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Industrial communication networks like the Controller Area Network (CAN) are often required to operate reliably in harsh
environments which expose the communication network to random errors. Probabilistic schedulability analysis can employ rich
stochastic error models to capture random error behaviors, but this is most often at the expense of increased analysis complexity. In
this paper, an efficient method (of time complexity𝑂(𝑛 log 𝑛)) to bound the message deadline failure probabilities for an industrial
CANnetwork consisting of 𝑛 periodic/sporadicmessage transmissions is proposed.The paper develops bounds forDeadlineMinus
Jitter Monotonic (DMJM) and Earliest Deadline First (EDF) message scheduling techniques. Both random errors and random
bursts of errors can be included in the model. Stochastic simulations and a case study considering DMJM and EDF scheduling of
an automotive benchmark message set provide validation of the technique and highlight its application.

1. Introduction

Real-time industrial communication networks such as Con-
troller Area Network (CAN) are often required to operate in
harsh environments, where they may be subject to environ-
mental hazards such as electromagnetic interference (EMI)
and other forms of mechanical/electrical stresses. Exposure
to hazards such as this can induce random errors into a
system, which, if left uncorrected, may result in system
failures [1, 2]. This paper is concerned with probabilis-
tic schedulability analysis of the communications in real-
time industrial CAN networks which are scheduled by a
priority-driven algorithm in the presence of transient and/or
intermittent errors. CAN is a multimaster, differential serial
bus using NRZ encoding at the physical layer and is often
employed for distributed real-time control applications. The
full CAN protocol descriptionmay be found in [3]. Although
in its native form CAN supports fixed priority scheduling,
simple protocols operating at the node level have previously
been developed to enable distributed Earliest Deadline First
(EDF) scheduling with CAN [4, 5]. As such, the paper
focuses upon both fixed priority (the Deadline Minus Jitter
Monotonic (DMJM) algorithm) and dynamic priority (EDF)
scheduling methods, the latter of which can be enforced at

the CAN application layer, due to their known optimality in
a networked environment under a wide variety of operating
configurations [6, 7]. Specifically, the paper is concerned with
the fast calculation of tight bounds on the probability that a
deadline will be missed when error arrivals cause messages
to be aborted and subsequently rescheduled for transmission
after the transmission of an error message.

Such retransmission is a form of redundancy which
requires some temporal “slack capacity” in the message
schedule; howmuch slack is required to be allocated depends
upon many factors including the level of criticality in the
service the system provides, the message set parameters and
scheduling algorithm, and also the nature of the error detec-
tion and correction mechanisms employed by the system.
If insufficient slack is employed by a system to tolerate the
effects of the errors it experiences, then aborted messages
will not be processed or delivered correctly before their
deadlines and system failures may occur. Since error arrivals
are random in nature, then no 100% guarantees of timeliness
can be given, and probabilistic guarantees are instead sought.
In this respect, the principal contribution of the paper is
the derivation of an efficient means to obtain tight bounds
on the probability of deadline failure when errors occur
randomly (with geometrically distributed interarrivals) and
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possibly in random bursts (with geometrically distributed
burst interarrival and length), and aborted messages are
immediately requeued for transmission.

Although previous work related to probabilistic schedu-
lability analysis for wired networks such as CAN and also
wireless networks has employed rich stochastic error mod-
els to capture these random behaviors, to date this has
(mostly) been at the expense of increased analysis complexity.
In this paper, some recent results on probabilistic real-
time error models and schedulability analysis in [1, 8] are
extended, and an efficient method to bound the deadline
failure probabilities for a set of 𝑛 periodic/sporadic messages
transmitted in a real-time industrial communication network
is proposed. The procedure first carries out an analysis of
the available slack in the DMJM or EDF schedule and uses
this information, in conjunction with knowledge of the envi-
ronmental error characteristics, to determine the probability
that the slack will be exceeded by the extra load induced by
errors. The analysis may be performed in 𝑂(𝑛 log 𝑛) time.
Stochastic simulations and an example related to scheduling
a benchmark set of messages on an automotive CANnetwork
are used to illustrate the technique.

The motivation for this bounding method arises princi-
pally due to the need for efficient dependability-aware online
admission or Quality of Service (QoS) controls in flexible
networks (e.g., for automotive applications). In addition,
motivation arises from the need for techniques which can
provide designers with methods whereby the impacts of
different design options (such as the choice of scheduling
algorithm and configuration of message parameters and
network bandwidth) upon system reliability may be quickly
explored at early stages of a design. The remainder of the
paper is organized as follows. Section 2 presents a brief
summary of related work to contextualize the paper. Sections
3 and 4 present the network and error models, respectively.
The proposed technique is outlined in general terms in
Section 5 and is applied to DMJM and EDF scheduling
in Section 6. Section 7 presents stochastic simulations to
validate the proposals, and Section 8 describes a detailed
example based upon a benchmark set of messages for an
automotive network. Section 9 concludes the paper.

2. Related Work

Although this paper is principally concerned with industrial
CAN networks, related work on CPU and communications
networks in general is included due to similarities in both
the error and task models which are employed. As argued
in previous works [1, 8], error models employed in real-time
schedulability analysis (for both CPU and wired/wireless
network message scheduling) typically assume either (i) a
pseudoperiodic arrival of errors or (ii) the fact that some fixed
number 𝑘 of errors will be experienced over a known time
interval (e.g., the major cycle of the system operation) or (iii)
error arrivals being purely random, typically as a result of
a (possibly compound or Markovian) binomial or Poisson
process.

Although approach (i) is relatively straightforward to
incorporate into an existing schedulability analysis, in many

cases it does not effectively capture either randomness (with
exceptions, e.g., [9]) or bursty characteristics. Approach (ii),
on the other hand, seems well suited to bursty characteristics:
the work of [10] presents an exact analysis for CPU task
scheduling with EDF in the case where the 𝑘 errors arrive
during the system’s major cycle. However the assumption
that not more than one burst of 𝑘 errors will arrive over
this known time period implies a deterministic model,
which seems inappropriate since errors are due to random
noise and interference. In addition, if 𝑘 errors arrive in
some time interval of length proportional to the smallest
relative deadline of any task as per [10], then it again seems
unjustified to assume that only 𝑘 errors will arrive in some
proportionally much larger time interval (e.g., the major
cycle). In [11], a similar method to [10] is employed to analyze
the timing properties of wireless channels with bounded
retransmissions; however the number of retransmissions can
be specified independently for each wireless message and the
length of time is made proportional to the message relative
deadline. Although this seems a much improved model to
use, there is no attempt made to link the retransmission
bounds to environmental error models and/or the required
reliability of message delivery. Approach (iii) is the one most
generally taken for the analysis of distributed systems such
as CAN, and the error models employed in these works
are typically much richer than those employed for CPU
schedulability analysis (although, as noted, the scope of these
models is not restricted to the networked environment) [1,
12–15].

Marques et al. analyze the use of servers for the retrans-
mission of messages lost due to errors in time triggered
CAN networks [16]. The obtained results indicated that the
choice of server and rescheduling policy has a significant
influence upon the results, and different choices are appro-
priate depending upon the metric of interest. The choice of a
deadline-based retransmission server was found tominimize
the number of lost transmissions (deadline failures). Gujarati
and Brandenburg [17] describe a procedure to bound the
Failures in Time (FIT) rate for a CAN network experiencing
network interference and node failures. In [16, 17], error
arrivals were assumed to follow a Poisson distribution.

A recent overview of response-time analysis techniques
for CAN is provided in [18], for both the deterministic
and probabilistic cases. Although these previous works have
examined probabilistic (bursty/sporadic/intermittent) errors
and also deterministic errors within combined reliability and
schedulability analysis frameworks, as noted in [1, 8, 18], one
complication of some of these methods and of the use of
probabilistic models in general is the potential complexity of
implementation. Typically, an iterative procedure is needed
to produce either a probability distribution of response times
or a breakdown reliability 𝑅 beyond which point one or
more tasks or messages will miss a deadline. This complexity
generally makes the use of probabilistic methods impractical
where efficiency is required. Some work to help address this
issue was presented in [1, 8], where a rich error model was
employed to capture the effects of random errors and bursts
of errors and simple closed-form expressions were developed
to bound the number of error arrivals in a given interval of
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time given knowledge of the environmental conditions and
desired reliability of the system.

A second drawback in almost all previous analysis is
an implicit assumption that each and every error arrival
impacts the schedule by inducing a retransmission of a
worst-case frame [18]. This is pessimistic, especially for CAN
networks which have early error detection and signaling.
The pessimism is compounded for bursts of errors, in
which multiple errors arrive with only potentially very small
temporal separation; it is almost impossible for each error
to induce a worst-case frame length. For bursts of errors, a
more likely scenario seems that the first error in the burst
sequence induces a frame retransmission, where subsequent
errors in the burst sequence delay its starting time until the
burst subsides. This is not taken into account in [1] or [8],
or in any of the methods described in [18]. In the current
work, efforts are made to improve the analysis in an attempt
to address this issue, whilst retaining most aspects of the
simplicity of application.

3. CAN Network Model

In the analysis that follows, it is taken that time is discrete
(one time unit will typically, but not necessarily, correspond
to one network bit-time) and is indexed by a nonnegative
integer variable 𝑡. It is assumed that the system consists of a
number of distributed nodes, which share a communications
channel to exchange real-time messages. A standard model
for a shared real-time communication system is adopted
to represent the CAN network in that the system to be
implemented can be represented by a set of 𝑛 messages
𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑛
. Each message is represented by 4-tuple:

𝜏
𝑖
= (𝑇
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐽
𝑖
) , (1)

in which 𝑇
𝑖
is the message period/interarrival, 𝐶

𝑖
is the

worst-case transmission time of any instance of the message,
𝐷
𝑖
is the message relative deadline, and 𝐽

𝑖
is the jitter (the

worst-case time that may elapse between an (external or
internal) event occurring initiating a message transmission
in a distributed node and it being released to the network
for transmission). Jitter is typically induced by variation
in the latencies of distributed node event handlers. For
CAN messages, either standard (11 bits) or extended (29 bits)
identifiers can be used; as is well-known (e.g., [19]), for a
message with Data Length Code (DLC) ∈ [0, 8], the total
number of bits for a message with an 11-bit identifier is given
by 𝐶 = 55 + 10DLC. For 29-bit identifiers, 𝐶 = 80 + 10DLC.
For CAN networks, the worst-case length of an error frame
𝐶
𝐸
= 31 bits.
The utilization of an individual message is given by

𝑈
𝑖
= 𝐶
𝑖
/𝑇
𝑖
and represents the fraction of time the network

will be occupied processing the frames generated from the
message over its lifetime. Successive frame arrivals from
sporadic messages are invoked by both internal and external
events (typically hardware or software interrupts on their
host node) and are always separated by at least 𝑇

𝑖
units

of time; frame arrivals from periodic messages are always
separated by exactly 𝑇

𝑖
time units on their host node and

are invoked by a logical timer, which may possibly be
synchronized to a distributed clock. It is assumed that worst-
case clock synchronization errors between any host nodes
can be incorporated into these jitters and the synchronization
protocol messages modeled as regular network traffic.

When a frame of message 𝑖 arrives (becomes ready)
at some time 𝑡, its absolute deadline is set at time 𝑡 +

𝐷
𝑖
and the scheduling procedure must allocate 𝐶

𝑖
units

of network time to process the job in the interval [𝑡,
𝑡 + 𝐷

𝑖
); otherwise a deadline miss will occur. Both fixed

priority (DMJM) and dynamic priority (EDF) scheduling
procedures are considered in this paper, covering a wide
variety of wired and wireless industrial network protocols
and protocol extensions. It must be cautioned at this point
that fixed priority and EDF scheduling, aside from a limited
number of specific cases, are seldom supported directly at
the MAC level. A drawback is that their use inevitably
requires overlay protocols leading to the introduction of
low-level overheads; however, the many recognized benefits
(such as enabling higher network utilization and facilitating
easier temporal analysis) oftentimes outweigh this drawback.
CAN in its native form supports fixed priority scheduling,
and hence DMJM is supported by design. Descriptions
of overlay protocols enabling priority-based scheduling in
Flexible Time Triggered (FTT) master-slave systems for both
switched Ethernet and wireless networks can be found in
[20, 21]. Extensions to enable EDF scheduling in wireless
and wired networks using IEEE 802.15.4, Bluetooth, and
CAN are discussed in [4, 5, 11, 22], respectively. Prospective
system designers considering the use of any overlay protocol
should be sure that the benefits outweigh the overheads for
their particular application. Consideration of such analysis is
outside the scope of the current paper.

Although the techniques described in this paper can
be applied (in principle) to a message set with arbitrary
deadlines, the main focus is on constrained deadline mes-
sages, in which (𝐷

𝑖
− 𝐽
𝑖
) ≤ 𝑇

𝑖
. According to previous

work, it is known that the worst-case arrival pattern of the
message frames in terms of network load is the one in which
all frames experience their worst-case jitter simultaneously,
such that they are aligned in a synchronous release pattern,
and thereafter the frames arrive at their maximum allowed
rates [7, 23]. As most real-time networks inherently support
nonpreemptive frame transmissions, worst-case blocking due
to priority inversion is also required to be accounted for
in the timing and schedulability analysis. Henceforth, for
convenience it is assumed that the messages are sorted in
order of nondecreasing relative deadline minus jitter, that is,
for any twomessages 𝜏

𝑖
and 𝜏
𝑗
, if 𝑖 < 𝑗 then (𝐷

𝑖
−𝐽
𝑖
) ≤ (𝐷

𝑗
−𝐽
𝑗
),

and that the total network utilization is not greater than unity.
It is also assumed that, under EDF scheduling, deadline ties
are broken by lowest message index.

4. Error Model

To incorporate the effects of frame errors and retransmissions
into a timing analysis, it is necessary to first state some
assumptions regarding the effects of errors. As mentioned
in the previous section, in almost all previous works it has
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been assumed that all errors manifest themselves in such
a way that the last bit of the longest valid message frame
from the (sub)set of messages currently under analysis is
repeatedly corrupted by errors, forcing retransmission of the
entire message. In this paper, this basic assumption is relaxed
since the basic operation of the CAN protocol is intended to
support early detection and signaling of many types of errors
and early abandonment of corrupt transmissions, more so
than similar serial protocols [19]. At this point it is worth
recalling from the CAN protocol definition two important
points related to error detection: (i) the probability of an
undetected error is vanishingly small (of the order 𝛾 × 4.7 ×

10
−11, where 𝛾 is the message error rate) and (ii) in addition

to CRC failures, instantaneous bit errors, bit stuffing errors,
and form errors may be detected and signaled at any point
in a frame transmission by any node (whether transmitter or
receiver) [3].

Although in reality the probability of undetected errors is
higher than specified in the CANprotocol due to interactions
between bit stuffing and the CRC [24] and the fact that
inconsistent omissions can occur, let us proceed under the
assumption that for detected errors there is a uniform
probability for their detection and signaling along the length
of a CANmessage.The justification for this is as follows. Due
to transmitter bit error monitoring, detected errors affecting
any set of nodes which includes the transmitting node
(including all global errors) are immediately detected and
signaled. Local errors affecting a set of nodes which does not
include the transmitting node, but only one ormore receivers,
typically result in form or bit stuffing violations which are
immediately signaled as errors by the effected receivers.
Detailed simulations and experiments have indicated that
well over 99.9% of detected CAN errors will be signaled
by these three primary mechanisms [19, 24]. The remaining
proportion of detected local errors will principally manifest
as CRC failures, signaled only after the CRC check. Thus,
although this assumption of uniformprobability for detecting
and signaling errors along the length of a CAN message is
clearly not 100% accurate, it would seem to be close enough
for analysis purposes. Let us initially proceed as such.

4.1. Random Errors and Bursts of Errors. As previously
mentioned, research has shown that many errors in CAN
communication links are not just single independent events
but are likely to occur in isolated transient bursts [19, 24, 25].
In order to develop a technique to effectively capture such
behaviors, an error model that is rich enough to capture this
bursty nature yet simple enough to lend itself to tractable
analysis is required. A commonway tomodel bursty behavior
is to use a simple two-state discrete Markov model [1, 8, 26,
27], such as is shown in Figure 1.

The model has two states G and B, representing “Good”
and “Burst” states, respectively. Transitions between the two
states G and B have associated with them static probabilities
𝑝GB and 𝑝BG. The probability of remaining in a given state
is then given by 𝑝GG = 1 − 𝑝GB and 𝑝BB = 1 − 𝑝BG.
Each state may also have associated with it a probability of
bit error occurrence (denoted 𝛽G and 𝛽B, resp.). The model
parameters 𝑝GB and 𝑝BG can be interpreted as follows: the

BG1 − pGB

pGB

pBG

1 − pBG

Figure 1: Two-state Markov model for burst errors.

reciprocal of 𝑝GB defines the expected (mean) gap between
error bursts 𝜇EG, and the reciprocal of 𝑝BG defines the
expected (mean) duration of error bursts 𝜇EB, both variables
having a geometric distribution. The expected interarrival
time of error bursts is then given as (𝜇EG +𝜇EB). The optional
model parameters 𝛽G and 𝛽B can be interpreted as follows:
when the system is in the “Good” state, the reciprocal of 𝛽G
defines the expected (mean) interarrival time of errors, and
when the system is in the “Burst” state, the reciprocal of 𝛽B
defines the expected (mean) interarrival time of errors, both
variables again having a geometric distribution. Typically, it
would be the case that 𝛽G ≪ 𝛽B and 𝜇EB ≪ 𝜇EG. Let the
state of the link at step 𝑘 be denoted by 𝑙(𝑘) ∈ {“G”, “B”},
and let the state of the Markov model at step 𝑘 be encoded
as the probability 𝑠(𝑘) that the link is in the error state; that
is, 𝑠(𝑘) = 𝑃{𝑙(𝑘) = “B”}. Applying the normal rules for
Markov model state transitions, then 𝑠(𝑘) depends only upon
the previous state 𝑠(𝑘−1) and the transition probabilities 𝑝BB
and 𝑝GB and can be recursively computed as follows:

𝑠 (𝑘) = 𝑝BB ⋅ 𝑠 (𝑘 − 1) + 𝑝GB ⋅ (1 − 𝑠 (𝑘 − 1)) . (2)

Assuming that the initial state of the link 𝑠(0) is known,
the transient and steady-state evolution of the link state can be
calculated using (2). The steady-state solution to the Markov
chain is obtained by first setting 𝑠(𝑘) = 𝑠(𝑘 − 1) = 𝜋 into
(2). Solving for 𝜋, we obtain that 𝜋 = 𝑝BG/(1 − 𝑝BB − 𝑝GB).
Given any starting state 𝑠(0), after a transient period the
model converges upon 𝜋 which represents the fraction of
time the link can be expected to be in the “Bad” state when
observed for long periods. 𝜋 also represents the probability
that when the link is observed at some random sample time
𝑡 we find that 𝑙(𝑡) = “B”; following the acquisition of explicit
knowledge about the link state at step t (such as bymaking an
observation), the state transiently moves back to the steady-
state 𝜋 with coefficient 𝛼 = (𝑝BB − 𝑝GB) according to the
relationship 𝑠(𝑡 + 𝑘) = 𝜋 + (𝑠(𝑡) − 𝜋) ⋅ 𝛼

𝑘. The special case in
which errors do not arrive in bursts but only have a constant
bit error rate of 𝛽 is covered by setting 𝑝BB = 𝑝GB = 𝛽, after
which we may see that 𝛼 = 0.

For simplicity, in this paper it is assumed that 𝛽B and 𝛽G
were set to 1 and 0, respectively, under the assumption that
the probability of a full CAN frame transmission occurring
whilst the link is in the burst state is effectively negligible
(e.g., if 𝜆B is 0.5, a realistic assumption for a network
such as CAN, the probability of successfully sending a 60-
bit frame whilst in a burst state is of the order 10−20).
In such circumstances 𝜋 represents the BER of the CAN
network. Although other studies have suggested that errors
and bursts of errors in CAN networks follow exponential
distributions (and can be considered as a Poisson process
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which is possibly nonhomogeneous and/or generalized), the
model above should be at least as descriptive. This is because
(i) if multiple errors arrive during the same logical bit-time,
as may be predicted with a Poisson process, then only one
of these errors will be effectively “counted” since time is
discrete in a CANnetwork and (ii) the geometric distribution
is the discrete equivalent to the continuous exponential
distribution. Maximum likelihood estimates of the model
parameters𝑝GB and𝑝BG fromobserved data traces are known
and have simple closed forms [26, 27].

4.2. Error Statistics. Aswill be described in the next section, a
means to determine the mean and variance of the additional
load on the network which could be introduced by random
errors and bursts of errors is required. Let the additional
fault load over a time duration of length 𝑡 be denoted by the
randomvariable𝐹(𝑡), which is the sumof the additional loads
introduced due to errors at each individual time step, which
are denoted as 𝑒(1), 𝑒(2), . . . , 𝑒(𝑘), . . . , 𝑒(𝑡 − 1), 𝑒(𝑡). Then we
may examine the expected additional load at every time step
𝑒(𝑘) and also its variance; the mean and variance of 𝐹(𝑡)may
then be formed accordingly. Fromdiscussions in the previous
section, although the BER of the link is 𝜋, the impact of an
individual error depends to a certain extent upon the arrivals
of previous errors. At each time step 𝑘, assuming an error
arrives, either of the following (mutually exclusive) events
could occur:

(1) The link was in the “Good” state at step 𝑘 − 1, with
probability (1 − 𝜋), but transits to the “Bad” state at
step 𝑘 with probability 𝑝GB; the resulting error forces
the current transmission to abort and an error frame
to commence transmission (denoted as a “type 1”
error).

(2) The link was in the “Bad” state at step 𝑘 − 1, with
probability 𝜋, and remains in the “Bad” state at step 𝑘

with probability 𝑝BB; the resulting error delays by one
time unit the (on-going) transmission attempt of the
error frame following on from the last “type 1 error”
described above (denoted as a “type 2” error).

Let us denote the probability of a type 1 error occurring
by 𝑝
𝑔

= (1 − 𝜋)𝑝GB and the probability of a type two error
occurring as𝑝

𝑏
= 𝜋𝑝BB. Note that𝑝𝑔+𝑝

𝑏
= 𝜋; that is, the BER

consists of a proportion of each of the two error types. Let
the longest frame transmitted during the considered interval
of length 𝑡 be 𝐶 > 0. Since the assumption is that an error
duringmessage transmission is immediately detected and the
transmission aborted, a type 1 error leads to an increase in
the error load by a value uniformly drawn from the interval
[1, 𝐶], withmean value (𝐶+1)/2, plus an error frame of length
𝐶
𝐸
. A type 2 error, since the link was previously in the error

state, simply leads to a unit increase in error load. Denoting
expectation of a variable 𝑥 as 𝐸[𝑥], the mean load introduced
at each time step can be written in closed form:

𝐸 [𝑒 (𝑘)] = 𝑝
𝑔
⋅ (

𝐶 + 1

2
+ 𝐶
𝐸
) + 𝑝
𝑏
. (3)

An expression for the variance of 𝑒(𝑘) can also be written
using the “mean of square minus square of the mean” rule:

Var (𝑒 (𝑘)) = 𝐸 [𝑒 (𝑘)
2
] − 𝐸 [𝑒 (𝑘)]

2

= [
𝑝
𝑔

𝐶
⋅ (

𝐶

∑

𝑖=1

(𝑖 + 𝐶
𝐸
)
2

) + 𝑝
𝑏
⋅ 1
2
] − 𝐸 [𝑒 (𝑘)]

2

= [
𝑝
𝑔

𝐶
⋅ (

𝐶

∑

𝑖=1

𝑖
2
+

𝐶

∑

𝑖=1

𝐶
2

𝐸
+ 2 ⋅

𝐶

∑

𝑖=1

𝑖 ⋅ 𝐶
𝐸
) + 𝑝

𝑏
]

− 𝐸 [𝑒 (𝑘)]
2
.

(4)

To simplify the above expression further, well-known
formulae for the sum of the first𝐶 natural numbers and their
squares can be applied:

(

𝐶

∑

𝑖=1

𝑖
2
+

𝐶

∑

𝑖=1

𝐶
2

𝐸
+ 2 ⋅

𝐶

∑

𝑖=1

𝑖 ⋅ 𝐶
𝐸
)

= (
𝐶
3

3
+

𝐶
2

2
+

𝐶

6
+ 𝐶 ⋅ 𝐶

2

𝐸
+ 𝐶
𝐸
⋅ 𝐶 ⋅ (𝐶 + 1)) .

(5)

Giving the following simple closed-form expression for
the variance,

Var (𝑒 (𝑘)) = 𝑝
𝑔
⋅ (

𝐶
2

3
+

𝐶

2
+

1

6
+ 𝐶
2

𝐸
+ 𝐶
𝐸
⋅ (𝐶 + 1))

+ 𝑝
𝑏
− 𝐸 [𝑒 (𝑘)]

2
.

(6)

Using (3) and (6), themean and variance of the additional
load 𝐹(𝑡) due to errors can be formed through summation.
Observe that there is some weak dependence between the
random variables 𝑒(𝑘) (in the sense that if the value of 𝑒(𝑘)
is revealed, the probabilities associated with the values which
𝑒(𝑘 + 1) can assume are influenced). This is present in all
probabilistic timing analysis for CAN, due to the serialization
of message transmission and the error detectionmechanisms
employed. The main dependence in the current context is
such that a type 1 error cannot immediately be followed by
another type 1 error; hence if 𝑒(𝑘) > 1, 𝑒(𝑘 + 1) ≤ 1.
This manifests itself as an exponentially decaying negative
correlation between a variable at step 𝑘 and its successors
at steps > 𝑘. However, as in previous works on CAN, let
us drop this correlation and proceed with the assumption of
statistical independence. This is a safe assumption since we
now allow the situation in which both 𝑒(𝑘) and 𝑒(𝑘 + 1) can
be > 1 simultaneously, which cannot occur in practice due
to the serialization of CAN message transmission. Although
this is pessimistic it facilitates a simpler analysis in the sequel.
Briefly returning again to the point related to nonuniform
probability for detecting and signaling errors along the length
of a CAN message before leaving this section, please refer to
Appendix A for details of the modification necessary to (3)
and (6) should this require to be modeled.
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5. A Simple Deadline Failure Bound

5.1. Probability Inequality. In this paper, the following bound
for a sum of independent random variables is to be employed.

Theorem 1. Let 𝑥(1), 𝑥(2), . . . , 𝑥(𝑘), . . . , 𝑥(𝑡−1), 𝑥(𝑡) be inde-
pendent random variables. Let each of the 𝑥(𝑘) be bounded
such that |𝑥(𝑘) − 𝐸[𝑥(𝑘)]| ≤ 𝑀, with 𝑀 some nonzero
(positive) constant. Denote the sum of the 𝑡 variables along with
its mean and variance as follows:

𝑋 =

𝑡

∑

𝑘=1

𝑥 (𝑘) ,

𝜇 =

𝑡

∑

𝑘=1

𝐸 [𝑥 (𝑘)] ,

𝜎
2
=

𝑡

∑

𝑘=1

Var (𝑥 (𝑘)) .

(7)

Thengiven some real 𝑞 ≥ 0, the upper tail of the distribution
function of 𝑋 is bounded by

𝑃 (𝑋 > 𝜇 + 𝑞) < exp {−𝐻(𝜎
2
, 𝑞,𝑀)} , (8a)

where

𝐻(𝜎
2
, 𝑞,𝑀) =

𝜎
2

𝑀2
⋅ ln(1 +

𝑀𝑞

𝜎2
) ⋅ (1 +

𝑀𝑞

𝜎2
)

−
𝑞

𝑀
.

(8b)

Proof. Consider Equation 8b in Bennett (1962) [28].

The expression above is presented in a slightly different
form to that found in [28]; however the difference is purely
cosmetic. In the current context, 𝑡 represents the length of
an interval under consideration, 𝑋 represents the additional
fault load 𝐹(𝑡) which may be observed in this interval, and
each of the 𝑥(𝑘) represents the additional error loads which
could be introduced at each time step 𝑒(𝑘). The bound 𝑀

represents the worst-case length of a message that may be
affected by a type 1 error plus the worst-case length of an error
frame (𝐶+𝐶

𝑒
).With this result recalled, the proposedmethod

may now be outlined.

5.2. Proposed Method. The method takes as input a set of 𝑛
messages 𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
, each with parameters as given by (1),

environmental error characteristics 𝑝
𝑔
and 𝑝

𝑏
, and the worst-

case length of error frame𝐶
𝑒
and produces a set of 𝑛 deadline

failure probabilities 𝑝
fail
1

, 𝑝
fail
2

, . . . , 𝑝
fail
𝑛

. The method can be
stated in three basic steps which are as follows:

(1) For each message 𝑖, carry out a sensitivity analysis to
find the critical slack 𝑆

𝑖
that any generated instance

of the message has between its release time and its
deadline such that the deadline is not missed, and
determine𝑀

𝑖
which is the worst-case length of frame

that could be transmitted during the busy period
plus the length of error frame 𝐶

𝑒
. If for any message

𝑆
𝑖
< 0, then set 𝑝fail

𝑖
= 1 and stop as themessage is not

deterministically schedulable.
(2) For each message 𝑖, compute the quantities:

𝑡
𝑖
= (𝐷
𝑖
− 𝐽
𝑖
) , (9a)

𝜇
𝑖
= 𝑡
𝑖
⋅ 𝐸 [𝑒 (𝑘)] , (9b)

𝜎
2

𝑖
= 𝑡
𝑖
⋅ Var (𝑒 (𝑘)) , (9c)

with the mean and variance of 𝑒(𝑘) computed accord-
ing to (3) and (6), using𝐶 = (𝑀

𝑖
−𝐶
𝑒
) in both of these

expressions. If for any message 𝜇
𝑖
> 𝑆
𝑖
set 𝑝𝑖fail > 0.5

and exit as an error load which is less than the mean
(expected) load which is sufficient to cause a deadline
miss.

(3) For eachmessage 𝑖 calculate𝐻
𝑖
= 𝐻(𝜎

2

𝑖
, (𝑆
𝑖
−𝜇
𝑖
), 𝑀
𝑖
)

using (8b), and bound the deadline failure probability
𝑝
fail
𝑖

using the inequality of (8a).

The rationale for the method outlined above is that,
with knowledge of the most critically loaded intervals of
the schedule, one may calculate the critical error load that
may be tolerated during that interval to (just) maintain
schedulability; this is performed using sensitivity analysis
(step (1)). Given knowledge of the length of the considered
intervals and the environmental error characteristics, the
mean and variance of the error load may be determined (step
(2)); this allows the application of the inequality given in (8a)
in step (3) to determine the probability the error load exceeds
the critical error load. The 𝑝

fail
𝑖

values as calculated in this
way can easily be linked to higher-level reliabilitymeasures in
that knowledge of the number of deadlines of each message
occurring per unit operation time (e.g., an hour) can be used
to calculate the probability that no deadlines will be missed
per hour (i.e., the network reliability). In step (1) of the above,
both 𝑆

𝑖
and𝑀

𝑖
are required; their determination is the subject

of the next section.

6. Application to Fixed and Dynamic
Priority Scheduling

As mentioned in Introduction, the paper focuses upon the
DMJM and EDF scheduling methods due to their known
optimality as fixed priority assignment rule and dynamic
priority scheduling algorithm, respectively (albeit the former
is for constrained deadlines only), on a single processor or
communications network [6, 7]. In order to develop a means
to solve step (1) in the proposed method, it is necessary to
make some further assumptions.These assumptions are such
that all errors are detected and that allmessageswhich fail due
to an error are immediately rescheduled using their original
priority or deadline. Although the worst-case error load
tolerable for a given message can be calculated exactly using
sensitivity analysis combined with an exact test like response-
time analysis [18, 23] or the processor demand approach [7],
both would require an application of an exact schedulability
analysis. Since the exact analysis is known to be coNP-
complete in both cases [29, 30], simple bounds which may be
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Available slackBlocking Valid frames

Frame 
arrival

Frame 
deadline

Interval length: Dj

Ji + Bi + Li + Si = Di

Jitter
(load: Ji) (load: Bi) (load: Li) (load: Si)

Figure 2: Illustration of the proposed slack analysis technique.

easily manipulated algebraically are instead sought. As such,
sufficient and easily computable schedulability conditions
will instead be employed.

For both DMJM and EDF, the technique proceeds as
illustrated in Figure 2: assuming that a busy period of length
𝐷
𝑖
occurs, existing sufficient schedulability conditions will be

adapted to upper-bound the worst-case workload induced by
jitter and priority inversion (blocking) plus the transmission
of valid frameswhich can occur. Assuming that this workload
does not exceed the length of the interval 𝐷

𝑖
(in which

case the network cannot be deemed to be deterministically
schedulable with the utilized condition), the remaining slack
time is assumed to be assigned for error handling and
message retransmission purposes.

6.1. Fixed Priority Scheduling. For fixed priority scheduling,
the following sufficient condition can be adapted from the
relationships obtained by Davis and Burns [23] to verify
schedulability under the DMJM priority assignment:

∀𝑖 = 1, . . . , 𝑛:

𝐽
𝑖
+

𝑖−1

∑

𝑗=1

𝑈
𝑗
𝐽
𝑗
+ 𝐵
𝑖
+ 𝐶
𝑖
+ 𝐷
𝑖

𝑖−1

∑

𝑗=1

𝑈
𝑗
+

𝑖−1

∑

𝑗=1

𝐶
𝑗
(1 − 𝑈

𝑗
) ≤ 𝐷

𝑖
,

(10)

where the blocking term 𝐵
𝑖
≥ 0 represents the worst-case

length of time a message of priority 𝑖 may be blocked by a
lower priority frame. For nonpreemptive frame transmission
under fixed priority scheduling, the blocking term is given
by the largest transmission time of anymessage instance with
priority less than or equal to 𝑖:

𝐵
DMJM
𝑖

= max
𝑗≥𝑖

{𝐶
𝑗
} . (11)

Since interference frommessages being retransmitted due
to errors appears in (10) in a similar fashion to nonpreemptive
blocking (i.e., a lengthening of the busy period), the slack
term 𝑆

𝑖
can be added into the left hand side of (10). Now,

setting 𝐿
𝑖
and 𝐽
𝑖
as

𝐿
DMJM
𝑖

= 𝐶
𝑖
+ 𝐷
𝑖

𝑖−1

∑

𝑗=1

𝑈
𝑗
+

𝑖−1

∑

𝑗=1

𝐶
𝑗
(1 − 𝑈

𝑗
) (12a)

𝐽
DMJM
𝑖

= 𝐽
𝑖
+

𝑖−1

∑

𝑗=1

𝑈
𝑗
𝐽
𝑗 (12b)

and assuming an equality in (10) allow one to solve for the
slack terms 𝑆

𝑖
. Given the fixed priority ordering of message

transmissions the retransmission bound lengths 𝑀
𝑖
are also

easily obtained, giving

∀𝑖 = 1, . . . , 𝑛: 𝑆
𝑖
= 𝐷
𝑖
− 𝐽

DMJM
𝑖

− 𝐵
DMJM
𝑖

− 𝐿
DMJM
𝑖

, (13a)

𝑀
𝑖
= max
𝑗≤𝑖

{𝐶
𝑗
} + 𝐶
𝐸
. (13b)

6.2. Dynamic Priority Scheduling. For dynamic priority
scheduling, the following sufficient condition can be used to
verify schedulability under the EDF priority assignment:

∀𝑖 = 1, . . . , 𝑛: 𝐽
𝑖
(1 −

𝑖

∑

𝑗=1

𝑈
𝑗
) +

𝑖

∑

𝑗=1

𝑈
𝑗
𝐽
𝑗
+ 𝐵
𝑖

+ 𝐷
𝑖

𝑖

∑

𝑗=1

𝑈
𝑗
+

𝑖

∑

𝑗=1

𝑈
𝑗
(𝑇
𝑗
− 𝐷
𝑗
) ≤ 𝐷

𝑖
,

(14)

where the blocking term 𝐵
𝑖
≥ 0 again represents the worst-

case length of time amessage of priority 𝑖may be blocked by a
lower priority frame; for nonpreemptive frame transmission
under EDF scheduling with jitter, the blocking term is given
by the largest transmission time of any message instance that
has a deadline minus jitter greater than the deadline minus
jitter of message 𝑖 [7]:

𝐵
EDF
𝑖

= max
(𝐷𝑗−𝐽𝑗)>(𝐷𝑖−𝐽𝑖)

{𝐶
𝑗
} . (15)

The sufficient condition in (14) above was motivated by
the work of Devi [31]; however it includes jitter terms: the
proof of correctness of (14) is included as Appendix A in
the current paper. Now, using (14) allows proceeding along
similar lines to the DMJM case. Again, since interference
from messages being retransmitted due to errors appears in
(14) in a similar fashion to nonpreemptive blocking, the slack
term 𝑆

𝑖
can be added into the left hand side of (10). Again

setting 𝐿
𝑖
and 𝐽
𝑖
as

𝐿
EDF
𝑖

= 𝐷
𝑖

𝑖

∑

𝑗=1

𝑈
𝑗
+

𝑖

∑

𝑗=1

𝑈
𝑗
(𝑇
𝑗
− 𝐷
𝑗
) , (16a)

𝐽
EDF
𝑖

= 𝐽
𝑖
(1 −

𝑖

∑

𝑗=1

𝑈
𝑗
) +

𝑖

∑

𝑗=1

𝑈
𝑗
𝐽
𝑗

(16b)
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Table 1: Comparison of analytical and stochastic simulation results.

Mean burst interarrival 1000 10000 20000 30000
Mean burst length 1 10 20 30

BER Calculated 0.001000000 0.001000000 0.001000000 0.001000000
Observed 0.001000200 0.000999700 0.001000100 0.001003200

Mean Calculated 0.099000000 0.010800000 0.005900000 0.004266667
Observed 0.099227000 0.010800600 0.005889200 0.004270500

Var Calculated 11.309865667 1.132750027 0.566898523 0.378270684
Observed 11.398210000 1.134113000 0.566252100 0.378072900

𝑝
fail

Old bound [8] 0.139636696 >0.5 >0.5 >0.5
New bound 0.049658914 0.000322315 0.000069962 0.000028680
Observed 0.000439610 0.000008529 0.000002429 0.000001000

and assuming an equality in (14) allow one to solve for the
slack terms 𝑆

𝑖
. Given the deadline-based priority ordering

the retransmission bound lengths𝑀
𝑖
are also easily obtained,

giving

∀𝑖 = 1, . . . , 𝑛: 𝑆
𝑖
= 𝐷
𝑖
− 𝐽

EDF
𝑖

− 𝐵
EDF
𝑖

− 𝐿
EDF
𝑖

(17a)

𝑀
𝑖
= max
(𝐷𝑗−𝐽𝑗)≤(𝐷𝑖−𝐽𝑖)

{𝐶
𝑗
} + 𝐶
𝐸
. (17b)

The methods proposed above allow the completion of
step (1) in the proposed method for both forms of scheduling
with a time complexity𝑂(𝑛 log 𝑛) and space complexity𝑂(𝑛)

as per the original schedulability conditions in [23, 31]. Since
steps (2) and (3) both require constant time per message to
complete, the overall method is bounded in time and space
complexity 𝑂(𝑛 log 𝑛) and 𝑂(𝑛), respectively.

7. Stochastic Simulation Studies

In order to evaluate the accuracy and predictive abilities of
the probability computations detailed in previous sections, a
series of stochastic simulations was carried out to compare
calculated values to statistical results. This was deemed
important since the analysis in previous work [8] resulted in
unacceptable pessimism; hence statistical evaluation can help
to validate the improved analysis and assumptions made.The
simulations were carried out to assess the measured message
deadline failure probability for a single CAN message in the
presence of both static bit errors and bursts of bit errors.
A message length of 135 bits was assumed (DLC of 8 with
11-bit identifier), with a 31-bit error message length. The
message relative deadline was taken to be 500 bits, with the
CAN network speed assumed to be 1Mbps. The stochastic
simulator was written in C++.

A total of four simulation experiments were performed.
In each experiment, which lasted for 5 simulated hours, the
empirical BER, mean, and variance were measured alongside
the empirical deadline failure probability for a given set of
error characteristics. In each case, the theoretical BERwas set
to 0.001 and the mean burst length set to either 1, 10, 20, or
30 bits. The first case corresponds to a static BER, whilst the
latter three correspond to bursty environments. The chosen
BER is high, corresponding to a very noisy environment; this

was done to allowmeaningful statistical results to be observed
without incurring inordinately large simulation times. For
each experiment configuration, the mean and variance in the
error load per bit were calculated using (3) and (6), with the
deadline failure probability obtained using (8a) and (8b).The
slack 𝑆 was taken to be 365 bits. The empirical and analytical
results are as shown in Table 1. For comparative purposes,
the deadline failure probability obtained by application of the
methods reported in [8] is also displayed.

Observing the data reported in the table, one immediately
sees a very close correspondence between the measured
(empirical) values of BER, mean load, and its variance as
compared to the calculated values.This gives some validation
in the assumptions made in Section 5 and gives confidence
in the use of (3) and (6) to capture the effects of errors
in the CAN network. In addition, one sees that although
the empirical BER in each case is virtually identical to its
theoretical value of 0.001, the mean load and its variance are
both reducing with an increase in the length of bursts. This
captures the notion that not all errors have the same impact
upon the schedule and that “type 1” errors areworse that “type
2” errors from a timing perspective.

Focusing attention now upon the use of (8a) and (8b)
to bound the deadline failure rate, it can be observed that
although some inaccuracy is necessarily present, it seems
effective at capturing the relative order of magnitude of the
empirically observed deadline failure probability. In partic-
ular, it captures the behavior that, for a constant BER, the
deadline failure probability is reducing for increasing mean
burst length and this reduction can be quite pronounced.
In addition, the pessimism in the bound reduces as the
failure probability decreases (as is typical for exponential
inequalities). In contrast the previous method described in
[8] fails to capture this behavior and the level of pessimism
is significantly increased; in fact the method fails to give
meaningful results when bursty behavior is considered and
asserts only that the failure probability is > 0.5. This is due to
the assumption that each error impacts upon the fault load in
an identical way, such that only two errors may be tolerated
before deadline failure occurs.When themean burst length is
either 10, 20, or 30 this exceeds the number of tolerable errors
and themethod fails.The simulation shows that the clustering
of errors in bursts is, in fact, beneficial when the BER remains
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Table 2: Message parameters for the SAE benchmark example.

Msg DLC (b) 𝑇
𝑖
(ms) 𝐷

𝑖
(ms) 𝐽

𝑖
(ms) 𝐶

𝑖
(ms)

1 1 50.000 5.000 0.100 0.273
2 2 5.000 5.000 0.100 0.303
3 1 5.000 5.000 0.100 0.273
4 2 5.000 5.000 0.100 0.303
5 1 5.000 5.000 0.100 0.273
6 2 5.000 5.000 0.100 0.303
7 6 10.000 10.000 0.200 0.424
8 1 10.000 10.000 0.200 0.273
9 2 10.000 10.000 0.200 0.303
10 3 10.000 10.000 0.200 0.333
11 1 50.000 20.000 0.200 0.273
12 1 100.000 100.000 0.300 0.273
13 4 100.000 100.000 0.300 0.364
14 1 100.000 100.000 0.200 0.273
15 3 1000.000 1000.000 0.400 0.333
16 1 1000.000 1000.000 0.300 0.273
17 1 1000.000 1000.000 0.300 0.273

constant as errors tend to cluster together and their effects
are less pronounced. This behavior is clearly captured by the
methods proposed in this paper.

8. Application to SAE Benchmark Message Set

In this section, an extended example based upon a bench-
mark set of CAN messages is provided to further illustrate
the features of the proposed technique.Thewell-known “SAE
benchmark set” of 𝑛 = 17messages under consideration is as
described in [32] and consists of over 50 typical automotive
signals packed into 17 periodic/sporadic messages. In this
paper, we assume that messages are fixed priority (DMJM)
scheduled using CAN in its native form. Assuming a bit rate
of 330Kbps and extended 29-bit (cf. standard 11 bits) message
identifiers, themessages and their parameters are as shown in
Table 2. The total utilization of this CAN network is 44.5%
in the absence of errors. The messages have been ordered
according to nondecreasing deadline minus jitter.

To illustrate the full use of the methods proposed in this
paper, some realistic assumptions were first made upon the
BER and burst distribution. The BER was selected to have a
value 1 × 10−6, with two distributions of bursts considered: a
static configuration with errors arriving independently and
a burst configuration with errors arriving in bursts of mean
length 5.This configuration is not dissimilarwith typical error
rates and burst characteristics reported in the literature for
CAN networks and employed in previous studies [12, 25]. An
error frame of 𝐶

𝐸
= 31 bits was employed. Bounds on 𝑝

fail
𝑖

were then determined for fixed priority (DMJM) scheduling,
applying the techniques developed in Sections 4, 5, and 6.The
values obtained are shown in Table 3. Also indicated are the
results obtained from application of the method described in
[8]. Entries in the table given as “≈ 0.00𝐸 + 00” indicate that
numerically the event occurs with such a low probability that

it could not be represented with double-precision floating
point accuracy.

From this table, some interesting observations can be
made. In all cases, the new bound described in this paper gave
deadline failure bounds smaller than the previous method
described in [8]. In the case of static errors, both bounds
predict extremely low deadline failure probability for all
messages, that is, an indication that such events should be
extremely rare. The reduced failure rate in the new method
is due to the relaxation of the assumption that all errors strike
the last bit of the longest frame transmitted in the considered
interval.

Considering next the burst case, one observes drastic
differences between the two methods. In particular, the
previous work [8] predicts that, as the burst length increases
for a given BER, the probability of deadline misses increases
significantly; in fact, the method fails to produce results for
messages 5, 6, and 10. In these cases, the critical number of
errors required to cause a deadline miss exceeds the mean
number of errors arriving in the (𝐷 − 𝐽) interval. This is
not as predicted by the new method, which predicts that
the failure probability should be decreasing for fixed BER;
this is again due to the relaxation of the assumption that all
errors strike the last bit of the longest frame transmitted in
the considered interval and the classification of errors into
those of type 1 and type 2. Note that these assumptions have
been validated using stochastic simulations in the previous
section. In particular, consider the highest priority message
(Msg 1), which has length 90 bits and a deadline slack of
1,387 bits. Under error bursts, the deadline failure proba-
bility is bounded to be 0.0118 using the previous method:
a comparatively commonplace event occurring once every
4.24 seconds for the given message period. However in the
previous section, recall that under simulation a longer (135
bits) CANmessage with shorter deadline slack (365 bits) was
found to miss its deadline with probability 0.000008529 in a
far more aggressive environment with longer burst durations.
As such, the quantification by the new method where a
deadline miss remains to be an extremely rare event even in
a burst environment seems much more reasonable, although
further detailed simulations are required to confirm this.
Finally, note that the calculations necessary to obtain these
results were embedded in a simple spreadsheet, giving a good
indication of the ease of application of the method and that it
is a good candidate for use in the stated area of motivation in
Introduction.

9. Conclusions

In this paper, a simple and efficient method to bound the
deadline failure probabilities for a real-time industrial CAN
network transmitting periodic/sporadic messages whichmay
experience release jitters under fixed or dynamic priority
scheduling has been proposed. As demonstrated through
stochastic simulation, indications are such that the procedure
is effective at capturing the effects of errors and burst
distributions on the message schedule and produces results
which are more accurate and useful than previous meth-
ods. A representative example consisting of a benchmark
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Table 3: Deadline failure probabilities for static and bursty environments.

Msg 𝑝
fail (old bound [8]) 𝑝

fail (new bound)
Static Bursts Static Bursts

1 1.21E − 39 1.18E − 02 8.31E − 44 8.13E − 52
2 5.24E − 32 6.80E − 02 8.33E − 37 1.27E − 43
3 2.96E − 28 1.51E − 01 5.51E − 31 8.24E − 37
4 6.54E − 21 4.55E − 01 3.07E − 25 4.56E − 30
5 2.47E − 17 >0.5 1.18E − 19 1.73E − 23
6 7.83E − 14 >0.5 3.37E − 14 4.89E − 17
7 8.02E − 26 1.51E − 01 4.02E − 29 5.03E − 35
8 2.01E − 22 3.32E − 01 3.95E − 24 4.19E − 29
9 4.42E − 19 4.55E − 01 4.70E − 20 2.95E − 24
10 1.32E − 12 >0.5 1.19E − 15 5.33E − 19
11 7.99E − 43 5.43E − 04 4.88E − 49 2.86E − 59
12 1.25E − 307 4.59E − 91 ≈ 0.00E + 00 ≈ 0.00E + 00
13 3.82E − 304 9.16E − 90 ≈ 0.00E + 00 ≈ 0.00E + 00
14 1.27E − 300 1.81E − 88 ≈ 0.00E + 00 ≈ 0.00E + 00
15 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00
16 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00
17 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00 ≈ 0.00E + 00

message set for a CAN network has helped to illustrate
key elements of the proposed technique and highlight its
advantages over a recent similar method. In future work,
more detailed simulation studies will be carried out to explore
the accuracy of the proposed bound. In addition, extensions
of this bounding technique will be used, in conjunction with
appropriate environmental error monitoring techniques, to
move towards efficient dependability-aware QoS controls for
flexible real-time CAN networks.

Appendix

A.

Consider the case where a specified proportion of type 1
errors 𝑝

𝑐
∈ [0, 1] will manifest only as CRC failures signaled

by dropping the current transmission and commencing an
error frame after the CRC check. Let the number of lost bits
following a CRC failure be given by 𝐶

𝐶
. Incorporating this

information into (3) gives amodified expression for themean
load introduced at each time-step:

𝐸 [𝑒 (𝑘)] = 𝑝
𝑔
⋅ (((1 − 𝑝

𝑐
) ⋅

𝐶 + 1

2
+ 𝑝
𝑐
⋅ 𝐶
𝐶
) + 𝐶

𝐸
)

+ 𝑝
𝑏
.

(A.1)

An expression for the variance of 𝑒(𝑘) can once again be
written using the “mean of square minus square of the mean”
rule and proceeding as before:

Var (𝑒 (𝑘)) = (
(1 − 𝑝

𝑐
) ⋅ 𝑝
𝑔

𝐶
⋅ (

𝐶

∑

𝑖=1

(𝑖 + 𝐶
𝐸
)
2

))

+ (𝑝
𝑔
⋅ 𝑝
𝑐
⋅ (𝐶
𝐶
+ 𝐶
𝐸
)
2

) + (𝑝
𝑏
⋅ 1
2
)

− 𝐸 [𝑒 (𝑘)]
2

= 𝑝
𝑔
⋅ (1 − 𝑝

𝑐
)

⋅ (
𝐶
2

3
+

𝐶

2
+

1

6
+ 𝐶
2

𝐸
+ 𝐶
𝐸
⋅ (𝐶 + 1))

+ 𝑝
𝑔
⋅ 𝑝
𝑐
⋅ (𝐶
𝐶
+ 𝐶
𝐸
)
2

+ 𝑝
𝑏

− 𝐸 [𝑒 (𝑘)]
2
.

(A.2)

The above expressions can also be used in situations in
which every type 1 error is taken to lead to the same (constant)
error load (as in previous analysis for CAN, this could be the
worst-case length of the longest message).This is achieved by
setting 𝑝

𝑐
= 1 and 𝐶

𝐶
to the required number of bits.

B.

Proof of (14). Theexpression is proved by contradiction, using
a similar approach to [31]: if the messages are not schedulable
under EDF, it will be shown that the condition of (14) is false.
Assume that a deadline miss occurs in the schedule and the
condition of (14) holds. Let the first deadline miss in the
schedule occur at time 𝑡

2
, and let the first time the network

was idle (or occupied processing a frame with deadline > 𝑡
2
)

be time 𝑡
1
. Without loss of generality, assume that 𝑡

1
= 0 and

set 𝑡 = (𝑡
2
− 𝑡
1
). As it was assumed that the messages are

sorted in order of nondecreasing deadline minus jitter, for
convenience let the highest-indexed message satisfying the
relationship (𝐷

𝑘
− 𝐽
𝑘
) ≤ 𝑡 be given by 𝑖. Observe that, under

EDF scheduling, no message with index > i can contribute
to the network demand in the interval [0, t) and that there is
no idle time in this interval [7]. Assuming that each message
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with index 𝑗 ≤ 𝑖 is activated at time 𝑡 = −𝐽
𝑗
to maximize the

network loading, then the network demand ℎ(𝑡) can then be
calculated using [7]:

ℎ (𝑡) =

𝑖

∑

𝑗=1

(⌊
𝑡 − 𝐷
𝑗
+ 𝐽
𝑗

𝑇
𝑗

⌋ + 1) ⋅ 𝐶
𝑗

+ max
(𝐷𝑘−𝐽𝑘)>𝑡

{𝐶
𝑘
} .

(B.1)

Since the deadline miss occurs at time 𝑡, the demand in
the interval [0, t) must exceed the length of the interval and
we can write

𝑡 <

𝑖

∑

𝑗=1

(⌊
𝑡 − 𝐷
𝑗
+ 𝐽
𝑗
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{𝐶
𝑘
}
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𝑗
)
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}
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(B.2)

Since (𝐷
𝑖
− 𝐽
𝑖
) ≤ 𝑡 we can write

(𝐷
𝑖
− 𝐽
𝑖
)(1 −

𝑖

∑
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𝑈
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)
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𝑘
}
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𝑗
(𝐷
𝑖
− 𝐽
𝑖
− 𝐷
𝑗
+ 𝐽
𝑗
+ 𝑇
𝑗
) + 𝐵
𝑖
,

(B.3)

where 𝐵
𝑖
is as defined in (15). Collecting terms in a more

convenient manner for computation gives rise to (14):

𝐷
𝑖
< 𝐽
𝑖
(1 −

𝑖

∑

𝑗=1

𝑈
𝑗
) +

𝑖
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𝑗=1

𝑈
𝑗
𝐽
𝑗
+ 𝐵
𝑖

+ 𝐷
𝑖
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+

𝑖

∑

𝑗=1

𝑈
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(𝑇
𝑗
− 𝐷
𝑗
) .

(B.4)

Thus by checking that for each message relative deadline
(14) holds, a deadline miss will not occur as claimed.
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perspectives in industrial wireless networks: a comparison
between IEEE 802.15.4 and bluetooth,” International Journal of
Distributed Sensor Networks, vol. 2013, Article ID 602923, 11
pages, 2013.

[23] R. I. Davis and A. Burns, “Response time upper bounds for
fixed priority real-time systems,” in Proceedings of the Real-Time
Systems Symposium (RTSS ’08), pp. 407–418, Barcelona, Spain,
December 2008.

[24] E. Tran, “Multi-bit error vulnerabilities in the controller area
network protocol,” Research Report Series, Institute for Com-
plex Engineered Systems, Carnegie Mellon University, Pitts-
burgh, Pa, USA, 1999.

[25] J. Ferreira, A. Oliveira, P. Fonseca, and J. A. Fonseca, “An
experiment to assess bit error rate in CAN,” in Proceedings of
the 3rd InternationalWorkshop on Real-TimeNetworks, Catania,
Italy, June 2004.

[26] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell
System Technical Journal, vol. 39, pp. 1253–1265, 1960.

[27] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement
and modelling of the temporal dependence in packet loss,”
in Proceedings of the18th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’99), vol.
1, pp. 345–352, New York, NY, USA, March 1999.

[28] G. Bennett, “Probability inequalities for the sumof independent
random variables,” Journal of the American Statistical Associa-
tion, vol. 57, no. 297, pp. 33–45, 1962.

[29] F. Eisenbrand and T. Rothvoß, “EDF-schedulability of syn-
chronous periodic task systems is coNP-Hard,” in Proceedings of

the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SoDA ’10), pp. 1029–1035, Austin, Tex, USA, January 2010.

[30] F. Eisenbrand and T. Rothvoß, “Static-priority real-time
scheduling: response time computation is NP-hard,” in Proceed-
ings of the Real-Time Systems Symposium (RTSS ’08), pp. 397–
406, IEEE, Barcelona, Spain, December 2008.

[31] U. C. Devi, “An improved schedulability test for uniprocessor
periodic task systems,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems ((ECRTS ’03), pp. 23–30, IEEE,
July 2003.

[32] K. Tindell and A. Burns, “Guaranteeing message latencies on
Controller Area Network (CAN),” in Proceedings of the 1st
International CAN Conference, Mainz, Germany, 1994.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


