
Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2012, Article ID 859694, 13 pages
doi:10.1155/2012/859694

Research Article

Class-Based Weighted Fair Queuing Scheduling on
Dual-Priority Delta Networks

D. C. Vasiliadis,1, 2 G. E. Rizos,1, 2 and C. Vassilakis1

1 Department of Computer Science and Technology, University of Peloponnese, 22100 Tripolis, Greece
2 Technological Educational Institute of Epirus, 47100 Arta, Greece

Correspondence should be addressed to D. C. Vasiliadis, dvas@uop.gr

Received 28 October 2011; Accepted 23 January 2012

Academic Editor: Maode Ma

Copyright © 2012 D. C. Vasiliadis et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Contemporary networks accommodate handling of multiple priorities, aiming to provide suitable QoS levels to different traffic
classes. In the presence of multiple priorities, a scheduling algorithm is employed to select each time the next packet to transmit
over the data link. Class-based Weighted Fair Queuing (CBWFQ) scheduling and its variations is widely used as a scheduling
technique, since it is easy to implement and prevents the low-priority queues from being completely neglected during periods of
high-priority traffic. By using this scheduling, low-priority queues have the opportunity to transmit packets even though the high-
priority queues are not empty. In this work, the modeling, analysis and performance evaluation of a single-buffered, dual-priority
multistage interconnection network (MIN) operating under the CBWFQ scheduling policy is presented. Performance evaluation
is conducted through simulation, and the performance measures obtained can be valuable assets for MIN designers, in order to
minimize the overall deployment costs and delivering efficient systems.

1. Introduction

During the last decade, we have witnessed a dramatic in-
crease in both network speeds and the amount of network
traffic. In order to provide high quality-of-service (QoS) in
today’s high-speed networks, different priorities are assigned
to packets entering the networks, and packet scheduling
algorithms are employed to select each time the next packet
to transmit over the data link. To this end, a number of packet
scheduling algorithms have been proposed, with the most
prominent ones including strict priority queuing [1], round-
robin [2] and its variations (e.g., weighted round-robin [3,
4], deficit round-robin [5], smoothed round-robin [6]), gen-
eralized processor sharing (GPS) [7], weighted fair queuing
(P-GPS) [8], class-based weighted fair queuing [9], virtual
clock [10], and self-clocked fair queuing [11]. In a number
of works (e.g., [12–14]), packets enter the MIN without a
priority (as opposed to the previous approaches where the
where priorities are assigned to packets before they enter
the MIN), and the MIN internally prioritizes packets aiming
either to offload the most heavily loaded queues and reduce
blockings [12] or avoid crosstalk in optical MINs ([13, 14]);

in essence, however, only the priority source changes (inter-
nal versus externally defined), while for selecting the most
prominent packet for forwarding, one of the previously listed
algorithms is applied.

The selection of the packet scheduling algorithm can
drastically affect the quality of service observed by the
packets traversing the network and the overall network
performance, since different algorithms aim to optimize
different metrics of packet QoS, such as delay, delay jitter,
throughput, and fairness. Other algorithm properties that
are taken into account for choosing the packet scheduling
algorithm that will be implemented in a network are its
space and time complexity [6] (since they affect the memory
and the processing required to implement the algorithm,
resp.) and the ease of implementation, since more complex
algorithms are generally more demanding in space and time
and their implementations are more prone to errors.

Among the algorithms described above, strict-priority
queuing (i.e., servicing lower priority packets only when
higher-priority ones are not waiting to be serviced), weighted
round robin (i.e., assigning a portion of the available band-
width to each priority queue), and class-based weighted fair

2 Journal of Computer Networks and Communications

queuing (i.e., having N data flows currently active, with
weights w1,w2, . . . ,wN , data flow i will achieve an average
data rate ofR∗wi/(w1+w2+· · ·+wN), whereR is the data link
rate) [9] have been adopted by the industry and implemented
in most commercial products (e.g., [15–21]) mainly due to
their following characteristics (a) they are easy to implement
and verify, (b) they exploit well the available network band-
width, (c) they have very small memory and processing pow-
er requirements, and (d) network administrators find them
easy to understand and configure.

Regarding the network switch internal architecture, mul-
tistage interconnection networks (MINs) with crossbar
switching elements (SEs) are frequently proposed for inter-
connecting processors and memory modules in parallel mul-
tiprocessor systems [22–24] and have also recently been iden-
tified as an efficient interconnection network for communi-
cation structures such as gigabit Ethernet switches, terabit
routers, and ATM switches [25–27]. Significant advantages
of MINs include their low cost/performance ratio and their
ability to route multiple communication tasks concurrently.
MINs with the Banyan [28] property are proposed to connect
a large number of processors to establish a multiprocessor
system; they have also received considerable interest in
the development of packet-switched networks. Non-Banyan
MINs are, in general, more expensive than Banyan networks
and more complex than control.

In the current literature, the performance of multipri-
ority MINs under the strict priority queuing algorithm has
been studied extensively through both analytical methods
and simulation experiments (e.g., [29–34]), considering
various buffer sizes (mainly buffers of sizes 1, 2, and 4), buffer
size allocation to different priority classes (symmetric versus
asymmetric [30]), arrival processes (e.g., uniform versus
bursty [35]), traffic patterns (e.g., uniform versus hotspot [4,
36, 37]; unicast versus multicast [38, 39]), and internal MIN
architectures (e.g., single-layer versus multilayer [40]). These
studies have shown that under high network load (packet
arrival probability λ > 0.6) the QoS offered to low-priority
packets rapidly deteriorates, with throughput significantly
dropping and delay sharply increasing.

Using class-based weighted fair queuing as a packet
scheduling algorithm instead of strict-priority queuing ap-
pears as a plausible solution for providing better QoS to
low-priority packets under increased network load since
one of the goals of this scheduling technique is to increase
fairness, giving low-priority queues the opportunity to trans-
mit packets even though the high-priority queues are not
empty. Class-based weighted fair queuing overcomes some
limitations of weighted round-robin, namely, the fact that
it cannot guarantee fair link sharing and the need to know
the mean packet size of each connection in advance [41].
Insofar, however, there are no studies to quantify (a) the gains
obtained for low-priority packets (and conversely the losses
incurred for high-priority packets) by employing the class-
based weighted fair queuing packet scheduling algorithm and
(b) the effect of the individual queue weight assignment to
the overall performance of the multistage interconnection
network and the QoS offered to packets of different priority
classes.

In this paper, a simulation-based performance evaluation
for a single-buffered MIN natively supporting two priority
classes and employing the class-based weighted fair queuing
packet scheduling algorithm is presented. Moreover, ana-
lytical equations have been derived from the new queuing
modeling based on the one-clock history consideration. In
this performance evaluation, we calculate the QoS offered
to packets of different priority classes, under high network
loads and under different ratios of high-/low-priority packets
within the overall network traffic. We also study the effect
of queue weight assignment in the QoS offered to packets of
different priorities.

The rest of this paper is organized as follows: in Section 2
we present the dual priority MIN and give details on its
operation and the class-based weighted fair queuing packet
scheduling algorithm. In Section 3, we present the analytical
equations for the MIN, extending Mun’s [42] 3-state model
to a 6-state one for improving its accuracy. In Sections 4 and
5, we present the performance metrics and the simulation
results, respectively, while in Section 6 conclusions are drawn
and future work is outlined.

2. Dual-Priority MIN and
the Class-Based Weighted Fair Queuing
Scheduling Algorithm

A Multistage Interconnection Network (MIN) can be defined
as a network used to interconnect a group of N inputs to a
group of M outputs using several stages of small size Switch-
ing Elements (SEs) followed (or preceded) by link states.
Its main characteristics are its topology, routing algorithm,
switching strategy, and flow control mechanism.

All types of blocking Multistage Interconnection Net-
works (Delta Networks [43], Omega Networks [44], and
Generalized Cube Networks [45]) with the Banyan property
which is defined in [28] are characterized by the fact that
there is exactly a unique path from each source (input) to
each sink (output). Banyan MINs are multistage self-routing
switching fabrics. Consequently, each SE of kth stage, where
k = 1, . . . ,n, can decide in which output port to route a
packet, depending on the corresponding kth bit of the desti-
nation address.

A typical configuration of an (N × N) Delta Network is
depicted in Figure 1. In order to support priority handling,
each SE has two transmission queues per link, accommo-
dated in two (logical) buffers, with one queue dedicated to
high-priority packets and the other dedicated to low-priority
ones. In this paper, we consider a dual-priority Multistage
Interconnection Network with the Banyan property that
operates under the following assumptions.

(i) The network clock cycle consists of two phases. In the
first phase, flow control information passes through
the network from the last stage to the first one. In the
second phase, packets flow from one stage to the next
in accordance to the flow control information.

(ii) The arrival process of each input of the network is a
simple Bernoulli process, that is, the probability that

Journal of Computer Networks and Communications 3

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 1: A 3-stage Delta Network.

a packet arrives within a clock cycle is constant and
the arrivals are independent of each other. We will
denote this probability as λ. This probability can be
further broken down to λh and λl, which represent the
arrival probability for high- and low-priority packets,
respectively. It holds that λ = λh + λl.

(iii) Under the dual-priority mechanism, when appli-
cations or architectural modules enter a packet to
the network, they specify its priority, designating
it either as high or low. The criteria for priority
selection may stem from the nature of packet data
(e.g., packets containing streaming media data can
be designated as high-priority while FTP data can be
characterized as low-priority), from protocol intrin-
sics (e.g., TCP out-of-band/expedited data versus
normal connection data [46]), or from properties of
the interconnected system architecture elements.

(iv) A high-/low-priority packet arriving at the first stage
(k = 1) is discarded if the high-/low-riority buffer of
the corresponding SE is full, respectively.

(v) A high-/low-priority packet is blocked at a stage if the
destination high-/low-priority buffer at the next stage
is full, respectively.

(vi) Both high- and low-priority packets are uniformly
distributed across all destinations, and each high-
/low-priority queue uses an FIFO policy for all output
ports.

(vii) Each packet priority queue is statically assigned a
weight, which specifies the bandwidth ratio that will
be dedicated to the particular queue. Naturally, the
sum of all weights must be equal to 1.

(viii) Upon reception, packets are first classified accord-
ing to their priority and are then assigned to the
queue specifically dedicated to the particular priority
(Figure 2).

(ix) At each network cycle, the class-based weighted
fair queuing algorithm examines the priority queues
to select the packet to be forwarded through the
output link, always observing the bandwidth ratio
that has been assigned to each queue. A prominent
method for achieving this is to determine the set
S of nonempty queues in the system and choosing
a queue among them with probability p(qi) = wi/∑

j∈S wj , where wk is the weight assigned to queue k
[9]. This is analogous to lottery scheduling used in
operating systems [47]. We note here that the class-
based weighted fair queuing algorithm considered
in this paper is work conserving, that is, a packet is
always transmitted when there is traffic waiting, as
opposed to nonwork conserving algorithms which do
not transmit a packet if the queue whose turn is to
transmit a packet is found to be empty [48]. If a
queue does not use its bandwidth ratio within a time
window, this bandwidth is divided among the queues
that do have packets to transmit, proportionally to
their weights.

(x) When two packets at a stage contend for a buffer at
the next stage and there is no adequate free space
for both of them to be stored (i.e., only one buffer
position is available at the next stage), there is a con-
flict. Conflict resolution in a single-priority mecha-
nism operates under the following scheme: one
packet will be accepted at random and the other will
be blocked by means of upstream control signals. In
a dual-priority mechanism, the class-based weighted
fair queuing algorithm determines which class of two
buffer queues is serviced by the SE processor.

The priority class of each packet is indicated through
a priority bit in the packet header, thus it suffices for
the SE to read the header in order to make a decision
on which packet to store and which one to block.

(xi) All SEs have deterministic service time.

4 Journal of Computer Networks and Communications

Classify

High

Low

70%

30%
Incoming

packets

Queue weight

Figure 2: Class-based weighted fair queuing algorithm.

(xii) Finally, all packets in input ports contain both the
data to be transferred and the routing tag. In order
to achieve synchronously operating SEs, the MIN
is internally clocked. As soon as packets reach a
destination port they are removed from the MIN, so
packets cannot be blocked at the last stage.

3. Analytical Equations for
the Dual-Priority MIN

Our analysis introduces a novel model, which considers not
only the current state of the associated buffer but also the pre-
vious one. Based on the one clock history consideration, we
enhance Mun’s [42] three states model with a six-state buffer
model, which is described in the following paragraphs.

3.1. State Notations for c-Class Priority Queues. Since the pro-
posed model is exemplified in a single-buffered configuration
the buffer state will be either empty “0” or full “1” at each
clock cycle. Taking into account the history of covering one
clock cycle, the following states are examined.

(i) State “00c”: c-class priority buffer was empty at the
beginning of the previous clock cycle and it is also
empty at beginning of the current clock cycle.

(ii) State “01c”: c-class priority buffer was empty at the
beginning of the previous clock cycle, while it con-
tains a new c-class priority packet at the current clock
cycle (a new packet arrived).

(iii) State “10c”: c-class priority buffer had a packet at the
previous clock cycle, while it contains no packet at
the current clock cycle (the packet was transmitted
and no new packet was received).

(iv) State “11nc”: c-class buffer had a packet at the
previous clock cycle and has a new one at the current
clock cycle (the previous one was successfully trans-
mitted and the new packet was just received).

(v) State “11bc”: c-class buffer had a packet at the previ-
ous clock cycle and has the same packet at the current
clock cycle; an attempt was made to transmit the
packet during the previous clock cycle but it failed
due to blocking.

(vi) State “11wc”: c-class buffer had a packet at the pre-
vious clock cycle and has the same packet waiting at
the current clock cycle, because the conjugate priority

queue (c∼-class priority queue) had also a packet
ready to be transmitted in the previous clock cycle,
and the bandwidth allocation algorithm selected the
packet in the c∼-class priority queue for transmis-
sion. Within a switching element SE, the conjugate
of the high-priority queue is the low-priority queue
of the same element SE, and vice versa.

3.2. Definitions for c-Class Priority Queues. The following
variables are defined in order to develop an analytical model.
In all definitions, SE(k) denotes an SE at stage k of the MIN

(i) P00(k, t)c is the probability that a c-class priority buff-
er of SE(k) is empty at both (t−1)th and tth network
cycles.

(ii) P01(k, t)c is the probability that a c-class priority buf-
fer of SE(k) is empty at (t − 1)th network cycle and
has a new c-class priority packet at tth network cycle.

(iii) P10(k, t)c is the probability that a c-class priority buf-
fer of SE(k) has a c-class priority packet at (t − 1)th
network cycle and is empty at tth network cycle.

(iv) P11n(k, t)c is the probability that a c-class priority buf-
fer of SE(k) has a packet at (t−1)th network cycle and
has a new one at tth network cycle.

(v) P11b(k, t)c is the probability that a c-class priority
buffer of SE(k) has a packet at (t−1)th network cycle
and still has the same packet at tth network cycle, as
the packet could not be transmitted due to blocking.

(vi) P11w(k, t)c is the probability that a c-class priority
buffer of SE(k) has a packet at (t−1)th network cycle
and still has the same packet at tth network cycle,
as the packet could not be transmitted because the
conjugate priority queue (c∼-class priority queue)
had also a packet ready to be transmitted at (t − 1)th
network cycle, and the bandwidth allocation algo-
rithm selected the packet in the c∼-class priority
queue for transmission.

(vii) q(k, t)c is the probability that a c-class priority packet
is ready to be sent into a buffer of SE(k) at tth network
cycle (i.e., a c-class priority packet will be transmitted
by an SE(k − 1) to SE(k)).

(viii) r01(k, t)c is the probability that a c-class priority pack-
et in a buffer of SE(k) is ready to move forward during
the tth network cycle, given that the buffer is in “01c”
state.

(ix) r11n(k, t)c is the probability that a c-class priority
packet in a buffer of SE(k) is ready to move forward
during the tth network cycle, given that the buffer is
in “11nc” state.

(x) r11b(k, t)c is the probability that a c-class priority
packet in a buffer of SE(k) is ready to move forward
during the tth network cycle, given that the buffer is
in “11bc” state.

(xi) r11w(k, t)c is the probability that a c-class priority
packet in a buffer of SE(k) is ready to move forward

Journal of Computer Networks and Communications 5

(1− u c∼∗ s c∼)∗ q c∗ r11wc

00c

01c

1− qc

1− qc

qc

qc

(1− uc∼ ∗ sc∼)∗ (1− r11wc)

(1
−
u
c∼
∗
sc
∼)
∗

(1
−
qc

)
∗
r 1

1w
c

(1−
u
c∼ ∗ s

c∼)∗ (1−
q
c)∗ r11n

c

(1− uc∼ ∗ sc∼)∗ (1− qc)∗ r11bc

(1− u c∼∗ s c∼
)∗ (1− q c)∗ r01 c

(1−
u c∼

∗
s c∼

)∗
q c∗

r01 c

(1−
u c∼∗

s c∼
)∗

q c∗
r11b c

(1− uc∼ ∗ sc∼)∗ qc ∗ r11nc

(1−
u c∼
∗
s c∼

)∗
(1−

r11n c)

(1
− u

c∼
∗ s

c∼
)∗

(1
− r

01
c)

(1−
u
c∼∗

s c∼
)∗

(1−
r11b

c)

uc∼ ∗ sc∼

uc∼ ∗ sc∼ uc∼ ∗ sc∼

uc∼∗ sc∼

11wc

11nc

10c

11bc

Figure 3: A state transition diagram of a c-class priority buffer of SE(k).

during the tth network cycle, given that the buffer is
in “11wc” state.

3.3. Mathematical Analysis for c-Class Priority Queues. The
following equations, derived from the state transition dia-
gram in Figure 3, represent the state transition probabilities
of c-class priority queues as clock cycles advance.

The probability that a c-class priority buffer of SE(k)
was empty at the (t − 1)th network cycle is P00(k, t − 1)c +
P10(k, t − 1)c. Therefore, the probability that a c-class pri-
ority buffer of SE(k) is empty both at the current tth and
previous (t − 1)th network cycles is the probability that the
SE(k) was empty at the previous (t − 1)th network cycle
multiplied by the probability [1 − q(k, t − 1)c] of no c-class
priority packet was ready to be forwarded to SE(k) during
the previous network cycle (the two facts are statistically
independent, thus the probability that both are true is equal
to the product of the individual probabilities). Formally, this
probability P00(k, t)c can be expressed by

P00(k, t)c=[1− q(k, t−1)c
]∗ [P00(k, t−1)c+P10(k, t−1)c

]
.

(1)

The probability that a c-class priority buffer of SE(k)
was empty at the (t − 1)th network cycle and a new c-class
priority packet has arrived at the current tth network cycle
is the probability that the SE(k) was empty at the (t − 1)th
network cycle (which is equal to P00(k, t − 1)c+P10(k, t − 1)c)
multiplied by the probability q(k, t − 1)c that a new c-class
priority packet was ready to be transmitted to SE(k) during

the (t − 1)th network cycle. Formally, this probability
P01(k, t)c can be expressed by

P01(k, t)c = q(k, t − 1)c ∗ [P00(k, t − 1)c + P10(k, t − 1)c
]
.

(2)

The case that a c-class priority buffer of SE(k) was full
at the (t − 1)th network cycle but is empty during the tth
network cycle effectively requires the following two facts to
be true: (a) a c-class priority buffer of SE(k) was full at the
(t − 1)th network cycle and the c-class priority packet was
successfully transmitted and (b) no c-class priority packet
was received during the (t − 1)th network cycle to replace
the transmitted c-class priority packet into the buffer.
The probability for fact (a) is equal to the product of the
following two probabilities: (i) the probability that the SE
processor was not occupied by the packet of the adjacent
queue of SE(k), which is just [1−U(k, t − 1)c∼ ∗ sc∼], where
U(k, t − 1)c∼ expresses the probability that a packet exists
in the adjacent c∼-class priority queue of SE(k) during
network cycle t − 1 and sc∼ denotes the service rate given by
the class-based weighted fair queuing this c∼-class priority
queue; (ii) [r01(k, t − 1)c ∗ P01(k, t − 1)c + r11n(k, t − 1)c ∗
P11n(k, t − 1)c + r11b(k, t − 1)c ∗ P11b(k, t − 1)c +
r11w(k, t − 1)c∗P11w(k, t − 1)c]; this probability is computed
by considering all cases that during the network cycle t−1 the
SE had a c-class priority packet in its buffer and multiplying
the probability of each state by the corresponding probability
that the packet was successfully transmitted to a next-stage
SE. Finally, the probability of fact (b), that is, that no c-class

6 Journal of Computer Networks and Communications

priority packet was ready to be transmitted to SE(k) during
the previous network cycle is equal to [1 − q(k, t − 1)c].
Con-sequently, the probability P10(k, t)c can be computed
by the following formula:

P10(k, t)c = [
1−U(k, t−1)c∼ ∗ sc∼

] ∗ [
1−q(k, t−1)c

]

∗ [r01(k, t−1)c ∗ P01(k, t−1)c + r11n(k, t−1)c

∗ P11n(k, t−1)c + r11b(k, t−1)c

∗ P11b(k, t − 1)c + r11w(k, t−1)c

∗P11w(k, t−1)c
]
.

(3)

The probability that a c-class priority buffer of SE(k) had
a packet at the (t − 1)th network cycle and has also a new one
(different than the previous; the case of having the same
packet in the buffer is addressed in the next paragraphs) at
the tth network cycle is the probability that the SE processor
was not occupied by the packet of the adjacent queue of SE(k)
at the (t − 1)th network cycle, which is just [1−
U(k, t − 1)c∼ ∗ sc∼], multiplied firstly by the probability of
having a ready c-class priority packet to move forward at
the previous (t − 1)th network cycle [which is equal
to r01(k, t − 1)c ∗ P01(k, t − 1)c + r11n(k, t − 1)c ∗
P11n(k, t − 1)c + r11b(k, t − 1)c ∗ P11b(k, t − 1)c +
r11w(k, t − 1)c ∗ P11w(k, t − 1)c] and multiplied secondly by
q(k, t − 1)c, that is, the probability that a c-class priority
packet was ready to be transmitted to SE(k) during the
previous network cycle. Formally, this probability P11n(k, t)c

can be expressed by

P11n(k, t)c = [1−U(k, t−1)c∼ ∗ sc∼
]∗ q(k, t−1)c

∗[r01(k, t−1)c ∗ P01(k, t−1)c + r11n(k, t−1)c

∗P11n(k, t−1)c + r11b(k, t−1)c

∗P11b(k, t−1)c + r11w(k, t−1)c

∗P11w(k, t−1)c
]
.

(4)

The next case that should be considered is when a c-class
priority buffer of SE(k) had a packet at the (t− 1)th network
cycle and still contains the same packet blocked at the tth
network cycle. This occurs when the packet in the c-class
priority buffer of SE(k) was ready to move forward at the
(t − 1)th network cycle, but it was blocked (not forwarded)
during that cycle, due to a blocking event—either (a) the
associated c-class priority buffer of the next stage SE was
already full due to another blocking, or (b) buffer space was
available at stage k+ 1 but it was occupied by a second packet
of the current stage contending for the same c-class priority

buffer during the process of forwarding. The probability for
this case can be formally defined as

P11b(k, t)c = [1−U(k, t − 1)c∼ ∗ sc∼
]

∗ {[1− r01(k, t − 1)c
]∗ P01(k, t − 1)c

+
[
1− r11n(k, t − 1)c

]∗ P11n(k, t − 1)c

+
[
1− r11b(k, t − 1)c

]∗ P11b(k, t − 1)c

+
[
1− r11w(k, t − 1)c

]∗ P11w(k, t − 1)c
}
.
(5)

The final case that should be considered is when a c-class
priority buffer of SE(k) had a packet at the (t− 1)th network
cycle and still contains the same packet waiting to get access
to SE processor at the tth network cycle. This occurs when
the packet in the c-class priority buffer of SE(k) remained
in a wait-state during that cycle, due to the fact that the SE
processor was occupied by the packet of the adjacent queue of
SE(k); this probability is [U(k, t − 1)c∼ ∗ sc∼]. Consequently,
the probability for this case can be formally defined as

P11w(k, t)c = U(k, t − 1)c∼ ∗ sc∼

∗ [P01(k, t − 1)c + P11n(k, t − 1)c

+ P11b(k, t − 1)c +P11w(k, t − 1)c
]
.

(6)

The factorU(k, t − 1)c∼ can be evaluated by the following
equation:

U(k, t − 1)c∼ = r01(k, t − 1)c∼ ∗ P01(k, t − 1)c∼

+ r11n(k, t − 1)c∼ ∗ P11n(k, t − 1)c∼

+ r11b(k, t − 1)c∼ ∗ P11b(k, t − 1)c∼

+ r11w(k, t − 1)c∼ ∗ P11w(k, t − 1)c∼.

(7)

The factor [1−U(k, t − 1)c∼ ∗ sc∼] appearing in the pre-
vious equations effectively manifests that the corresponding
states may only be reached if the adjacent c∼-class priority
queues do not use the SE processor: this holds because the
pertinent states may be reached if only a packet is transmitted
from a c-class priority queue, where an empty or waiting c∼-
class priority queue is a prerequisite for such a transmission
to occur.

Adding (1)–(6), both left, and right-hand sides are equal
to 1, validating thus that all possible cases are covered;
indeed P00(k, t)c + P01(k, t)c + P10(k, t)c + P11n(k, t)c +
P11b(k, t)c+P11w(k, t)c = 1 and P00(k, t − 1)c+P01(k, t − 1)c+
P10(k, t − 1)c + P11n(k, t − 1)c + P11b (k, t − 1)c + P11w(k, t −
1)c = 1.

The system of equations presented in the previous para-
graphs extends the ones presented in other works (e.g., [49])
by considering the state and transitions occurring within an
additional clock cycle. All previous works were based on a
three-state model. This enhancement with a six-state buffer
model can improve the accuracy of the performance param-
eters calculation (throughput and delay). The simulation

Journal of Computer Networks and Communications 7

presented in following sections takes into account all the
above-presented dependencies among the queues of each
SE(k) of the MIN. In our future work, we intend to have
additionally a closed form solution providing thus an anal-
ytical model for single-buffered MINs incorporating the
class-based weighted fair queuing algorithm on a dual-
priority scheme.

4. Performance Evaluation Metrics for
Dual-Priority MINs

The two most important network performance factors,
namely, packet throughput and delay are evaluated and
analyzed in this section. The Universal performance factor
introduced in [50], which combines the above two metrics
into a single one, is also applied. In this study, when calcu-
lating the value of this combined factor, we have considered
the individual performance factors (packet throughput and
delay) to be of equal importance. This is not necessarily
true for all application classes, for example, for batch data
transfers throughput is more important, whereas for stream-
ing media the delay must be optimized. In order to evaluate
the performance of an (N × N) MIN, the following metrics
are used. Let Th and D be the normalized throughput and
normalized delay of an MIN.

Relative normalized throughput RTh(h) of high-priority
packets is the normalized throughput Th(h) of such packets
divided by the corresponding ratio of offered load rh:

RTh(h) = Th(h)
rh

. (8)

Similarly, relative normalized throughput RTh(l) of low-
priority packets can be expressed by the ratio of normalized
throughput Th(l) of such packets to the corresponding ratio
of offered load rl:

RTh(l) = Th(l)
rl

. (9)

This extra normalization of both high- and low-priority
traffic leads to a common value domain needed for com-
paring their absolute performance values in all configuration
setups.

Universal performance factor Upf is defined by a relation
involving the two major above-normalized factors, D and Th
[50]: the performance of an MIN is considered optimal when
D is minimized and Th is maximized, thus the formula for
computing the universal factor arranges so that the overall
performance metric follows that rule. Formally, Upf can be
expressed by

Upf =
√

wd ∗D2 + wth ∗ 1

Th2 , (10)

where wd and wth denote the corresponding weights for
each factor participating in the Upf, designating thus its
importance for the corporate environment. Consequently,
the performance of a MIN can be expressed in a single metric
that is tailored to the needs that a specific MIN setup will

serve. It is obvious that when the packet delay factor becomes
smaller or/and throughput factor becomes larger the Upf
becomes smaller, thus smaller Upf values indicate better
overall MIN performance. Because the above factors (param-
eters) have different measurement units and scaling, they are
normalized to obtain a reference value domain. Normaliza-
tion is performed by dividing the value of each factor by the
(algebraic) minimum or maximum value that this factor may
attain. Thus, (10) can be replaced by

Upf =
√
√
√
√wd ∗

(
D −Dmin

Dmin

)2

+ wth ∗
(

Thmax − Th
Th

)2

,

(11)

where Dmin is the minimum value of normalized packet delay
(D) and Thmax is the maximum value of normalized through-
put. Consistently to (10), when the universal performance
factor Upf, as computed by (11) is close to 0, the performance
an MIN is considered optimal whereas, when the value of
Upf increases, its performance deteriorates. Moreover, taking
into account that the values of both delay and throughput
appearing in (11) are normalized, Dmin = Thmax = 1, thus
the equation can be simplified to

Upf =
√

wd ∗ (D − 1)2 + wth ∗
(

1− Th
Th

)2

. (12)

The extra normalization of both high- and low-priority
traffic considered in the evaluation of relative normalized
throughput leads to the following formula at dual-priority
MINs:

Upf
(
p
) =

√
√
√
√wd ∗

(
D
(
p
)− 1

)2 + wth ∗
(

1− RTh
(
p
)

RTh
(
p
)

)2

,

(13)

where p = {h, l} stands for high- and low-priority traffic,
respectively.

In the remaining of this paper, we will consider both
weight factors of equal importance, setting thus wd = wth =
1.

Finally, we list the major parameters affecting the perfor-
mance of examining dual-priority MIN.

Buffer size (b) is the maximum number of packets that an
input buffer of an SE can hold. In our paper, we consider a
single-buffered (b = 1) MINs.

Offered load (λ) is the steady-state fixed probability of
arriving packets at each queue on inputs. In our simulation,
the λ is assumed to be λ = 0.65 or 1.

Ratio of high-priority offered load (rh), where rh = λh/λ. In
our study, rh is assumed to be rh = 0.20 or 0.30.

Service rate of high-priority packets (sh) is the percentage
rate of processor dedicated to high-priority packets by the
class-based weighted fair queuing. In our simulation, sh is
assumed to be sh = 0, 0.1, 0.2, . . . , 0.9, 1.

Network size n, where n = log2N , is the number of stages
of an (N × N) MIN. In our simulation, n is assumed to be
n = 6.

8 Journal of Computer Networks and Communications

5. Simulation and Performance Results

In this paper, we developed a special simulator in C++, ca-
pable of handling dual-priority MINs using the class-based
weighted fair queuing. Each (2× 2) SE was modeled by four
nonshared buffer queues, where buffer operation was based
on the first come first serviced principle; the first two buffer
queues for high-priority packets (one per incoming link),
and the other two for low-priority ones.

Performance evaluation was conducted by using simula-
tion experiments. Within the simulator, several parameters
such as the buffer-length, the number of input and output
ports, the ratio of high-priority offered load, the service rate of
high-priority packets, and the traffic shape was considered.

Finally, the simulations were performed at packet level,
assuming fixed-length packets transmitted in equal-length
time slots, while the number of simulation runs was again
adjusted at 105 clock cycles with an initial stabilization pro-
cess 103 network cycles, ensuring a steady-state operating
condition.

5.1. Simulator Validation. To validate our simulator, we com-
pared the results obtained from our simulator against the
results reported in other works, selecting among them the
ones considered most accurate. Figure 4 shows the normal-
ized throughput of a single-buffered, single-priority MIN
with 6 stages as a function of the probability of arrivals for
the three classical models [42, 49, 51] and our simulation.

All models are very accurate at low loads. The accuracy
reduces as input load increases. In particular, when input
load approaches the network maximum throughput, the
accuracy of Jenq’s model is insufficient. One of the reasons is
the fact that many packets are blocked mainly at the network
first stages at high traffic rates. Thus, Mun introduced a
“blocked” state to his model to improve accuracy. Theimer’s
model considers the dependencies between the two buffers of
an SE; this has lead to further improvement in accuracy and,
therefore, Theimer’s model is considered the most accurate
insofar. Our simulation was also tested by comparing the
results of Theimer’s model with those of our simulation
experiments, which were found to be in close agreement
(differences are less than 1%).

5.2. Overall MIN Performance. Before examining the QoS
offered to each priority class under different settings of the
queue weights in CBWFQ, we will present the simulation
results regarding the effect of queue weight setting to the
overall performance of the MIN.

Figure 5 depicts the total normalized throughput [th =
th(h) + th(l)] of an MIN using a dual-priority scheme versus
the bandwidth dedicated to high-priority packets by the
class-based weighted fair queuing. In the diagram, curve
high-X(λ = y) depicts the total normalized throughput of
a 2-class priority, single-buffered 6-stage MIN, when the
service ratio of high-priority packets is X% and offered load
is y. We can notice here that the gains on total normalized
throughput of a dual-priority scheme for a 6-stage, single-
buffered MIN using the class-based weighted fair queuing
algorithm versus the strict priority queuing mechanism are

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

-n
or

m
al

iz
ed

 t
h

ro
u

gh
pu

t

λ-input load

Our simulation Theimer’s model
Mun’s model Jenq’s model

Figure 4: Normalized throughput of a single buffered 6-stage MIN.

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High-priority queue weight

T
h

-t
ot

al
 t

h
ro

u
gh

pu
t

High-20 (λ = 1)
High-20 (λ = 0.65)

High-30 (λ = 1)
High-30 (λ = 0.65)

Figure 5: MIN throughput under varying high-priority queue
weights.

considerable. The performance of the strict priority queuing
mechanism is effectively represented by the last value of each
curve: if the weight of the high-priority queue is set to 1, then
low-priority packets are served only when no high-priority
packets are available, which is exactly the behavior of the
strict priority queuing mechanism.

It is obvious that when offering greater servicing rates
to low-priority queues, the total normalized throughput
increases (except for the case of High-30 (λ = 1) where the

Journal of Computer Networks and Communications 9

performance remains at the same level) because the network
resources are better exploited. This particularly applies to
network buffers dedicated to low-priority queues within the
SEs: under the strict priority mechanism, these buffers have
decreased probability of transmitting the packets they hold,
which in turn leads to increased probability of blockings,
in the event that a new low-priority packet arrives at the
corresponding SE. Nevertheless, the primary goal of classify-
ing the packets into two priority classes is to provide better
QoS to high-priority ones. This goal can simply be achieved
when the weight of the high-priority queue for CBWFQ
algorithm is set to a value greater than the anticipated load of
high-priority packets. The exact setting of this parameter can
be determined by balancing between the factors of achieving
optimal overall network performance and delivering better
QoS to high-priority packets. The QoS level delivered to
packets of different priority classes under the CBWFQ
algorithm is discussed in the following paragraphs.

5.3. Dual-Priority MINs Performance under Full-Load Traffic
Conditions. In this subsection, we examine the QoS offered
to packets of different priorities when the MIN is fully
loaded (λ = 1). Figure 6 illustrates the relative normalized
throughput for high- and low-priority packets under varying
high-priority queue weights, and considering high-priority
packet ratios of 20% and 30%. In this diagram, we can
observe that—expectedly—when the high-priority queue
weight increases, high-priority packets are offered better
quality of service, while the QoS offered to low-priority
packets drops. The leftmost part of the x-axis, where the
high-priority queue weight is less than the ratio of high-
priority packets in the network, is not bound to be used,
since within that part-high-priority packets are offered worse
quality of service than low-priority ones. Further increas-
ing the high-priority queue weight up to 0.7 delivers an
improvement of 30–42% for high-priority packets, whereas
the corresponding deterioration for low-priority packets is
much lower, ranging from 12% to 20%. For the last portion
of the curves (high-priority queue weight between 0.7 and 1),
the benefits for the high-priority packets is small (between
7.5% and 11.6%) and similar are the losses for low-priority
packets (between 5.8 and 12%).

Note that since the diagram depicts the relative normal-
ized throughput metric (which is normalized by the ratio of
packets of the corresponding priority in the total load), a
higher value in the diagram does not necessarily indicate
higher number of packets, but merely the fact that the network
handles packets more efficiently. Consequently, the fact that
curve Low-80 crosses over curve Low-70 at high-priority
queue weight≈ 65% is interpreted that before this point low-
priority packets in a 30/70 ratio are handled more efficiently
than low-priority packets in a 20/80 ratio, whereas beyond
this point the situation is reversed.

Figure 7 illustrates the normalized delay for high- and
low-priority packets under varying high-priority queue
weights, and considering high-priority packet ratios of 20%
and 30%. Again, as the high-priority queue weight increases,
high-priority packets are served faster, to the expense of

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High-priority queue weight

R
T

h
-r

el
at

iv
e

n
or

m
al

iz
ed

 t
h

ro
u

gh
pu

t

High-20 Low-80
High-30 Low-70

Figure 6: Normalized throughput for different priority classes un-
der varying high-priority queue weights and full load.

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
High-priority queue weight

D
-n

or
m

al
iz

ed
 d

el
ay

High-20 Low-80
High-30 Low-70

Figure 7: Normalized delay for different priority classes under vary-
ing high-priority queue weights and full load.

the low-priority packets’ delay. The overall variations in the
delay, at least in the range 0.3–1.0 for the high-priority queue
weight, are small (less than 12%), mainly due to the fact
that the MIN considered in this paper is single-buffered, and
single-buffered MINs tend to exhibit low values in delay, to
the having however lower throughput and higher number of
dropped packets [29, 30, 52]. The crossover of lines Low-
80 and Low-70 at high-priority queue weight ≈ 70% is
explained similarly to the case of the relative normalized
throughput, discussed above.

10 Journal of Computer Networks and Communications

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High-priority queue weight

U
pf

-u
n

iv
er

sa
l p

er
fo

rm
an

ce
 fa

ct
or

High-20 Low-80
High-30 Low-70

Figure 8: Universal performance factor for different priority classes
under varying high-priority queue weights and full load.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High-priority queue weight

R
T

h
-r

el
at

iv
e

n
or

m
al

iz
ed

 t
h

ro
u

gh
pu

t

High-20 Low-80
High-30 Low-70

Figure 9: Normalized throughput for different priority classes
under varying high-priority queue weights and high load.

Finally, Figure 8 depicts the universal performance factor
(Upf) for different priority classes under varying high-prior-
ity queue weights and two high/low packet ratios (20/80 and
30/70). Since the individual performance factors (through-
put and delay) combined in Upf evolve along a specific pat-
tern (i.e., high-priority packets are served better as the high-
priority queue weight increases while the inverse holds for
low-priority packets), the same pattern is exhibited by the
Upf too: its value drops (i.e., improves) for high-priority
packets as the high-priority queue weight increases, while for

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
High-priority queue weight

D
-n

or
m

al
iz

ed
 d

el
ay

High-20 Low-80
High-30 Low-70

Figure 10: Normalized delay for different priority classes under
varying high-priority queue weights and high load.

low-priority packets its value rises (i.e., deteriorates) as the
high-priority queue weight increases.

5.4. Dual-Priority MINs Performance under High Network
Load. In this subsection, we examine the QoS offered to
packets of different priorities when the MIN operates under
high load, that is, the packet arrival probability λ is equal to
65% (approximately 2/3 of the full load). Figure 9 illustrates
the relative normalized throughput for high- and low-priority
packets under varying high-priority queue weights, and
considering high-priority packet ratios of 20% and 30%.
The trends of the curves are similar to the case of the full
load (Figure 6), but the absolute values are smaller, since
the offered load is smaller too. The improvement observed
for high-priority packets when increasing the high-priority
queue weight from 0.3 to 0.7 ranges from 9.0% to 14.5%,
while in the full-load case, the corresponding improvement
ranged from 30% to 42%. The smaller improvement is owing
to the decreased network load, due to which high-priority
packets are offered an increased quality of service, even for
low values of high-priority queue weight, and, therefore,
the margins for improvement are more limited. Similarly,
the deterioration in the low-priority packets’ throughput is
limited, ranging from 6.2% to 9.8% (12% to 20% in the full
load case). For the last portion of the curves (high-priority
queue weight between 0.7 and 1), both the gains of high-
priority packets and the losses for low-priority ones are less
than 5% in all cases.

Figure 10 presents the normalized delay for different
priority classes under varying high-priority queue weights
and high load. When increasing the high-priority queue
weight from 0.3 to 0.7, the delay for high-priority packets
is improved between 6% and 8%, while the respective
deterioration for low-priority packets ranges between 3%
and 5%. The variations are small because, similarly to the

Journal of Computer Networks and Communications 11

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High-priority queue weight

U
pf

-u
n

iv
er

sa
l p

er
fo

rm
an

ce
 fa

ct
or

High-20 Low-80
High-30 Low-70

Figure 11: Universal performance factor for different priority
classes under varying high-priority queue weights and high load.

case of throughput (Figure 9), the decreased network load
results in small delays for packets for “reasonable” settings of
the high-priority queue weight, and, therefore, the margins
for improvement/deterioration are small. For the last portion
of the curves (high-priority queue weight between 0.7 and 1),
both the gains of high-priority packets and the losses for low-
priority ones are less than 3% in all cases.

Finally, Figure 11 depicts the universal performance factor
(Upf) for different priority classes under varying high-
priority queue weights, high network load, and two high/low
packet ratios (20/80 and 30/70). Similarly to the full load
case, since the individual performance factors (throughput
and delay) combined in Upf evolve along a specific pattern
(i.e., high-priority packets are served better as the high-
priority queue weight increases while the inverse holds for
low-priority packets), the same pattern is exhibited by the
Upf too: its value drops (i.e., improves) for high-priority
packets as the high-priority queue weight increases, while for
low-priority packets, its value rises (i.e., deteriorates) as the
high-priority queue weight increases. Note that the absolute
values of Upf in Figure 11 are higher (i.e., worse) than the
respective values of the full-load case (Figure 8), indicating
that network resources are underutilized.

6. Conclusions

In this paper, we have addressed the performance evaluation
of a dual-priority, single-buffered, 6-stage MIN, employing
the class-based weighted fair queuing packet scheduling algo-
rithm. We have presented analytical equations for modelling
their operation, employing a scheme that takes into account
both the previous and the last state of the SEs’ queues,

providing thus better accuracy than schemes considering
only the last state.

We have also evaluated through simulations the overall
performance of the MIN and the quality of service offered
to each priority class under varying high-priority queue
weights, different high-/low-priority packet ratios (20/80 and
30/70), and different MIN loads (full load and high load)
when using the class-based weighted fair queuing algorithm
and compared these results against the strict priority algo-
rithm. The performance evaluation results show that the
strict priority algorithm does offer the high-priority packets
better quality of service, but on the other, hand it degrades
the overall MIN performance and significantly degrades the
quality of service offered to low-priority packets. Configur-
ing the high-priority queue weight in the range [0.7, 1] has
marginal effects both on the overall MIN performance and
the QoS offered to packets of different priority classes. On
the other hand, setting the high-priority queue weight in the
range [0.45, 0.7) appears to achieve a good balance among
overall MIN performance, prioritization of high-priority
packets, and acceptable QoS for low-priority packets (always
considering the high-/low-priority packet ratios 20/80 and
30/70). MIN designers and operators can use the results
presented in this paper to optimally configure the weights
of the queues, taking into account the QoS they want to
offer to packets of different priorities and the overall MIN
performance they want to achieve.

Future work will focus on examining other load configu-
rations, including hot-spot and burst loads, as well as differ-
ent buffer sizes and handling schemes.

References

[1] B. Prabhakar and N. McKeown, “On the speedup required for
combined input- and output-queued switching,” Automatica,
vol. 35, no. 12, pp. 1909–1920, 1999.

[2] X. Li, L. Mhamdi, J. Liu, K. Pun, and M. Hamdi, “Architectures
of internet switches and routers,” in High-performance Packet
Switching Architectures, I. Elhanany and M. Hamdi, Eds.,
Springer, London, UK, 2007.

[3] A. Elwalid and D. Mitra, “Analysis, approximations and ad-
mission control of a multi-servicemultiplexing system with
priorities,” in 14th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM ’95), pp. 463–
472, April 1995.

[4] J. Y. Kim, T. Z. Shin, and M. K. Yang, “Analytical modeling
of a multistage interconnection network with buffered axa
switches under hot-spot environment,” in IEEE Pacific Rim
Conference on Communications, Computers and Signal Process-
ing (PACRIM ’07), pp. 137–140, August 2007.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using
deficit round-robin,” IEEE/ACM Transactions on Networking,
vol. 4, no. 3, pp. 375–385, 1996.

[6] C. Guo, “SRR: an O(1) time-complexity packet scheduler for
flows in multiservice packet networks,” IEEE/ACM Transac-
tions on Networking, vol. 12, no. 6, pp. 1144–1155, 2004.

[7] A. Elwalid and D. Mitra, “Design of generalized processor
sharing schedulers which statistically multiplex heterogeneous
QoS classes,” in 18th Annual Joint Conference of the IEEE
Computer and Communications Societie (INFOCOM ’99), vol.
3, pp. 1220–1230, March 1999.

12 Journal of Computer Networks and Communications

[8] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation
of a fair queueing algorithm,” Journal of Internetworking Re-
search and Experience, vol. 1, no. 1, pp. 3–26, 1990.

[9] J. F. Shortle and M. J. Fischer, “Approximation for a two-class
weighted fair queueing discipline,” Performance Evaluation,
vol. 67, no. 10, pp. 946–958, 2010.

[10] L. Zhang, “VirtualClock: a new traffic control algorithm for
packet-switched networks,” ACM Transactions on Computer
Systems, vol. 9, no. 2, pp. 101–124, 1991.

[11] S. Jamaloddin Golestani, “Self-clocked fair queueing scheme
for broadband applications,” in Annual Joint Conference of
the IEEE Computer and Communications Societie (INFOCOM
’94), vol. 2, pp. 636–646, June 1994.

[12] D. C. Vasiliadis, G. E. Rizos, C. Vassilakis, and E. Glavas,
“Modelling and performance evaluation of a novel internal
priority routing scheme for finite-buffered multistage inter-
connection networks,” International Journal of Parallel, Emer-
gent and Distributed Systems, vol. 26, no. 5, pp. 381–397, 2011.

[13] M. Moudi and M. Othman, “A challenge for routing algo-
rithms in optical multistage interconnection networks,” Jour-
nal of Computer Science, vol. 7, no. 11, pp. 1685–1690, 2011.

[14] M. Othman and T. D. Shahida, “The development of crosstalk-
free scheduling algorithms for routing in optical multistage
interconnection networks,” Trends Telecommunication Tech-
nologies, March 2010, http://www.intechopen.com/download/
pdf/pdfs id/9696.

[15] Cisco Systems., “QoS Scheduling and Queueing on the Cata-
lyst 3550 Switches,” July 2011, http://www.cisco.com/en/US/
tech/tk389/tk813/technologies tech note09186a00801558cb
.shtml.

[16] Hewlet Packard, “3Com SuperStack 3 Switch 3800—Over-
view,” July 2011, http://bizsupport1.austin.hp.com/bizsup-
port/TechSupport/Document.jsp?objectID=c02642521&print-
ver=true.

[17] Nortel Networks, “Nortel Ethernet Switch 460/470 Over-
view—System Configuration,” July 2011, http://support.avaya
.com/css/P8/documents/100099692.

[18] Avaya Inc, “Automatic QoS Technical Configuration Guide for
the ERS 4500, 5000, Avaya BCM 50, 450, Avaya CS 1000, Avaya
CS 2100 and Avaya SRG 50,” July 2011, http://support.avaya
.com/css/P8/documents/100123842.

[19] Dax networks, “Dax Dx-5048GM technical specifications,”
http://www.daxnetworks.com/products-dec2010/switches/
switches/dax%20dx-5048gm.asp?Page=3&Print=.

[20] Cisco Systems, “Class-Based Weighted Fair Queueing,” Chap-
ter in Cisco IOS Software Releases 12.0 T, 2010, http://www
.cisco.com/en/US/docs/ios/12 0t/12 0t5/feature/guide/cbwfq
.html.

[21] Hewlet-Packard, “HP ProCurve Secure Router 7000dl Series,”
July 2011, http://www.hp.com/rnd/pdfs/datasheets/ProCurve
Secure Router 7000dl Series.pdf.

[22] G. A. Abandah and E. S. Davidson, “Modeling the commu-
nication performance of the IBM SP2,” in 10th International
Parallel Processing Symposium, pp. 249–257, April 1996.

[23] C.-H. Choi and S.-C. Kim, “Hierarchical multistage intercon-
nection network for sharedmemory multiprocessor system,”
in Proceedings of the ACM Symposium on Applied Computing,
pp. 468–472, 1997.

[24] J. Torrellas and Z. Zhang, “The performance of the cedar
multistage switching network,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 4, pp. 321–336, 1997.

[25] R. Y. Awdeh and H. T. Mouftah, “Survey of ATM switch
architectures,” Computer Networks and ISDN Systems, vol. 27,
no. 12, pp. 1567–1613, 1995.

[26] T. Soumiya, K. Nakamichi, S. Kakuma, T. Hatano, and A.
Hakata, “The large capacity ATM backbone switch ‘FETEX-
150 ESP’,” Computer Networks, vol. 31, no. 6, pp. 603–615,
1999.

[27] E. S. H. Tse, “Switch fabric architecture analysis for a scalable
bi-directionally reconfigurable IP router,” Journal of Systems
Architecture, vol. 50, no. 1, pp. 35–60, 2004.

[28] G. F. Goke and G. J. Lipovski, “Banyan networks for parti-
tioning multiprocessor systems,” in 1st Annual Symposium on
Computer Architecture, pp. 21–28, 1973.

[29] D. C. Vasiliadis, G. E. Rizos, C. Vassilakis, and E. Glavas,
“Performance evaluation of two-priority network schema
for single-buffered delta networks,” in 18th Annual IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC ’07), September 2007.

[30] D. C. Vasiliadis, G. E. Rizos, and C. Vassilakis, “Improving
performance of finite-buffered blocking delta networks with
2-class priority routing through asymmetric-sized buffer
queues,” in 4th Advanced International Conference on Telecom-
munications (AICT ’08), pp. 23–29, June 2008.

[31] S. Kumar, “Mathematical modelling and simulation of a
buffered Fault Tolerant Double Tree Network,” in 15th Inter-
national Conference on Advanced Computing and Communica-
tions (ADCOM ’07), pp. 422–431, December 2007.

[32] C. Bouras, J. Garofalakis, P. Spirakis, and V. Triantafillou, “An
analytical performance model for multistage interconnection
networks with finite, infinite and zero length buffers,” Perfor-
mance Evaluation, vol. 34, no. 3, pp. 169–182, 1998.

[33] T. Lin and L. Kleinrock, “Performance analysis of finite-
buffered multistage interconnection networks with a general
traffic pattern,” in International Conference on Measurement
and Modeling of Computer Systems, pp. 68–78, San Diego,
Calif, USA, 1991.

[34] D. Tutsch and G. Hommel, “Comparing switch and buffer
sizes of multistage interconnection networks in case of
multicast traffic,” in High Performance Computing Symposium
(HPC ’02), pp. 300–305, San Diego, Calif, USA, 2002.

[35] A. K. Gupta, L. O. Barbosa, and N. D. Georganas, “Switching
modules for ATM switching systems and their interconnection
networks,” Computer Networks and ISDN Systems, vol. 26, no.
4, pp. 433–445, 1993.

[36] D. C. Vasiliadis, G. E. Rizos, and C. Vassilakis, “Routing
and performance evaluation of dual priority Delta networks
under hotspot environment,” in 1st International Conference
on Advances in Future Internet (AFIN ’09), pp. 24–30, June
2009.

[37] D. Vasiliadis, G. Rizos, and C. Vassilakis, “Performance study
of multilayered multistage interconnection networks under
hotspot traffic conditions,” Journal of Computer Systems,
Networks, and Communications, vol. 2010, Article ID 403056,
11 pages, 2010.

[38] S. Hiyama, Y. Nishino, and I. Sasase, “Multistage inter-
connection multicast ATM switch with exclusive routes for
delay-sensitive and loss-sensitive cells,” Journal of High Speed
Networks, vol. 15, no. 2, pp. 131–155, 2006.

[39] J. Garofalakis and E. Stergiou, “Performance evaluation for
multistage interconnection networks servicing unicast and
multicast traffic (by Partial Operation),” in International
Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS ’09), pp. 311–318, July
2009.

[40] D. Tutsch and G. Hommel, “Multilayer multistage intercon-
nection networks,” in Design, Analysis, and Simulation of

Journal of Computer Networks and Communications 13

Distributed Systems (DASD’03), pp. 155–162, Orlando, Fla,
USA, 2003.

[41] M. Nabeshima, “Packet-based scheduling for ATM networks
based on comparing a packet-based queue and a virtual
queue,” IEICE Transactions on Communications, vol. E82-B,
no. 6, pp. 958–961, 1999.

[42] Y. Mun and H. Y. Youn, “Performance analysis of finite
buffered multistage interconnection networks,” IEEE Transac-
tions on Computers, vol. 43, no. 2, pp. 153–162, 1994.

[43] J. H. Patel, “Processor-memory interconnections for mutlipro-
cessors,” in 6th Annual Symposium on Computer Architecture,
pp. 168–177, New York, NY, USA, 1979.

[44] D. H. Lawrie, “Access and alignment of data in an array
processor,” IEEE Transactions on Computers, vol. 24, no. 12,
pp. 1145–1155, 1975.

[45] G. B. Adams and H. J. Siegel, “The extra stage cube: a fault-
tolerant interconnection network for supersystems,” IEEE
Transactions on Computers, vol. 31, no. 5, pp. 443–454, 1982.

[46] W. R. Stevens, TCP/IP Illustrated. Volume 1. The Protocols,
Addison-Wesley, 10th edition, 1997.

[47] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling:
flexible proportional-share resource management,” in Pro-
ceedings of the Symposim on Operating System Design and
Implementation, November 1994.

[48] J. Liebeherr and E. Yilmaz, “Workconserving vs. non-
workconserving packet scheduling,” in 17th International
Workshop on Quality of Service (IWQoS ’99), pp. 248–256,
1999.

[49] T. H. Theimer, E. P. Rathgeb, and M. N. Huber, “Performance
analysis of buffered banyan networks,” IEEE Transactions on
Communications, vol. 39, no. 2, pp. 269–277, 1991.

[50] D. C. Vasiliadis, G. E. Rizos, and C. Vassilakis, “Performance
analysis of blocking Banyan swithces,” in Proceedings of (CISSE
’06), December 2006.

[51] Y. C. Jenq, “Performance analysis of a packet switch based
on single-buffered banyan network,” IEEE Journal on Selected
Areas in Communications, vol. 1, no. 6, pp. 1014–1021, 1983.

[52] D. C. Vasiliadis, G. E. Rizos, C. Vassilakis, and E. Glavas,
“Routing and performance analysis of double-buffered omega
networks supporting multi-class priority traffic,” in 3rd Inter-
national Conference on Systems and Networks Communications
(ICSNC ’08), pp. 56–63, October 2008.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

