and Design-
Expert software [113]. AP is a comprehensive process
simulation tool that can be applied to a broad range of
biochemical processes, which makes it suitable for several
applications beyond AD. It has many benefts, including
allowing a selection of prebuilt models for immediate use,
such as pumps, compressors, mixers, separators, reactors,
heat exchangers, and the like. Tis model can also be im-
proved by using optional add-on applications such as Aspen
Plus Dynamic, Aspen Energy Analyzer, Aspen Custom
Modeler [114], and so on. In addition, with the world’s
largest property database and exceptional fexibility in
handling solid, fuid, and gas phase processes, AP ofers the
option of using other programming software, such as Excel,
FORTRAN, Visual Basic, and MATLAB, to expand the
Aspen features. It also facilitates the construction of ex-
pansive fow-sheets by incrementally adding a few blocks at
a time. Built-in features activated economic tool that pro-
vides access to information about capital and operational
costs from the fowsheet [115].

Te AP reactor models include the stoichiometric re-
actor, the CSTR, and the RYield reactor, which are used as
reaction environments in the diferent phases of AD re-
actions [20]. Te simplest schematic diagram for simulating
an AcoD process using Aspen Plus is depicted in Figure 4.
Aspen Plus incorporates various thermodynamic models to
represent the physical properties of components and mix-
tures within the process. Since they can accurately depict the
behavior of the nonideal mixtures, the activity coefcient
models of Wilson, nonrandom two-liquid theory (NRTL),
and universal quasi-chemical theory (UNIQUAC) are
among themost commonly used thermodynamicmodels for
the study of a signifcant number of binary and multi-
component systems. Te original NRTL, electrolyte NRTL
(e-NRTL), polymer NRTL, and segment-based NRTL
(NRTL-SAC) are some of the various versions of the NRTL
models [117]. NRTL ofers more fexibility in the phase
equilibria description than other thermodynamic models
owing to the additional nonrandomness parameters. For AD
process simulation, several researchers selected the NRTL
model as the property method since the reaction concerned
liquid and gas phases to calculate mole fractions and activity
coefcients [19, 20, 118]. For example, Inayat et al. [118]
developed the simplest model to design and simulate the
AcoD system in Aspen Plus 7.3.2 using the NRTL as the
property method to notice the best combination that
maximizes the biomethane in biogas. To achieve their ob-
jectives, stoichiometric reactors and CSTRs were used for the
hydrolysis stages, while for the remaining three stages,
existing reactors in the AP software were employed. In AP
software, sensitivity analysis, regression plot, and confdence
interval were used to assess the model’s ftness with the
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experimental results. In addition, diferences between the
experimental data and process simulation results were
calculated using sensitivity analysis [119]. However, not-
withstanding the fexibility to reproduce, the complicated
behaviors of the aforementioned NRTL models are correl-
ative, which limits their application since experimental data
to regress the NRTL interaction parameters are required. In
addition, the Soave–Redlich–Kwong (SRK) and Pen-
g–Robinson (PR) equations are the most commonly used in
Aspen Plus. Tese equations have been successfully applied
in various industrial biogas production processes. Tese
equations can handle complex vapor-liquid and liquid-
liquid equilibria, making them suitable for simulating the
phase behavior of various biogas components such as
methane, carbon dioxide, and trace impurities. Te selection
between the SRK and PR equations depends on the specifc
characteristics of the system and the available experimental
data for model parameter estimation. Generally, the PR
equation is more accurate than the SRK for systems con-
taining polar or associating components. However, the SRK
equation is computationally less intensive and can be more
efcient for simulating simple gas mixtures.

Te AP process simulation model was developed mainly
based on the diferent steps of the AD process, including
hydrolysis, acidogenesis, acetogenesis, and methanogenesis
[19].Tese four stages describe just how the complex organic
substrates can be broken down into their monomers and
fnally into biogas rich in CH4 and CO2. Te AD process
simulation fowsheet was constructed based on the experi-
mental results. Despite these advantages, the widespread
adoption of AP software for modeling and optimizing the
reaction process in AcoD reactors has been limited. Tere is
a scarcity of research articles available on AcoD simulation
and optimization using AP. However, AP simulation ap-
proaches have recently been employed for simulating the
AcoD reaction process. Mart́ınez-Ruano et al. [114] modeled
the AcoD of potato stem and milk whey using the stoi-
chiometry approach and kinetic models in AP, aiming at
simulating biogas production, technoeconomic feasibility,
and heat and electricity generation. Tey concluded that the
setups operated with a high organic load were best in terms

of biogas generation and economic evaluation. Teir results
also show the dominant infuence of raw material cost
compared to the total cost of biogas processing (∼80%). In
another experiment, Oladiran and Columbro [116] simu-
lated the AcoD process using the stoichiometry method and
an operating condition of 25°C; the degradation reaction
involved carbohydrates and proteins since their mass
composition is necessary to perform the simulation. How-
ever, fats are not included due to the absence of CH4 or CO2
in the products. Similarly, Inayat et al. [118] simulated the
AcoD of animal byproducts and wastewater as main sub-
strates using Aspen Plus. Tey compared the results of fve
groups of cosubstrates at various ratios to observe the
contents of CO2 and CH4 in the biogas. Te results revealed
that the codigestion data of tree leaves, animal manure, and
wastewater at 25 : 25 : 50% produced a maximum methane
yield of 50.55mol%. In the same experiment, the mixed
seeds, animal manure, and wastewater at 25 : 25 : 50%
resulted in the highest CH4 yield of 47.85mol% with low
emission, which is more attractive and recommended. In
addition, Janošovský et al. [120] used AP to simulate and
optimize the process and economic benefts of biogas
generation for the dairy plant. Process parameters, such as
biogas price after desulfurization, methane content, fresh
milk, and milk powder prices, were used in the parametric
sensitivity analysis. Tey evaluated various efects of biogas
use depending on biogas treatment costs, market prices, and
methane content. Te authors demonstrated that the in-
jection of biogas into boiler fuel reduced the payback cycle
from 11.2 to 5.1 years. Furthermore, Capra et al. [121] de-
veloped a multiobjective optimization model to identify the
trade-of between capital cost and energy consumption
during a biogas upgrade to CH4 using AP software. Te
results showed that the capital cost decreased by 17%, while
the energy consumption increased by 27%. Table 6 sum-
marizes some of the biogas simulation results using AP.
However, there are some challenges associated with using
AP in the design and optimization of AcoD process pa-
rameters: AcoD system involves complex chemical re-
actions. Modeling these details precisely in AP can be
challenging, especially when dealing with the nonideal
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Figure 4: AcoD process simulation fowsheet using Aspen Plus software adapted with permission from [116].
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behavior of components [118]. In addition, fnding reliable
models for the AcoD process components can be difcult,
leading to uncertainties in the simulation results. AP re-
quires reliable input data such as physical-chemical prop-
erties, reaction kinetics, and thermodynamic parameters for
the AcoD process components [114]. Attaining accurate data
for all the components involved in the AcoD system may be
a daunting task, especially for novel processes. Validating the
AP model for the AcoD system against experimental results
is vital. However, it may be challenging due to the limited
availability of data. Overcoming these limitations may re-
quire an integration of advanced modeling methods and
experimental validation.

5.2. Anaerobic Digestion Model No. 1 (ADM1). Te impor-
tance of mathematical models has become a standard tool in
biogas plant design, operational control, prediction, and
optimization. Although diferent models have been de-
veloped to predict and control the anaerobic digestion
process, ADM1 was developed by the IWA group for
wastewater treatment [108]. ADM1 is a structured model
with biochemical processes (disintegration, hydrolysis,
acidogenic, acetogenic, and methanogenic) and physico-
chemical processes (liquid-gas processes and liquid-liquid
processes) [82]. ADM1 becomes a powerful tool to predict
and control the optimization of mono/codigestion for biogas
production. It simulates constant volume and completely
mixed processes, which are difcult to obtain in many AD
processes, especially with large-scale plants [82]. Bułkowska
et al. [132] simulated the mesophilic codigestion of pig
manure, thin stillage, and glycerine phase with silages.
ADM1 was extended to include the slowly and rapidly
degradable portions of proteins and carbohydrates. Tey
revealed that the developed model is less sensitive to changes
in kinetic constant for rapidly disintegrated carbohydrates
than to changes in kinetic constant for slowly degraded
carbohydrates. Te ADM1 showed good agreement with the
measured daily biogas production and the concentrations of
individual VFAs in the efuent after calibrating the pa-
rameters using a mixture of thin stillage pig manure and
silages. Similarly, Weinrich and Nelles [138] developed
a simplifed four-step mass-based ADM1 model to describe
detailed intermediate reaction characteristics and degrada-
tion pathways to predict biogas production potential and
rate. However, it is important to integrate ADM1 with other
simulative software to optimize the AcoD reaction process.
Nguyen incorporated ADM1with AP to model and simulate
an AD process of food waste. Te ADM1 model was
modifed to indicate the inhibition of acetoclastic meth-
anogenesis by ammonia and includes a “metabolic switch”
model based on the availability of key trace components to
operate. Te energy model, ADM1, is linked to the com-
bined heat and power generation, mechanical processes for
biogas upgrading, and digester mixing system developed in
the AP simulating platform. Tey demonstrated that in-
corporating components of the software allows the accurate
design of the combined heat and power (CHP) and direct
heating units for a biogas plant [115]. Several researchers

simulated biogas production processes from diferent sub-
strates, both for laboratory and industrial-scale biogas
plants, by modifying the process parameters and reaction
rates in the original ADM1 model. Zhou et al. [136] de-
veloped ADM1 with a proportional-integral-derivative
(PID) controller to manage feed, simulate, and optimize
the corn silage and waste-activated sludge codigestion under
mesophilic temperatures. Tey revealed that VFA, methane
production, and pH simulation correlated well with ex-
perimental data. In the same vein, Wu et al. [139] developed
a modifed model based on the structural modifcation of the
original ADM1, and the developed model accurately fore-
casted methane production under diferent
operating modes.

Besides, ADM1xp is one of the modifed ADM1 and is
more applicable for real-scale biogas plants [108]. Te
ADM1xp assumes a low rate of disintegration and high
hydrolysis constants for carbohydrates, proteins, and lipids.
One of the most important processes in the ADM1xp model
is the decay of biomass, which is responsible for producing
particulate organic matter. Satpathy et al. [133] extended
ADM1 to include a crucial metabolic product, lactate during
sugar fermentation to test the soundness of the modifed
ADM1 in the standard biogas reactor predictions in the
batch and continuous modes. Te ADM1xp model provided
a positive correlation with the measured data for both tests.
Tey justifed that the inclusion of lactate in the modifed
model resulted in optimized simulation for biogas and %
CH4 in the standard reactor. According to Katarzyna et al.
[140], the model calibration demonstrated that the disin-
tegration kinetics were low, which was 0.1/d and sub-
stantially slower than the initial value in ADM1. Tey
employed MATLAB (MathWorks, USA) as a simulative tool
with the GA optimization procedure and SIMBA 6.6 soft-
ware package. Typically, the ADM1xp model calibrates
ammonia and hydrogen inhibitions for acetoclastic meth-
anogenesis and acetogenesis. Te ADM1xp was a more
improved one than the original ADM1 model because the
maximum growth rates, decay rates, and inhibition con-
stants depended on temperature. Despite this, the ADM1xp
is also complex compared to the old ADM1model, especially
when one considers the population data of microorganisms
in the AcoD apart from a large number of independent and
dependent variables. Te ADM1 model and its revised
version are unable to diferentiate the varying performance
levels of microbes within the same process. In the AD
process, the majority of biochemical and methanogenic
reactions exhibit a low exchange of Gibbs-free energy
(ΔG∼0), primarily due to the absence of robust external
electron acceptors. Tis exchange of low energy makes some
key reactions during anaerobic digestion close to thermo-
dynamic equilibria [108]. Te dynamic equilibrium model
indicates that the biochemical processes occur near the
equilibria and it would involve the development of bio-
kinetic models of the AcoD process [115]. Te de-
composition of biomass, which leads to the production of
particulate organic matter, is among the crucial processes
that require modeling in ADM1. However, dynamic mod-
eling overlooks the system’s thermodynamic properties and
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challenges related to optimization and stability in the di-
gestive system remain unresolved.Terefore, it is essential to
incorporate dynamic modeling that considers the thermo-
dynamic characteristics of the codigestion process. By un-
derstanding the thermodynamic characteristics, specifcally
the activity coefcient, of codigestion processes and in-
corporating them into ADM1 modeling, it is possible to
improve biogas production control mechanisms and reduce
the complexity of the AcoD reaction process [108]. As
a result, the model requires more research into character-
ization methods and parameter calibrations. Table 6 also
shows some of the biogas optimizations with ADM1.

5.3. Comparison of AP and ADM1 Models. Comparing AP
and ADM1, the ADM1 model was used the most frequently
and was highly cited by several authors. However, ADM1
requires detailed input data and calibration to represent
precisely a specifc AcoD system. Obtaining the necessary
input information and calibrating the model may be time-
consuming and challenging [108]. In addition, while ADM1
may be applied for process optimization, its main purpose is
not optimization out of the box. Optimization with ADM1
should typically involve setting model parameters to match
actual data or preferred process performance rather than
applying committed optimization tools. In addition, ADM1
is mainly applied to research purposes and may not have the
same level of integration and applicability in industrial
settings as commercial process simulation software such as
AP. Furthermore, AP software ofers several advantages over
the ADM1 model. Users can easily construct and modify
process models using AP’s user-friendly interface and drag-
and-drop functionality. Tese techniques enable compre-
hensive optimization, accommodating numerous objectives
and constraints. Te optimization tools in AP encompass
sensitivity analysis, parameter estimation, and process de-
sign optimization. AP is widely employed in the industry,
and its optimization potential makes it particularly well-
suited for commercial-scale biogas generation operations.
Tus, for authors primarily interested in AcoD process
design and optimization within a broader context, AP proves
to be a reliable choice due to its versatility and user-friendly
interface [117]. However, for gaining a deep understanding
of the AcoD process and making directed adjustments to the
model, the modifed ADM1 might be a valuable tool.

6. Policy Implications and Future Outlook

It has been observed that codigesting multiple substrates
increases the volume of biogas output with the desired
quality due to the synergistic interactive efects. Numerical
simulation may help investigators in optimizing operation
parameters and forecasting biogas production under dif-
ferent conditions. Providing such estimates and evidence
may add value to the existing knowledge in academia and
provide more chances for new and additional perspectives in
the biogas arena to accomplish the desired biogas sector
goals [141]. Tus, a review of this kind has signifcant policy
implications for planning, implementing, and expanding

biogas plants. First, AcoD system optimization with process
parameters, mathematical modeling, and simulation tools
for domestic and large-scale biogas plants may help improve
economic viability and account for higher biogas yield.
Second, policymakers may use the results of this review to
promote efcient commercial AcoD plants intensively. In
addition, the dissemination of this review is likely to help
local communities enhance biogas production, which in
turn can increase the acceptance of biogas technology.

Te developed mathematical models, however, have
difculties due to their failure to meet the initial conditions
of biogas production, the complexity of the feed substrate
materials, their chemical composition, and their funda-
mental transformation. Tus, some suggestions for further
research may be emphasized as follows:

(1) For the design and modeling of AcoD, AP, and
ADM1 have taken over. However, AP is still in the
simulation stage and still in its infancy. Tus, the AP
software still needs a good understanding of process
engineering principles and sufcient input in-
formation for precise modeling, simulation, and
optimization of biogas processes.

(2) Te AcoD system requires more extensive modeling
than monodigestion since it works at a high organic
load with a substrate of diferent characteristics.
Future AcoD processes simulating new models must
contain new features that consider the interactions
between system performances, the contents of
cosubstrate, organic loading, and the inhibition level
to maximize biogas yield.

(3) Te models developed to date do not consider the
environmental and time-based fuctuation of sub-
strates in biogas production simulation. Biogas
models should incorporate the idea of a multistage
AcoD process mechanism and include the factors
that afect the products. It is realized in this study
that there are still research gaps in optimizing an-
aerobic codigestion processes.

(4) In addition, technoeconomic evaluation coupled
with the life cycle assessment of AcoD systems may
be a prerequisite for the types of feeds and related
charges to recommend the premium for codigestion
biorefneries and generate sufcient special in-
formation to guarantee investment for commercial
scale uses and policy making. Tis review considered
research conducted at laboratory scales as a conve-
nience for comparison.

7. Conclusions

In this review, the current status, recent progress, and future
outlook on biogas production with codigestion, modeling,
and optimization were detailed. Control of process pa-
rameters becomes important in attaining optimal biogas
yield. Since most of the previous research studies have fo-
cused on monodigestion and look at codigestion as a way
forward from the recent trend to ensure sustainability,
codigestion requires a great deal of further investigations on
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various feedstocks with optimal mix ratios and organic
loads. Modeling and optimization while integrating codi-
gestion feedstocks as well as seasonal variations are yet to be
investigated. Te coupling of codigestion and model for
system optimization need further exploration. Modeling of
the AD process using kinetic model, artifcial intelligence,
and simulation software was critically reviewed with specifc
reference to their computational ability and limitations.
Furthermore, the study examined the application of the
models in anaerobic digestion, considering aspects such as
fexibility, processing time, governing equations, and
adaptability. Models can benefcially be employed, utilizing
their predictive capability under diferent designs and op-
erating conditions to enhance and optimize biogas yield.
Tus, albeit to a varied degree, this review demonstrated that
process modeling can signifcantly shorten the process de-
velopment time for anaerobic substrate digestion. However,
the difculty of parameter characterization and calibration
of the AP and ADM1 models increases with its rising de-
mand and application. Tus, more research is required to
provide cutting-edge methods for characterizing the
chemical compositions, biodegradability, dynamic behavior
of microorganisms, and intrinsic qualities of the entire AcoD
system.
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