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This paper describes a prototype implementing a high degree of transaction resilience in distributed software systems using a non-
von Neumann computing model exploiting parallelism in computing nodes. The prototype incorporates fault, configuration,
accounting, performance, and security (FCAPS) management using a signaling network overlay and allows the dynamic control
of a set of distributed computing elements in a network. Each node is a computing entity endowed with self-management and
signaling capabilities to collaborate with similar nodes in a network. The separation of parallel computing and management
channels allows the end-to-end transaction management of computing tasks (provided by the autonomous distributed computing
elements) to be implemented as network-level FCAPS management. While the new computing model is operating system
agnostic, a Linux, Apache, MySQL, PHP/Perl/Python (LAMP) based services architecture is implemented in a prototype
to demonstrate end-to-end transaction management with auto-scaling, self-repair, dynamic performance management and
distributed transaction security assurance. The implementation is made possible by a non-von Neumann middleware library
providing Linux process management through multi-threaded parallel execution of self-management and signaling abstractions.
We did not use Hypervisors, Virtual machines, or layers of complex virtualization management systems in implementing this
prototype.

1. Introduction

The advent of many-core severs with tens and even hundreds
of computing cores with high bandwidth communication
among them makes the current generation server, network-
ing, and storage equipment and their management systems
which have evolved from server-centric and bandwidth
limited architectures completely unsuited to use in the
next generation computing infrastructure efficiently. It is
hard to imagine replicating current TCP/IP-based socket
communication, “isolate and fix” diagnostic procedures, and
the multiple operating systems (which do not have end-to-
end visibility or control of business transactions that span
across multiple cores, multiple chips, multiple servers, and
multiple geographies) inside the next generation many-core
servers without addressing their shortcomings. The many-
core servers and processors constitute a network where
each node itself is a subnetwork with different bandwidths

and protocols (socket-based low bandwidth communication
between servers, InfiniBand, or PCI Express bus-based
communication across processors in the same server and
shared memory-based low latency communication across the
cores inside the processor). Figure 1 shows the many-core
server network supporting multiple bandwidths.

In order to cope with the scaling issues and utilize
the hierarchical many-core network of networks effectively,
next generation service architecture has to emulate the
architectural resiliency of cellular organisms that tolerate
faults and implement command and control structures
which enable execution of self-configuring, self-monitoring,
self-protecting, self-healing, and self-optimizing (in short
self-∗) business processes.

Figure 2 shows the evolution of current computing
infrastructure with respect to three parameters—system
resiliency, efficiency, and scaling.
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Figure 1: Many-core servers containing multiple processors connected via the Internet. Communication between cores must be context-
sensitive to exploit the performance offered by the many-core servers with each core supporting multiple parallel threads of computation.
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Figure 2: The resiliency, efficiency, and scaling of information
technology infrastructure. Grid and cloud computing management
brings automation of physical and virtual resources management.

The resiliency is measured with respect to a service’s
tolerance to faults, fluctuations in contention for resources,
performance fluctuations, security threats, and changing
business priorities. Efficiency is measured in terms of
total cost of ownership and return on investment. Scaling
addresses end-to-end resource provisioning and manage-
ment with respect to increasing number of computing
elements required to meet service needs.

As information technologies evolved from server-centric
computing to Internet/Intranet-based managed grid and
cloud computing technologies, the resiliency, efficiency, and
scaling are improved by automating many of the labor-
intensive and knowledge-sensitive resource management
tasks to meet the changing application/service needs.

Unfortunately, extending current state of the art to
develop applications that harness the full power of many-
core systems is difficult and requires software developers to
transition from writing serial programs to writing parallel
programs [1]. Parallel applications share data, and current
thread technologies used to modifying them behave in

unpredictable ways resulting in a complex web of debugging
and optimizing strategies. To obtain the required behavior,
the access to shared data should be coordinated between all
cores using proper synchronization techniques and applying
suitable policies and patterns based on overall system goals,
relative priorities of various tasks, and latency constraints.
Current computing techniques, operating systems that have
to effectively supply multicore resource management, and
high-level application programming that supports dis-
tributed transaction management have to be reexamined to
leverage parallelism of processing cores.

In addition, current approaches to resource manage-
ment, albeit with automation, are not sensitive to the
distributed nature of transactions, and contention resolution
of shared distributed resources, at best, is complex involving
many layers of management systems. As von Neumann [2]
pointed out, current design philosophy that “errors will
become as conspicuous as possible, and intervention and
correction follow immediately” does not allow scaling of
services management with increasing number of computing
elements involved in the transaction. Comparing the com-
puting machines and living organisms, he points out that
the computing machines are not as fault tolerant as the
living organisms. He goes on to say “it’s very likely that on
the basis of philosophy that every error has to be caught,
explained, and corrected, a system of the complexity of the
living organism would not run for a millisecond.” More
recent efforts, in a similar vein, are looking at resiliency
borrowing from biological principles [3] to design future
Internet architecture.

In this paper, we will revisit the design of distributed
systems with a new non-von Neumann computing model
(called Distributed Intelligent Managed Element (DIME)
(DIME, Cloud-DNA, and Dime Network Architecture are
trade marks of Kawa Objects Inc.) network computing
model) [4–8] that integrates computational workflows with
a parallel implementation of management workflows to pro-
vide dynamic real-time FCAPS management of distributed
services and end-to-end service transaction management.
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The DIME network architecture provides a new direction
to harness the power of many core servers with the archi-
tectural resiliency of cellular organisms and a high degree
of scaling, and efficiency. It also eliminates many of the
shortcomings of current solutions being proposed for solving
the scalability issue in these systems, that is, the use of SSI [9]
or the introduction of multiple instances of the OS in a single
enclosure with socket communication among them instead
of high-speed shared memory or PCI Express (e.g., [10]),
which are inefficient because they increase the management
complexity. A review of other operating system approaches
has been presented elsewhere by one of the authors [7].

The focus of this paper is the demonstration of resiliency,
scaling and efficiency of the new computing model in
a conventional Linux operating system environment by
injecting a non-von Neumann middleware to introduce
self-management (FCAPS) and network-aware signaling
abstractions (alerting, addressing, supervision, and media-
tion). We have chosen a popular LAMP-based web-services
infrastructure to demonstrate end-to-end transaction man-
agement based on business priorities, workload fluctuations,
component failures, and latency constraints. We demonstrate
autoscaling, self-repair, performance management, end-to-
end transaction security assurance, and live-migration of
services without the need for a hypervisor or other server
virtualization technologies or any new standards. This
implies that DIME networks offer computing, networking
and storage on demand, without the need for an additional
“Hypervisor Layer,” simplifying the parallelization schema
and, at the same time, speeding up the communication
amongst various components.

In addition, using the features provided by FCAPS
management, we have found that the DIME network infras-
tructure simplifies the managed services development. The
developer, in fact, has to focus only on the algorithmic
part (i.e., the computing workflow) of the service, leav-
ing the management issues (such as fault, configuration,
accounting, performance, and security management) to the
DIME infrastructure. Above all, this approach offers to
leverage current OSs by converting each process into a DIME
while also allowing the development of a native distributed,
parallel, and scalable operating system called parallax as
discussed elsewhere [6, 7]. The parallax OS is implemented
in assembler language (with C and C++ language support)
and converts each core into a DIME (inside the many-
core server), whereas the approach described in this paper
encapsulates a Linux process into a DIME.

The paper is organized as follows. In Section 2, we briefly
review the new computing model and the DIME network
architecture (DNA) that allows programming self-∗ services
creation, delivery, and assurance frameworks. In Section 3,
we use DNA to implement a Linux, Apache, MySQL, and
PHP/PERL/PYTHON (LAMP) based services architecture
to demonstrate end-to-end transaction management with
autoscaling, self-repair, dynamic performance management,
and distributed transaction security assurance. The imple-
mentation demonstrates a true decoupling of services and
their management from the hardware infrastructure and its
management and shows the resiliency, scaling, and efficiency

that go beyond current state of the art. In Section 4, we
present a discussion with some thoughts on future directions
for continued research. In Section 5, we conclude the paper
with some thoughts on DNA in biology and DNA in
information technologies.

2. The DIME Network Architecture

The DIME computing model exploits the parallelism to
implement a signaling network overlay over a network of von
Neumann SPC computing nodes (cores in a multicore server
using a new operating system [6, 7] or Linux Processes in
conventional computing [5]). Multiple threads available in
each core or a Linux process implementation are exploited
to implement a self-managed computing element called the
DIME. Each DIME presents a computing element that can
execute a managed computing process with fault, configu-
ration, accounting, performance, and security management.
Figure 3 shows a comparison between the von Neumann SPC
computing model and the DIME computing model.

The parallelism of service execution and service con-
trol allows real-time monitoring of service behavior and
management based on policies and constraints specified by
the regulators both at the node level and at the network
level. The DIME network architecture thus allows the
description and management of the service to be separated
from the execution of the service (using a computing thread
called Managed Intelligent Computing Element, MICE).
The signaling control network allows parallel management
of the service workflow. In step 1, the service regulator
instantiates the DIME and provisions the MICE based on
service specification. In step 2, the MICE is loaded, executed,
and managed by the service regulation policies. At any time,
the MICE can be controlled through its FCAPS management
mechanism by the service regulator.

There are three key features in this model that differenti-
ate it from all other models.

(1) The self-management features of each SPC node
with FCAPS management using parallel threads allow
autonomy in controlling local resources and provide
services based on local policies. Each node keeps
its state information and history of its transactions.
(The concept of state awareness and history of
computational transactions provided at the node
level and at the network level introduces a non-
Markovian element into the DIME computing model
which allows for diagnosis-after-the-fact and facili-
tates system level predictive corrections based on his-
tory.) The DIME node provides managed computing
services, using the MICE to other DIMEs based on
local and global policies.

(2) The network aware signaling abstractions allow a
group of DIMEs to be programmed to manage
themselves with subnetwork/network level FCAPS
management based on group policies and execute a
service workflow as a managed directed acyclic graph
(DAG).
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Figure 3: von Neumann computing model and DIME computing model. For a description of the DIME network architecture and the
genetic transactions, please see the video http://youtu.be/Ft W4yBvrVg.

(3) Run-time profile-based FCAPS management (at the
group level and at the node level) allows a composi-
tion scheme by redirecting the MICE I/O to provide
recombination and reconfiguration of service work-
flows dynamically at run time.

The MICE provides the logical type that performs
everything that is feasible within that logical type (a Turing
machine), and the DIME FCAPS management provides a
higher logical type (management of the Turing machine)
which describes and controls what is feasible in the MICE
[11]. These features provide the powerful genetic trans-
actions, namely, replication, repair, recombination, and
reconfiguration that have proven to be essential for the
resiliency of cellular organisms [11].

We have applied the DIME computing model to convert
a Linux process into a DIME with self-management (FCAPS
management of the Linux process) and signaling awareness
to create a managed DIME network implementing a man-
aged workflow. The details of injecting the DNA in Linux
OS using a non-von Neumann middleware are described
elsewhere [5], and it requires no special accommodations
from the operating system. In fact, the non-von Neumann
middleware uses standard OS services so that it can be easily
ported to other operating systems offering multithreading
capabilities.

The separation of the service design by splitting the ser-
vice regulator component and the service execution package
as shown in Figure 4 allows the description and control
of the service to be separated and made available at run
time providing the resiliency in services management. This
separation also makes possible the genetic transactions of
replication, repair, recombination, and reconfiguration that
are the distinguishing characteristics of cellular organisms.

Each DIME executes a set of tasks arranged in a DAG. Each
node of this DAG contains both the task executables (which
itself could be another DAG) and the profile DAG as a tuple
(task (SP), profile (SR)): in this way, it is possible not only to
specify what a DIME has to do or execute but also its manage-
ment (how this has to be done and under what constraints).
These constraints allow the control of FCAPS management
both at the node level and the subnetwork level. In essence,
at each level in the DAG, the tuple gives the blueprint for both
management and execution of the downstream graph. Under
these considerations, it is easy to understand the power of
the proposed solution in designing self-configuring, self-
monitoring, self-protecting, self-healing, and self-optimizing
distributed service networks.

The DIME network architecture takes its cues from
parallels in cellular biology where regulatory genes control
the actions of other genes which allow them the ability
to turn on or turn off specific behaviors. As affirmed
by Stanier and Moore [12], “in essence, genes work in
hierarchies, with regulatory genes controlling the expression
of “downstream genes” and with the elements of “cross-
talk” between the regulatory genes themselves.” The same
parallel, furthermore, exists between the task profile and the
concept of gene expression. Gene expression is the process by
which information from a gene is used in the synthesis of a
functional gene product.

In the next section, we describe the use of a DIME
network (each DIME encapsulating a Linux process with
FCAPS management) to implement LAMP-based web ser-
vices architecture to demonstrate end-to-end transaction
management with autoscaling, self-repair, dynamic perfor-
mance management, and distributed transaction security
assurance.
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Figure 4: The anatomy of a DIME and the separation of service regulation and service execution workflows.

3. LAMP Web Services Using DNA

Figure 5 shows a DIME network prototype of Linux pro-
cesses implementing a web services workflow using an
Apache web server, MySQL database, and Python/PHP/perl
services.

The Apache web server and the DNS server are executed
by encapsulating each of them in a single DIME. The DIME
network architecture enables the application or service
running in the MICE under the control of the FCAPS
manager. The fault and performance information from each
DIME is collected through the signaling channel and is
utilized by the end-to-end DIME network management
infrastructure. The policies are implemented by the DIME
network configuration manager (including the Supervisor,
Fault Manager, Performance Manager, Accounting Manager,
and the Security Manager functions designed to execute
policy implementation workflows.)

The workflow is as follows.

(1) A graphical user interface allows configuring the
DIME network by assigning

(a) the primary role to an instance of DIME
implementing the Apache webserver,

(b) the secondary instances of DIMEs with Apache
for backup in executing the self-repair policy,

(c) the DNS server with primary and secondary
DIME addresses that are configured automati-
cally.

(2) When the primary is killed, the fault manager in
the DIME configuration detects the lack of heartbeat

from the DIME containing the primary and immedi-
ately sends a signal to the DNS to replace the primary
Apache address with an available secondary. In
Figure 5, the self-repair scenario replaces the primary
which is killed with the secondary from the DNS
server list.

(3) The local performance manager in the DIME imple-
menting the Primary Apache receives notifications
about the response time of the transactions going
through the Apache web server.

(4) When the performance exceeds a threshold, the
signaling channel is used to notify, via network Per-
formance Manager, the Supervisor that instantiates
an additional Apache (a consistent copy of the first
Apache.) in a new DIME. Figures 6(a), 6(b), and 6(c)
show the trend of response time using more than one
apache server. You can see as response time decreases
when a new DIME is added.

(5) The Supervisor, based on business priorities, work-
load management policies, and latency constraints,
coordinates with Configuration and Security Man-
agers of the network to instantiate the new instance
of Apache with appropriate configuration.

(6) The network Configuration Manager instantiates the
new service and adjusts the work-loads modifying the
DNS rules as required.

Let us analyze the results obtained from the graphs in
Figures 6(a), 6(b), and 6(c). They were generated by using
Apache JMeter, a graphical server performance testing tool.
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Figure 5: DIME network implementing web services using LAMP services with FCAPS management at both the node level and at the
network level. When the primary Apache fails, it is replaced by the secondary by the DIME network.

You can see how response time decreases when a new DIME
is added as Primary, to achieve load balancing. Figure 6(a)
refers to a scenario with four Apache servers, each of which
is encapsulated in a DIME.

The number of simulated users make requests at the same
time is 500 and the ramp-up period is 600 seconds. This
means that the simulator activates each thread (user) every
600/500 seconds.

Figure 6(b) shows the trend of response time using three
DIMEs. In this scenario, we have configured the performance
tool to generate 1000 requests with a ramp-up period of 1000
seconds; this means that each request will be performed every
second. This is why the response time trend in Figure 6(b)
grows more rapidly than the first one: in second scenario,
there are many more request and the activation rate of each
request is larger. However, the trend is the same in both
figures which means that the load balancing is working
properly.

Finally, Figure 6(c) shows how we can handle response
time, adding two DIMEs instead of one DIME at a time.
The graph in Figure 6(c) refers to the same scenario of
Figure 6(a), when the number of users is 500 and the ramp-
up period is 600 seconds. In this way, load balancer can add
two DIMEs (or N DIMEs) according to the latency incurred
on the first Apache server. So, as shown in Figure 6(c), we can
greatly improve performance of the services infrastructure
by monitoring and controlling the response time using the
signaling-enabled DIME network architecture.

The policies are implemented at various levels; at the
node level and at the subnetwork or network level. In
addition to domain specific service management workflow,
each DIME implements its own local FCAPS management
independent of what MICE processes are doing. This allows
programming DNA level DIME instantiation, and its life-
cycle management to assure 100% infrastructure availability,

performance, and security service levels. While a simple end-
to-end transaction security check is performed with a login
and password scheme that allows service network manage-
ment, a more elaborate authentication, authorization, and
accounting scheme is discussed in another paper by Tusa
et al. [13].

We believe that the DIME network architecture repre-
sents a major departure from the current cloud approaches
[14, 15]. In conventional computing, the physical server
serves as a managed computing element with node level
resource management performed by the operating system.
In cloud computing, the virtual server serves as a managed
computing element also with operating system managing the
local resources. In the DIME computing model, a process in
an operating system serves as managed computing element.
The non-von Neumann approach radically improves the
resource exploitation using parallelism and coordinated
management both at the node and network level even
within the cloud environments, hiding the complexity of
the management of FCAPS issues both from the developers
and users of cloud services. Table 1 summarizes some of the
attributes that distinguish DIME network architecture from
conventional managed server computing and managed cloud
computing.

4. Discussion and Future Direction

The DIME computing model attempts to fill the need
to break the von-Neumann bottleneck and leverage the
hardware upheaval to improve the resiliency, efficiency, and
scaling of future services infrastructure as shown in Figure 7.

While the paper discusses the use of DNA injection
into Linux OS, we see no technical obstacle to do the
same in other operating systems. The key requirement is
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Figure 6: (a) DIME network implementing web services using LAMP services with performance management at both the node level and
at the network level. When the primary Apache response time degrades, a new DIME is added using the signaling network that manages
the DIME computing network. The role of increasing DIMEs controlling Apache is illustrated in controlling the response time as number
of transactions increase. (b) Response time using three DIMEs, involved to manage a greater quantity of requests than the first scenario
in Figure 6(a). (c) Response time trend adding two DIME using signaling to improve performance without Hypervisors or other Virtual
Machine Management.
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Table 1: Comparison between conventional, cloud and DIME network computing models.

Conventional computing Cloud computing
DIME computing

Linux Parallax

Managed computing
entity

Physical server Virtual server A process A Core

Computing network
IP/shared memory/PCI
express

IP/shared memory/PCI
express

IP/shared memory/PCI
express

IP/shared memory/PCI
express

Management network
Uses same computing
network

Uses same computing
network

Parallel signaling network
overlay

Parallel signaling network
overlay

Computing model
von Neumann Turing
machine

von Neumann Turing
machine

Managed Turing machine Managed Turing machine

Server hardware
management (FCAPS)

Labor intensive Automated
Service management
decoupled from server
management

Service management
decoupled from server
management

Network hardware
management (FCAPS)

labor intensive Automated
Service management
decoupled from network
management

Service management
decoupled from network
management

Storage hardware
management (FCAPS)

Labor intensive Automated
Service management
decoupled from storage
management

Service management
decoupled from storage
management

Operating system Server-centric Virtual server-centric
Network-centric Process
management in
nude-centric Linux OS

Network-centric core
management transcending
physical server boundaries

Service management
(FCAPS)

Labor intensive Automated workflows
Autonomic policy based
transaction FCAPS
management

Autonomic policy based
transaction FCAPS
management

Management latency
T(management) >>
T(service transaction)

T(management) >
T(service transaction)

T(management) =
T(service transaction)

T(management) =
T(service Transaction)

the multithreading capability to implement parallel manage-
ment workflow to control the Turing machine implemented
as a process in the conventional OS. It is also proven
[7] that the DNA can be injected at the core with a
native OS written from scratch that scales and provides the
resiliency. It is also proven that we can leverage current
service-oriented architecture, development environments,
and workflow implementations using a network of Turing
machines by migrating them to a managed network of Turing
machines using DNA. Using the DIME network, we have
provided multitenancy with FCAPS management at a process
(implementing a service component) without the need for
current generation Hypervisors.

It is interesting to note that the services manage-
ment decoupling from the infrastructure hardware man-
agement using DNA does not require any new standards
or approaches except exploiting parallelism to separate the
management workflow and computing workflows at the core
or at the process level using self-management, signaling, and
network management abstractions.

In designing this new class of distributed systems, it
behooves us to go back and seriously study von Neumann’s
views on the subject [2]. Talking of cellular organisms and
how they operate across errors, he points out that “the system
is sufficiently flexible and well organized that as soon as an
error shows up in any part of it, the system automatically
senses whether this error matters or not. If it does not matter,
the system continues to operate without paying any attention

to it. If the error seems to the system to be important, the
system blocks that region out, by-passes it, and proceeds
along other channels. The system then analyzes the region
separately at leisure and corrects what goes on there, and
if correction is impossible the system blocks the region off
and by-passes it forever. The duration of operability of the
automaton is determined by the time it takes until so many
incurable errors have occurred, so many alterations and by-
passes have been made, that finally the operability is really
impaired. This is a completely different philosophy which
proclaims that the end of the world is at hand as soon as the
first error occurred.”

In order to benefit from the approach adopted by the
cellular organisms, current services management approaches
must implement two features at the core computing ele-
ment (a von Neumann computing node). First, they must
implement self-management based on local history and
local policy requirements. Second, it must provide a parallel
signaling channel for a network of self-managed computing
elements to communicate and collaborate to implement
global policies. This defines a non-von Neumann computing
model that implements a managed network of self-managed
Turing computing nodes.

While current cloud and grid management systems
implement services management by monitoring various
application or service characteristics with the use of various
resource management systems, the applications or services
that use local operating systems in each node still have their
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resource and service management serialized using the von-
Neumann SPC computing model. The DNA addresses this
by implementing the separation at the computing node by
exploiting parallelism.

Discussing the work of Francois Jacob and Jacques
Monod on genetic switches and gene signaling, Mitchell
Waldrop [16] points out that “DNA residing in a cell’s
nucleus was not just a blueprint for the cell—a catalog of how
to make this protein or that protein. DNA was actually the
foreman in charge of construction. In effect, DNA was a kind
of molecular-scale computer that directed how the cell was
to build itself and repair itself and interact with the outside
world.”

We believe that the DIME network architecture enabling
the execution of a workflow as a managed directed acyclic
graph provides at least a mechanism for a blueprint for
enterprise business process description, replication, execu-
tion, and control using a lengthy recursive sequence of nested
programs which unfold in the von Neumann computing
world using a non-von Neumann computing model.

Future directions of this research are self-evident. First,
the non-von Neumann middleware can be exploited to
improve resiliency, efficiency, and scaling of current grid and
cloud services by decoupling services management from the
infrastructure hardware management. This approach allows
implementing reliable and resilient services using unreliable
hardware just as the cellular organisms do.

Few immediate applications present themselves.

(1) Dynamic many-core cluster communication man-
agement across multiple Linux images to choose the
type of communication based on available resources
and service requirements.

(2) Implement WAMP (Windows, Apache, MySQL, and
PHP/Perl/Python) services architecture using DIME
network architecture.

(3) Application aware resource allocation (dial-up and
dial-down) at run time.

(4) Resilient services oriented architecture (RSOA)
implementation through the migration of the ser-
vices microcontainer [17] into a DIME.

(5) High-performance computing (HPC) resource
scheduling and management.

Secondly, the hardware infrastructure itself can be
redesigned (exploiting the many-core architecture) to
become signaling aware and respond to application requests
at run time. Future storage and networking hardware thus
can be simplified with hardware-assisted DIME architec-
ture to eliminate current layers of management software
and special purpose ASIC implementations. They can be
designed to dial-up and dial-down raw resources (number
of cores, memory, bandwidth, throughput, storage capacity,
etc.) based on application requests at run time.

Finally, DNA can be implemented by chip vendors
in hardware to provide self-management and signaling
awareness exploiting parallelism at the core. This allows
uniformity in hardware device drivers with self-management
and signaling awareness.

On the theoretical side, it is worth examining the
intriguing remarks of von Neumann about Gödel’s theorem
and its implications on the descriptions of complexity [18].
In his Hixon Symposium talk, von Neumann remarks “it is a
theorem of Gödel that the next logical step, the description
of an object, is one class type higher than the object and
is therefore asymptotically infinitely longer to describe.” He
goes on to say “it is one order of magnitude harder to tell
what an object can do than to produce the object.” The DNA
attempts to describe and assure what an object does; in this
case, the object happens to be a von Neumann computing
node. In the light of the new resiliency of DNA (e.g., the
DIME can be instantiated and managed to provide 100%
availability and recoverability), it is worthwhile to revisit the
classic distributed computing issues such as the dining and
drinking philosopher problems and the CAP theorem.

5. Conclusion

In conclusion, we observe that the evolution of living
organisms has taught us that the difference between survival
and extinction is the information processing ability of the
organism to

(1) discover and encapsulate the sequences of stable
patterns that have lower entropy, which allow har-
mony with the environment providing the necessary
resources for its survival,

(2) replicate the sequences so that the information (in
the form of best practices) can propagate from the
survived to the successor,

(3) execute with precision the sequences to reproduce
itself,

(4) monitor itself and its surroundings in real-time,

(5) utilize the genetic transactions of repair, recombina-
tion and rearrangement to sustain existing patterns
that are useful.

That the computing models of living organisms utilize
sophisticated methods of information processing was recog-
nized by von Neumann who proposed both the SPC comput-
ing model and the self-replicating cellular automata. Later
Chris Langton created computer programs that demon-
strated self-organization and discovery of patterns using
evolutionary rules which led to the field of artificial life and
theories of complexity.

In this paper, we focus on another aspect that we learn
from the genes in living organisms that deal with precise
replication and execution of encapsulated DNA sequences.
We describe a computing model, recently proposed, extend-
ing the stored program control computing model to
create self-configuring, self-monitoring, self-healing, self-
protecting, and self-optimizing (self-managing or self-∗)
distributed software systems. As opposed to self-organizing
systems that evolve based on probabilistic considerations,
this approach focuses on the encapsulation, replication, and
execution of distributed and managed tasks that are specified
precisely.
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According to biologist Carroll [19], “cells communicate
with one another by sending signals in the form of proteins
that are exported and travel away from their source. Those
proteins then bind to receptors on other cells, where they
trigger a cascade of events, including changes in cell shape,
migration, the beginning or cessation of cell multiplication,
and the activation or repression of genes.” Signaling also
has proven to be a critical element in telecommunications
networks and human network communications.

Signaling, a new element introduced in the DIME
network computing model, is as important as it is in
cellular organisms to provide resilience. In this paper, we
demonstrate its use in building resilient LAMP services using
conventional computing infrastructure. We have demon-
strated that the signaling enables dynamic service manage-
ment while decoupling the service management from the
underlying hardware infrastructure management. We have
also demonstrated autoscaling, self-repair, and live migration
of Linux processes without Hypervisors or the Virtual
Machine Management required in current cloud implemen-
tations. This we hope will reduce the current management
complexity in conventional and cloud computing realms that
has evolved over last six decades from their server-centric
and low-bandwidth origins. We also believe that the end-
to-end transaction FCAPS management introduces a new
level of telecom-grade trust [13] and brings the architectural
resilience of cellular organisms to distributed computing
exploiting the parallelism and performance offered by the
new class of many-core servers.
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