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As a follow-up to our teamwork’s former work against SARS-CoV-2, eight compounds (ramelteon (68), prilocaine (224),
nefracetam (339), cyclandelate (911), mepivacaine (2325), ropivacaine (2351), tasimelteon (2384), and levobupivacaine (2840))
were revealed as the best potentially active SARS-CoV-2 inhibitors targeting the main protease (PDB ID: 5R84), Mpro. Te
compounds were named in the midst of 3009 FDA and clinically approved compounds employing a multistaged in silicomethod.
A molecular fngerprints study with GWS, the cocrystallized ligand of the Mpro, indicated the resemblance of 150 candidates.
Consequently, a structure similarity experiment disclosed the best twenty-nine analogous. Ten, molecular docking studies were
done against the Mpro active site and showed the binding of the best compounds. Next, a 3D-pharmacophore study confrmed the
obtained results for the eight compounds by exhibiting relative ft values of more than 90% (except for 68, 74%, and 2384, 83%).
Levobupivacaine (2840) showed the most accurate docking and pharmacophore scores and was picked for further MD sim-
ulations experiments (RMSD, RMSF, Rg, SASA, and H-H bonding) over 100 ns. TeMD simulations results revealed the accurate
binding as well as the optimum dynamics of the Mpro-levobupivacaine complex. Finally, MM-PBSA studies were conducted and
indicated the favorable bonding of the Mpro-levobupivacaine complex with a free energy value of −235 kJ/mol. Te fulflled
outcomes hold out hope of beating COVID-19 through more in vitro and in vivo research for the named compounds.

1. Introduction

Te WHO noted on March 4, 2022, that the confrmed in-
fections of COVID-19 on a worldwide basis are 440,807,756
humans. In sorrow, 5,978,096 humans among them are dead
[1]. Despite the fact that the number of vaccine doses reached
10,585,766,316, the dangerous virus still has the ability to

infect vastly [2]. According to these horrible numbers,
massive work is demanded from scientists all over the world
to fnd a cure. Te routine process of drug discovery and
detection is greatly expensive and lasts for a very long time.
Te usual time needed for new drug discovery is twelve years
costing about 2.6 billion USD [3]. On the other hand, drug
repurposing is a much faster process [4, 5].
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Drug repurposing includes the identifcation of new
biological use or uses for an old drug [6].Te process of drug
repositioning was employed successfully in the development
of anticancer [7], anti-COVID-19 [8], anti-infammatory [9]
antibacterial [10], antiparasitic [11], and antiviral [12] drugs.

Methods of computational chemistry were used to explore
various pharmacokinetic and pharmacodynamic parameters
that connect the chemical structure to activity as well as to
explore the interaction of ligands with biological proteins
such as structure similarity [13], molecular fngerprints [14],
QSAR [15], pharmacophores [16], homology models [17],
molecular modeling, drug molecular design [18], rational
drug design [19], molecular docking [20], MD simulations
[21], absorption [22], distribution, metabolism [23], excretion
[24], and toxicity properties [25] as well as physicochemical
characterization [26] assessment and DFT.

For that reason, our team composed a multiple-phase
computational screening approach to name the most efective
inhibitor/s for an essential SARS-CoV-2 enzyme in the midst
of hundreds or thousands of compounds. Among a set of 310
antiviral natural metabolites, we pointed the most potential
inhibitors against various SARS-CoV-2 proteins, including
nsp10 [27], helicase [28], the main protease [29, 30], and the
papain-like protease [31]. Similarly, the most potential FDA-
approved drugs were anticipated against the SARS-CoV-
2 nsp16-nsp10 2′-o-methyltransferase complex [32] and the
SARS-CoV-2 RNA-dependent RNA polymerase [33]. We
also expected potential natural inhibitors for the SARS-CoV-2
helicase [34] and RdRp [35].

Viral proteases stand out as promising targets for the
development of antiviral treatments, demonstrating efcacy
against specifc viruses such as the human immunodefciency
virus and hepatitis C virus when targeted by aspartyl and
serine proteases, respectively [36]. In the context of SARS-
CoV-2, the main protease (Mpro) plays a pivotal role in the
activation of sixteen functional and nonstructural proteins
through the cleavage of the large polyproteins (pp1a and
pp1ab). Te inhibition of Mpro emerges as a strategic ap-
proach, causing substantial impairment to the virus and
impeding its replication [37]. It is noteworthy that the
structural and sequential distinctions between the viral main
protease (Mpro) and human proteases further emphasize Mpro

as a viable target for anti-COVID-19 drug discovery [38]. Te
unique structural properties of the SARS-CoV-2 Mpro, cou-
pled with its signifcant role in the viral life cycle, underscore
its potential as a focal point for developing novel and efective
therapeutic interventions against COVID-19 [39, 40]. In this
work, a set of 3009 clinical and FDA-approved compounds
were retrieved from the website of https://Selleckchem.com
[41] and has been subjected to multi-staged in silico methods
to determine the most potent inhibitors targeting SARS-CoV-
2 main protease (Mpro). Te applied methods included
molecular structures similarity study against the cocrystallized
ligand (GWS) of Mpro (PDB ID: 5R84) [42] (Figure 1),
molecular fngerprints study against the same ligand, mo-
lecular docking, molecular dynamics (MD) simulations and
MM-PBSA experiments against Mpro.

Unfortunately, the in vitro and in vivo examinations
against COVID-19 are not accessible for our team currently.

However, we employed extensive well-structured in silico
methods to present a sort of strong potential SARS-CoV-2
inhibitors for every scientist who has these facilities aiming
at fnding a treatment.

2. Results and Discussion

2.1. Filter Using Fingerprints. Te cocrystallized ligand is
a compound that strongly binds to a specifc protein,
forming a crystalized complex [43]. Tis complex provides
crucial insights into the nature of interaction, revealing
important structural and chemical characteristics that
contribute to the strong binding with that protein [44]. Te
chemical structural features of the cocrystallized ligand serve
as a valuable blueprint for designing inhibitors that can
efectively bind to the target protein. By examining the
structural features and functional groups of the cocrystal-
lized ligand, we can better understand the key elements
responsible for its strong binding [45]. We used this
knowledge to select compounds similar to GWS, aiming to
discover potent inhibitors with a high afnity for the Mpro

protein (Table 1). Tis approach is rooted in the principle of
a structure-activity relationship (SAR), which suggests that
compounds with similar chemical structures are likely to
have similar biological efects [46]. Te molecular fnger-
prints analysis represented the absence or existence of the
next descriptors in the fragments and atoms of the con-
sidered compounds and GWS: H-bond acceptors [47], H-
bond donors [48], charges [49], hybridization [50], positive
ionizable atoms [51], negative ionizable atoms [52], halogens
[53], and aromatic groups [54], align with the ALogP [55].

2.2. Molecular Similarity. A fundamental distinction be-
tween molecular similarity studies and fngerprint studies
lies in the depth of molecular information they capture.
Molecular similarity studies embrace a wider array of mo-
lecular descriptors and properties, facilitating a compre-
hensive evaluation of structural and chemical resemblances.
Tese studies encompass considerations such as molecular
shape, electrostatic characteristics, and pharmacophoric
attributes. In contrast, fngerprint studies focus on specifc
structural motifs encoded in binary fngerprints, presenting
a more condensed representation of molecular structures
[56]. In a molecular similarity study, a holistic analysis is
conducted, wherein the complete structures of the reference
compound and the examination set are characterized and
juxtaposed, employing descriptors encompassing steric,
topological, electronic, or physicochemical attributes [57].
Molecular structural similarity study also belongs to the
approaches of ligand-based in silico (computational) type
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Figure 1: Structure of the cocrystallized ligand (GWS) of Mpro

(PDB ID: 5R84).
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Table 1: Fingerprint similarity between the tested compounds and GWS.

Comp Similarity SA SB SC
GWS 1.000 176 0 0
18 0.686 168 69 8
58 0.594 174 117 2
68 0.552 137 72 39
74 0.532 158 121 18
92 0.559 176 139 0
114 0.622 217 173 −41
163 0.629 158 75 18
169 0.609 168 100 8
224 0.517 109 35 67
227 0.583 183 138 −7
252 0.613 168 98 8
266 0.595 194 150 −18
276 0.607 167 99 9
279 0.539 213 219 −37
286 0.530 123 56 53
297 0.562 218 212 −42
325 0.536 118 44 58
339 0.533 122 53 54
393 0.554 163 118 13
400 0.583 123 35 53
417 0.571 192 160 −16
419 0.629 158 75 18
438 0.540 218 228 −42
462 0.531 155 116 21
486 0.512 174 164 2
497 0.514 150 116 26
508 0.573 172 124 4
515 0.567 160 106 16
530 0.584 185 141 −9
552 0.587 145 71 31
560 0.558 201 184 −25
614 0.520 130 74 46
643 0.540 154 109 22
671 0.557 230 237 −54
675 0.562 136 66 40
686 0.564 137 67 39
727 0.608 163 92 13
736 0.522 153 117 23
741 0.538 183 164 −7
756 0.524 177 162 −1
768 0.556 140 76 36
772 0.553 210 204 −34
786 0.530 178 160 −2
829 0.542 156 112 20
843 0.572 158 100 18
854 0.646 159 70 17
855 0.590 207 175 −31
863 0.519 285 373 −109
878 0.512 148 113 28
911 0.551 151 98 25
935 0.520 259 322 −83
970 0.558 203 188 −27
987 0.518 142 98 34
1064 0.608 163 92 13
1069 0.573 172 124 4
1108 0.585 226 210 −50
1113 0.582 114 20 62
1168 0.567 136 64 40
1177 0.512 173 162 3
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Table 1: Continued.

Comp Similarity SA SB SC
1178 0.586 190 148 −14
1179 0.564 168 122 8
1186 0.587 138 59 38
1211 0.547 188 168 −12
1253 0.530 151 109 25
1267 0.530 254 303 −78
1284 0.554 206 196 −30
1315 0.548 165 125 11
1320 0.531 155 116 21
1410 0.512 174 164 2
1441 0.523 104 23 72
1443 0.523 104 23 72
1461 0.515 150 115 26
1462 0.535 147 99 29
1463 0.527 97 8 79
1516 0.618 168 96 8
1521 0.523 104 23 72
1551 0.529 208 217 −32
1553 0.514 182 178 −6
1589 0.553 121 43 55
1591 0.549 169 132 7
1604 0.531 170 144 6
1608 0.512 214 242 −38
1622 0.596 121 27 55
1649 0.529 101 15 75
1694 0.547 181 155 −5
1737 0.516 127 70 49
1742 0.595 209 175 −33
1756 0.524 204 213 −28
1805 0.580 170 117 6
1818 0.527 194 192 −18
1822 0.531 241 278 −65
1919 0.564 168 122 8
1955 0.579 169 116 7
1975 0.615 134 42 42
1993 0.547 169 133 7
2023 0.512 127 72 49
2024 0.601 176 117 0
2075 0.606 168 101 8
2091 0.530 96 5 80
2126 0.533 147 100 29
2163 0.682 189 101 −13
2171 0.532 166 136 10
2185 0.550 138 75 38
2205 0.567 174 131 2
2261 0.519 160 132 16
2264 0.584 201 168 −25
2274 0.690 191 101 −15
2296 0.537 110 29 66
2306 0.523 174 157 2
2325 0.602 136 50 40
2333 0.603 185 131 −9
2334 0.632 127 25 49
2351 0.608 158 84 18
2372 0.562 154 98 22
2380 0.614 159 83 17
2384 0.545 126 55 50
2395 0.646 168 84 8
2399 0.530 151 109 25
2403 0.594 168 107 8
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that considered following descriptors; hydrogen bond do-
nors (HBA) [58], acceptors (HBD) [59] partition coefcient
(Alog p) [60], molecular weight (M.W) [61], rotatable bonds
[62], rings and aromatic rings [63], and molecular fractional
polar surface area (MFPSA) [64]. Te computation of the
mentioned features using Discovery Studio software led to
the revelation of the best 29 analogs (Figure 2, and Table 2).

2.3. Docking Studies

2.3.1. Validation of Molecular Docking. Te molecular
docking algorithm was initially validated by redocking of the
cocrystallized ligand into the active site of the target receptor
(SARS-CoV-2 Mpro PDB ID: 5R84) with the calculation of
root mean square deviation (RMSD) for reliability and re-
producibility of the proposed docking algorithm. Te
redocked ligand showed an RMSD value of 0.56A indicating
a validated docking process (Figure 3).

Te binding mode of the cocrystallized ligand (GWS)
exhibited a binding energy of −6.51 kcal/mol against Mpro.
Te cyclohexyl moiety formed three Pi-Alkyl interactions
with His41, Met165, and Met49. Additionally, the amino
group in (pyridine-3-yl) acetamide moiety interacted with
His163 by one hydrogen bond with a distance of 1.99°A.

Moreover, the amide linker interacted with Glu166 and
Asn142 by two hydrogen bonds with distances of 2.04 and
2.72°A, respectively (Figure 4).

Te binding mode of compound 68 (Ramelteon)
exhibited a binding energy of −6.49 kcal/mol against Mpro.
Te tetrahydro-2H-indeno[5,4-b]furan-8-yl moiety formed
three Pi-alkyl interactions with Met49, His41, and Met165.
Additionally, the ethyl propionamide moiety formed two
hydrogen bonds with Glu166(2.51°A) and Asn142 (2.35°A)
(Figure 5).

Compound 224 (Prilocaine) exhibited a binding energy
of −6.05 kcal/mol against Mpro. Te o-tolyl moiety formed
three Pi-alkyl and Pi-Pi interactions with Cys145, His163,
and Leu141. Te amide moiety interacted with Asn142 and
Glu166 by two hydrogen bonds with distances of 2.31 and
1.97°A, respectively (Figure 6).

Te binding mode of compound 339 (Nefracetam)
exhibited a binding energy of −6.12 kcal/mol against Mpro.
Te 2,6-dimethylphenyl moiety formed three Pi-alkyl in-
teractions with His41 and Met165. Te (2-oxopyrrolidin-1-
yl) acetamide moiety formed two hydrophobic interactions
with His163 and Cys145. Moreover, the central amide
moiety interacted with two hydrogen bonds with Asn142
and Glu166 with a distance of 2.42 and 2.01°A, respectively.
(Figure 7).

Table 1: Continued.

Comp Similarity SA SB SC
2425 0.532 100 12 76
2437 0.576 179 135 −3
2447 0.573 201 175 −25
2478 0.535 168 138 8
2524 0.597 160 92 16
2525 0.578 170 118 6
2530 0.556 155 103 21
2553 0.550 105 15 71
2603 0.604 116 16 60
2622 0.516 214 239 −38
2630 0.539 138 80 38
2638 0.515 152 119 24
2649 0.636 140 44 36
2657 0.633 143 50 33
2660 0.618 168 96 8
2704 0.561 162 113 14
2761 0.528 239 277 −63
2775 0.603 152 76 24
2788 0.521 126 66 50
2790 0.522 186 180 −10
2825 0.516 145 105 31
2839 0.588 143 67 33
2840 0.606 172 108 4
2865 0.542 156 112 20
2877 0.519 217 242 −41
2901 0.565 140 72 36
2917 0.568 147 83 29
2918 0.540 162 124 14
2939 0.523 229 262 −53
3003 0.607 167 99 9
SA: Te number bits in both GWS and the target. SB: Te number of bits in the target but not GWS. SC: Te number of bits in GWS but not the target. Te
bold values indicate that the number is based on the number of compounds.
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Figure 2: Twenty-nine compounds with good molecular similarity with GWS.

Table 2: Molecular descriptors of the examined compounds and GWS.

Comp Alog
p M. Wt HBA HBD Rotatable

bonds Rings Aromatic
rings MFPSA Minimum

distance
GWS 2.17 218.3 2 1 3 2 1 0.179 0
68 2.83 259.34 2 1 4 3 1 0.143 0.388
163 2.35 275.34 3 1 4 3 1 0.17 0.456
169 3.4 313.86 3 1 5 2 1 0.088 0.733
224 2.26 220.31 2 2 5 1 1 0.157 0.484
286 4.17 250.33 3 1 6 1 1 0.154 0.666
325 2.39 233.7 3 1 4 1 0 0.261 0.732
339 1.44 246.31 2 1 3 2 1 0.182 0.21
400 1.29 232.28 3 2 2 2 1 0.293 0.664
419 2.35 275.34 3 1 4 3 1 0.17 0.456
497 2.86 285.34 3 0 3 3 1 0.132 0.634
552 2.49 207.27 2 1 1 2 0 0.186 0.594
675 3.36 282.81 2 1 2 2 1 0.1 0.532
686 3.91 269.81 2 1 2 2 1 0.074 0.63
829 1.72 289.37 4 1 5 3 1 0.167 0.683
854 2.8 263.38 3 2 4 2 1 0.144 0.526
911 3.64 276.37 3 1 4 2 1 0.149 0.515
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Compound 911 (Cyclandelate) exhibited a binding en-
ergy of −6.89 kcal/mol against Mpro. Te trimethyl cyclo-
hexyl moiety formed six hydrophobic interactions with
His41, Met49, and Met165. Additionally, the 2-hydroxy-2-
phenylacetate moiety formed three hydrogen bonds with
Glu166, Asn142, and Leu141 with distances of 1.99, 2.45, and
2.55°A, respectively (Figure 8).

Compound 2325 (Mepivacaine) exhibited a binding
score of −6.19 kcal/mol. Te 2,6-dimethyl phenyl moiety
formed three Pi-alkyl and Pi-sulfur interactions with His163
and Cys145. Te piperidine moiety formed two Pi-alkyl
interactions with His41 and Met49. Moreover, the central
amide moiety interacted with two hydrogen bonds with
Glu166 and Asn142 with a distance of 2.01 and 2.40°A,
respectively (Figure 9).

Te binding mode of compound 2351 (Ropivacaine)
exhibited an energy binding of −6.38 kcal/mol against
Mpro. Te 2,6-dimethyl phenyl moiety formed three Pi-
alkyl and Pi-sulfur interactions with His163 and Cys145.
Te propylpiperidine moiety formed two Pi-alkyl in-
teractions with His41 and Met49. Moreover, the central
amide moiety interacted by two hydrogen bonds with
Glu166 and Asn142 with a distance of 2.27 and 2.25°A,
respectively (Figure 10).

Te binding mode of compound 2384 (Tasimelteon)
exhibited an energy binding of −6.45 kcal/mol-1 against
Mpro. Te 2,3-dihydrobenzofuran-4-yl moiety formed four
Pi-alkyl and Pi-Pi interactions with Met49, Met165, and
His41. Additionally, it formed one hydrogen bond with

Glu166 at a distance of 2.44°A. Te (cyclopropyl methyl)
propionamide moiety interacted with Asn142 through one
hydrogen bond with a distance of 2.63°A. Moreover, it was
incorporated in four Pi-alkyl interactions with His163,
His172, His41, and Cys145 (Figure 11).

Interestingly, the binding mode of compound 2840
(Levobupivacaine) was very similar to that of the cocrys-
tallized ligand (GWS) exhibiting a binding energy of
−6.65 kcal/mol, slightly bitter that GWS (−6.51 kcal/mol)
against theMpro. In detail,Te 2,6-dimethylphenyl moiety of
compound 2840, in a similar way to the cyclohexyl moiety of
GWS formed hydrophobic interactions with the same three
amino acids; Met49, His41, and Met165. Additionally, the
butylpiperidine moiety of compound 2840 interacted with
Asn142 by a hydrogen bond with a distance of 2.36°A. Te
amide linker of GWS interacted with the same amino acid
through a hydrogen bond with distances of 2.72°A. Fur-
thermore, the butylpiperidine moiety of compound 2840
formed one hydrophobic interaction with His163 similar to
the amino group in (pyridine-3-yl) acetamide moiety of
GWS. Finally, the amide linker of compound 2840 formed
two hydrogen bonds with Gln189, and Glu166 in a distance
of 2.24, and 2.64°A, respectively. Tis interaction was similar
to that of the amide linker of GWS with Glu166 a hydrogen
bond with a distance of 2.04°A. In summary, compound
2840 (Levobupivacaine) exhibited interactions with all the
amino acids that the cocrystallized ligand (GWS) interacted
with. Additionally, there was an extra interaction observed
with Gln189 (Figure 12, and Table 3).

Table 2: Continued.

Comp Alog
p M. Wt HBA HBD Rotatable

bonds Rings Aromatic
rings MFPSA Minimum

distance
1113 4.11 194.27 2 2 5 1 1 0.181 0.643
1186 2.94 246.3 3 1 4 2 1 0.212 0.364
2296 3.25 190.24 2 0 3 2 1 0.131 0.481
2325 2.98 246.35 2 1 2 2 1 0.114 0.362
2334 2.9 259.8 2 1 3 2 1 0.206 0.281
2340 3.04 164.24 1 1 4 1 1 0.104 0.568
2351 3.85 274.4 2 1 4 2 1 0.102 0.563
2384 2.2 245.32 2 1 4 3 1 0.154 0.311
2395 3.02 277.4 3 1 5 2 1 0.1 0.572
2553 4.39 178.27 1 1 4 1 1 0.093 0.714
2840 4.31 288.43 2 1 5 2 1 0.096 0.703
2865 1.72 289.37 4 1 5 3 1 0.167 0.683
2901 4.01 262.34 3 1 3 2 1 0.158 0.517
Te bold values indicate that the number is based on the number of compounds.

Figure 3: Superimposition of the docked and original poses of the cocrystallized ligand of SARS-CoV-2 Mpro (PDB ID: 5R84).
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2.4. Pharmacophore Study. Te pharmacophore recognizes
the key features in a ligand to interact with a protein target
resulting in elicitation or blockage of a certain biological
activity. Te 3D pharmacophore model determines the es-
sential chemical feature of a metabolite to be active against
a specifc protein. Additionally, it specifes the 3D geometry
of these essential features [65].Te generated 3Dmodel is an
important key that can be used to predict defnite bioactivity
based on the presence or absence of these features [66, 67].
Te presented study concerned the optimization of the key
pharmacophoric interaction features of the cocrystallized
ligand (GWS) of the main protease (PDB ID: 5R84) and the
consequent examination of the presence of these features in
the tested FDA-approved drug to pick the most promising
candidates.

2.4.1. Generation of a 3D-Pharmacophore Model. Te gen-
erated 3D pharmacophore model consisted of three features:
one H-bond donor and two hydrophobic centers

(Figure 13(a)). Te generated model was used as a 3D search
query to evaluate the tested drugs as possible SARS-CoV-2
main protease inhibitors. Te ftting of the cocrystallized
ligand against the generated pharmacophore model was
illustrated in Figure 13(b).

2.4.2. Te Test Set Activity Prediction. Te test set of thirty
FDA-approved drugs was mapped to the generated 3D
pharmacophore model. As a result, the FDA-approved drugs
that verifed the essential pharmacophoric features and the
ft value were selected as promising candidates.

Te results privileged nineteen drugs that have the main
essential features of SARS-CoV-2 main protease inhibitors.
Surprisingly, the drugs that showed good binding mode
against SARS-CoV-2main protease showed high ft and high
relative ft values. In detail, compounds 68 (Fit value� 2.86,

Figure 4: Binding mode and mapping surface ofGWS in the active
site of Mpro.

Figure 5: Binding mode and mapping surface of compound 68 in
the active site of Mpro.
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Relative Fit� 74.48%), 224 (Fit value� 2.75, Relative
Fit� 96.15%), 339 (Fit value� 2.56, Relative Fit� 89.51), 911
(Fit value� 2.81, Relative Fit� 98.25%), 2325 (Fit val-
ue� 2.73, Relative Fit� 95.45%), 2351 (Fit value� 2.75,
Relative Fit� 96.15%), 2384 (Fit value� 2.38, Relative
Fit� 83.22%), and 2840 (Fit value� 2.78, Relative
Fit� 97.20%) showed high ft value comparing to the coc-
rystallized ligand (Fit value� 2.86, Relative Fit� 100%)
(Table 4).

Figure 14 shows the mapping of the most promising
drugs that showed good ftting value against the generated
3D-pharmacophore and well as good binding mode against
SARS-CoV-2 main protease.

In summation, eight compounds were appointed as
potential Mpro inhibitors (ramelteon (68), prilocaine (224),
nefracetam (339), cyclandelate (911), mepivacaine (2325),
ropivacaine (2351), tasimelteon (2384), and levobupivacaine

(2840)). levobupivacaine (2840) demonstrated identical 3D
pharmacophore features to the cocrystallized ligand (GWS),
encompassing HBD-1, hydrophobic-2, and aromatic ring-3.
Notably, levobupivacaine (2840) displayed the highest ft
value at 2.78, accompanied by the highest relative Fit of
97.20%. Ramelteon, the melatonin agonist, is used to treat
insomnia [68]. Interestingly, Ramelteon demonstrated sig-
nifcant in silico anti-SARS-CoV-2 activities through bind-
ing and inhibition of SARS-CoV-2 RBD and ACE 2 [69]. A
drug repositioning study identifed prilocaine as a potential
candidate against COVID-19 [70]. Stimulatingly, cyclan-
delate showed in vitro inhibitory efect against 1 ribosomal
frameshifting of SARS-CoV-2 at a concentration of 2 μM

Figure 6: Binding mode and mapping surface of compound 224 in
the active site of Mpro.

Figure 7: Binding mode and mapping surface of compound 339 in
the active site of Mpro.
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[71]. Additionally, mepivacaine, the local anesthetic, dem-
onstrated an in vitro inhibitory efect against Herpes simplex
1 before [72]. Further, tasimelteon displayed signifcant in
silico binding with the COVID-19 PLpro [73]. Also, a mo-
lecular modeling study suggested the anti-COVID-19 po-
tential of the local anesthetic, levobupivacaine [74]. On the
other side, this is the frst time to referee an antiviral po-
tentiality for both nefracetam and ropivacaine. Because
several selected compounds are local anesthetics, further
studies regarding the route of administration and systemic
safety of these drugs are essential.

2.5. Molecular Dynamic Simulations. Molecular dynamics
(MD) simulations can be used to examine almost all sorts of
big molecules (proteins, nucleic acids, and carbohydrates) of
medicinal signifcance. Te MD experiments can supply not
only galore energetic records on the considered macro-
molecules but also a considerable of dynamical structural
specifcs about the interactions that happen between the
ligand and the targeted protein. Te acquired information is
very benefcial to understand several parameters regarding
the protein-ligand interaction [75]. Being an efective guide,
MD simulations experiments have been applied widely and
successfully in the process of modern drug discovery and
discovery [76].

Levobupivacaine (2840) demonstrated excellent ftting
value against the generated 3D-pharmacophore as well as an
ideal binding mode against Mpro. Consequently, it was se-
lected for further molecular dynamic simulations.

Figure 8: Binding mode and mapping surface of compound 911 in
the active site of Mpro.

Figure 9: Binding mode and mapping surface of compound 2325
in the active site of Mpro.

10 Journal of Chemistry



Te dynamic structural changes of the backbone of the
levobupivacaine—Mpro complex were calculated on an
atomic resolution by RMSD to investigate the stability of the
explored complex after binding. Stimulatingly, levobupi-
vacaine—Mpro complex displayed a low value of root mean
square deviation (RMSD) exhibiting no major fuctuations
(Figure 15(a)). Tis outcome indicates the stability of the
reviewed complex. Te fexibility of the levobupivacai-
ne—Mpro complex was diagnosed in terms of root mean
square fuctuation (RMSF) to expose the fuctuated regions
of Mpro during the simulation. It was confrmed that the
binding of levobupivacaine does not change the fexibility of
Mpro signifcantly (Figure 15(b)). To study the compactness
of the levobupivacaine—Mpro complex, the radius of gyra-
tion (Rg) of Mpro was computed. Te Rg of the Mpro was
more constant at the end of the experiment than at the

starting period (Figure 15(c)). Interaction between levo-
bupivacaine—Mpro complex and the surrounding solvents
was estimated by solvent accessible surface area (SASA) over
a period of 100 ns. Fortunately, the levobupivacaine—Mpro

complex featured a noticeable decrease in the surface area
(lower SASA value) than the starting time (Figure 15(d)).
Hydrogen bonding through the Levobupivacaine—Mpro

complex was estimated over 100 ns. Favorably, the highest
number of the Mpro conformations formed up to two hy-
drogen bonds with the Levobupivacaine over the examined
100 ns (Figure 15(e)).

Figure 10: Binding mode and mapping surface of compound 2351
in the active site of Mpro.

Figure 11: Binding mode and mapping surface of compound 2384
in the active site of Mpro.
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2.6. MM-PBSA. Te molecular mechanics Pois-
son–Boltzmann surface area (MM-PBSA) is a computational
technique employed in molecular modeling and computa-
tional chemistry to estimate the binding free energy between
a ligand and a protein. Tis method combines molecular
mechanics (MM) computations, which elucidate in-
teractions within the complex, with Poisson–Boltzmann
(PB) computations, which factor in the electrostatic in-
teractions between the solute and its surrounding solvent
environment [77].

In the MM-PBSA approach, the binding free energy
(ΔG_bind) is approximated by evaluating the energetic
components associated with the complex, the ligand, and the
receptor in both bound and unbound states. Tese com-
ponents encompass contributions from van der Waals

interactions, electrostatic interactions, and alterations in
solvation-free energy [78]. MM-PBSA is especially valuable
for investigating interactions between proteins and ligands,
ofering insights into the thermodynamics of binding and
aiding in the design of potential drug compounds. It is
important to acknowledge, however, that while MM-PBSA
provides valuable estimates, it relies on several assumptions
and may not capture the complete intricacies of binding
processes in all systems [79]. We calculated the binding free
energy of the last 20 ns of MD production run of the lev-
obupivacaine—Mpro complex with an interval of 100 ps from
MD trajectories using the MM/PBSA method. As shown in
Figure 16(a), Levobupivacaine displayed an excellent
binding free energy of −235 kJ/mol with the Mpro. Fur-
thermore, the participation of each amino acid residue of the
Mpro regarding the binding free energy after the binding
with levobupivacaine was computed. Te total binding free
energy of the levobupivacaine—Mpro complex was decom-
posed into per amino acid residue contribution energy. Te
output of this study helps to identify the essential amino acid
residues in the binding of the levobupivacaine—Mpro

complex. It was found that GLU-47, ASP-48, GLU-55, ASP-
56, GLU-166 and ASP-187 residues of the Mpro shared
higher than −15 kJ/mol binding energy (Figure 16(b)). It is
noteworthy to mention that GLU-166, an essential amino
acid, was identifed in the interactions of both levobupi-
vacaine and the cocrystallized ligand (GWS).

3. Method

3.1. Molecular Similarity Detection. Compound similarity
was assessed in Discovery Studio 4.0 using the CHARMM
force feld and ligand preparation protocol. Compounds
were compared to GWS with a 5% output adjustment.
Default molecular properties were used, including rotatable
bonds, rings, aromatic rings, HBA, HBD, ALog p, M. Wt,
andMFPSA.Te study was operated by Discovery Studio 4.0
software as represented before [80] (additional details in
Supplementary data).

3.2. Fingerprint Studies. Compound fngerprints were
evaluated against GWS using Discovery Studio 4.0.
CHARMM force feld was initially applied, and compounds
were prepared using the ligand protocol. Tey were then
compared to GWS. Default molecular properties were used,
including various atom parameters. Tis encompassed
charge, hybridization, H-bond features, ionizability, halo-
genation, aromaticity, or none of the above. Additionally,
ALogP category of atoms was considered. Te study was
operated by Discovery Studio 4.0 software as represented
before [81] (additional details in Supplementary data).

3.3. Docking Studies. Te crystal structure of Mpro was
obtained from Protein Data Bank.Te docking investigation
was accomplished using MOE2014. Te study was operated
by MOE and Discovery Studio 4.0 software [82] as repre-
sented before (additional details in Supplementary data).

Figure 12: Binding mode and mapping surface of compound 2840
in the active site of Mpro.
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3.4. Pharmacokinetic Profling. LigandScout software was
used to generate a 3D pharmacophore model based onGWS
binding against Mpro.Te Espresso algorithmwas employed.
Te best model, which includes features such as hydrogen
bond acceptors, donors, aromatic rings, and hydrophobic

elements while excluding a volume sphere, was selected from
the ten generated models. Model validation was performed
using ROC Curve and AUC analysis with default parameters
in LigandScout. Discovery Studio 4.0 was used (see method
part in Supplementary data).

Table 3: Docking binding energy (kcal/mol) of the tested compounds against Mpro (PDB ID: 5R84).

Serial Compounds Name RMSD value
(Å)

Docking score
(kcal/mol)

No. of
H-bonds

No. of
hydrophobic bonds

1 GWS 0.56 −6.51 3 3
2 68 Ramelteon 1.45 −6.49 2 3
3 163 Rolipram 1.68 −5.64 1 2
4 169 Venlafaxine hydrochloride 1.20 −5.98 1 3
5 224 Prilocaine 1.19 −6.05 2 4
6 286 Gemfbrozil 1.29 −6.23 3 6
7 325 Lomustine 1.11 −5.98 2 2
8 339 Nefracetam 1.23 −6.12 2 5
9 400 Aminoglutethimide 1.13 −5.73 0 2
10 419 S-(+)-Rolipram 0.91 −6.35 1 3
11 497 Piperine 0.89 −6.23 1 3
12 552 Ciclopirox 1.56 −5.65 2 0
13 675 Mepivacaine hydrochloride 0.78 −6.05 2 3
14 686 Meptazinol hydrochloride 1.11 −5.78 0 3
15 829 Hyoscyamine 1.40 −6.15 1 3
16 854 Desvenlafaxine 1.23 −5.64 2 2
17 911 Cyclandelate 1.38 −6.89 3 6
18 1113 Hexylresorcinol 0.67 −5.80 1 3
19 1186 Loxoprofen 0.88 −6.40 2 1
20 2296 3-n-Butylphathlide 0.85 −5.64 0 3
21 2325 Mepivacaine 0.85 −6.19 2 5
22 2334 Tiletamine Hydrochloride 1.09 −5.80 0 3
23 2340 Fenipentol 0.95 −5.78 1 0
24 2351 Ropivacaine 1.36 −6.38 2 5
25 2384 Tasimelteon 0.89 −6.45 2 8
26 2395 Venlafaxine 1.41 −6.44 2 3
27 2553 Amylmetacresol 1.25 −5.66 1 2
28 2840 Levobupivacaine 0.75 −6.65 3 7
29 2865 Atropine 1.36 −6.01 1 3
30 2901 Homosalate 0.89 −5.36 0 6
Te bold values indicate that the number is based on the number of compounds.

(a) (b)

Figure 13: (a) Te generated 3D-pharmacophore geometry with three features; one H-bond donor (pink color) and two hydrophobic
centers (blue). (b) Mapping of the cocrystallized ligand on the generated pharmacophore (Fit value� 2.86).
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 14: Mapping of the tested metabolites on the generated pharmacophore (a) compounds 68 (Fit value� 2.86, Relative Fit� 74.48%),
(b) 224 (Fit value� 2.75, Relative Fit� 96.15%), (c) 339 (Fit value� 2.56, Relative Fit� 89.51), (d) 911 (Fit value� 2.81, Relative Fit� 98.25%),
(e) 2325 (Fit value� 2.73, Relative Fit� 95.45%), (f ) 2351 (Fit value� 2.75, Relative Fit� 96.15%), (g) 2384 (Fit value� 2.38, Relative
Fit� 83.22%), and (h) 2840 (Fit value� 2.78, Relative Fit� 97.20%).
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Figure 15: M D simulations outcomes; (a) RMSD values, (b) RMSF, (c) Rg, (d) SASA, and (e) H-bonding between levobupivacaine—Mpro

complex over 100 ns of the MD run.

Table 4: Fit value and relative ft of the tested metabolites and (GWS).

Comp Mapped features Fit valuea Relative Fitb (%)
1 Cocrystallized ligand HBD-1, Hydrophobic-2, Aromatic ring-3 2.86 100.00
2 68 HBD-1, Hydrophobic-2, Aromatic ring-3 2.13 74.48
3 169 HBD-1, Hydrophobic-2, Aromatic ring-3 1.66 58.04
4 224 HBD-1, Hydrophobic-2, Aromatic ring-3 2.75 96.15
5 339 HBD-1, Hydrophobic-2, Aromatic ring-3 2.56 89.51
6 675 HBD-1, Hydrophobic-2, Aromatic ring-3 2.73 95.45
7 829 HBD-1, Hydrophobic-2, Aromatic ring-3 2.30 80.42
8 854 HBD-1, Hydrophobic-2, Aromatic ring-3 1.76 61.54
9 911 HBD-1, Hydrophobic-2, Aromatic ring-3 2.81 98.25
10 1113 HBD-1, Hydrophobic-2, Aromatic ring-3 2.66 93.01

Journal of Chemistry 15



3.5. Molecular Dynamics Simulation. Te system was pre-
pared using the web-based CHARMM-GUI [83–85] in-
terface utilizing CHARMM36 force feld [86] and NAMD
2.13 [87] package. Te TIP3P explicit solvation model was
used (additional details in Supplementary data).

3.6. MM-PBSA Studies. Te g_mmpbsa package of GRO-
MACS was utilized to calculate the MM/PBSA (additional
details in Supplementary data).

4. Conclusion

In conclusion, our study identifed eight promising com-
pounds (ramelteon, prilocaine, nefracetam, cyclandelate,
mepivacaine, ropivacaine, tasimelteon, and levobupiva-
caine) as potential inhibitors against SARS-CoV-2 main
protease (Mpro). Tese compounds were selected from
a pool of 3009 FDA and clinically approved compounds
using a rigorous in silico approach. Further analysis
through molecular fngerprints, structure similarity, and
molecular docking studies confrmed their potential.
Levobupivacaine exhibited the highest docking and
pharmacophore scores, leading to extensive molecular
dynamics simulations. Te results demonstrated stable
binding and optimal dynamics of the Mpro-Levobupivacaine
complex over 100 ns.MM-PBSA studies reafrmed the
strong interaction with a free energy value of −235 kJ/mol.

Tese fndings provide a promising foundation for further
in vitro and in vivo research on these compounds in the fght
against COVID-19.
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