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Poor cell selection is the main challenge in Picocell (PeNB) deployment in Long Term Evolution- (LTE-) Advanced heterogeneous
networks (HetNets) because it results in load imbalance and intercell interference. A selection technique based on cell range
extension (CRE) has been proposed for LTE-Advanced HetNets to extend the coverage of PeNBs for load balancing. However,
poor CRE bias setting in cell selection inhibits the attainment of desired cell splitting gains. By contrast, a cell selection technique
based on adaptive bias is amore effective solution to traffic load balancing in terms of increasing data rate comparedwith static bias-
based approaches.This paper reviews the use of adaptive cell selection in LTE-AdvancedHetNets by highlighting the importance of
cell load estimation.The general performances of different techniques for adaptive CRE-based cell selection are compared. Results
reveal that the adaptive CRE bias of the resource block utilization ratio (RBUR) technique exhibits the highest cell-edge throughput.
Moreover, more accurate cell load estimation is obtained in the extended RBUR adaptive CRE bias technique through constant bit
rate (CBR) traffic, which further improved load balancing as against the estimation based on the number of user equipment (UE).
Finally, this paper presents suggestions for future research directions.

1. Introduction

The Long Term Evolution (LTE) air interface technology
was introduced worldwide by the Third-Generation Part-
nership Project (3GPP); this technology is an improved
third-generation (3G) mobile communication system with
increased system capacity. However, macrobase station
deployment of conventional 3G cellular systems cannot cope
with the mobile data traffic demand. Further research in the
3GPPhas evolvedwithRelease 10 version, also known as LTE-
Advanced [1], to surpass performance requirements for the
International Mobile Telecommunication-Advanced (IMT-
A) and provide optimal solutions with low latency as well
as improved cell coverage, cell-edge throughput, and overall
system capacity [2].

LTE-Advanced basic techniques have reached the theo-
retical Shannon capacity limit and thus cannot provide any

significant capacity improvement. These techniques func-
tion under low signal-to-interference-to-noise ratios (SINR)
because of low signal power received as a result of signal
attenuation. The increasing demand for data services can
be satisfied by deploying additional macrobase stations, also
known as evolved node B (eNB); however, this technique
is difficult and expensive in 3GPP. Thus, deployment of the
heterogeneous network (HetNet) [3, 4] has been explored
to significantly improve the network capacity. Low-power
nodes in HetNets, such as Picocells or Pico-eNBs, (PeNBs),
are overlaid on the Macro-eNB (MeNB) coverage area; these
nodes coexist and share the same spectrum to achieve the
desired cell splitting gain [5].

The performance gain of HetNet is achieved by offload-
ing MeNBs to PeNBs. This goal can be accomplished by
improving indoor coverage and cell-edge user throughput
and increasing the spectral efficiency per unit area. HetNet is
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a network that consists of variouswireless access technologies
and utilizes a different style of deployment planning from
that of a homogeneous network [11]. HetNet is characterized
according to its transmission power, antenna height, access
mode, and backhaul connection to other cells. Despite its
varied capabilities, constraints, and operating functionalities,
HetNet can improve the network capacity per unit area
through spatial reuse of the spectra. Moreover, the use of
this network reduces energy consumption and is a cost-
effective means of coverage extension with minimal or no
upfront planning [3, 12, 13]. Hence, HetNet is a potential
major capacity enhancer of LTE-Advanced.

The benefits of HetNets, especially PeNBs, in offloading
traffic from MeNBs cannot be sufficiently exploited if an
appropriate cell selection technique [12] is not used in the
system design. In cell selection, user equipment (UE) is
attached to either PeNB or MeNB by using the received
signal strength to be assigned to resources and/or for traffic
offloading. Traffic load balancing and throughput maximiza-
tion are important objectives of cell selection. UE throughput
is measured using the available resources allocated [14, 15]
and the channel quality of the UE. An inverse proportion
exists between the allocated resources perUE and the number
of pieces of UE attached to a given MeNB or PeNB. In
a homogeneous network, cell selection is easy because of
similar transmission power of all MeNBs. Thus, the UE con-
nects to the MeNB with the highest reference signal received
power (RSRP). Assuming a uniform UE distribution within
a coverage area, cell selection can achieve load balancing.
However, in a HetNet with different transmission power
levels, simple reference signal received power (RSRP) cannot
achieve load balance as evident in the homogeneous case.
The higher transmission power of the MeNBs than that of
PeNBs results in wider coverage area. Hence, the UE is more
associated with the MeNBs than with the PeNBs and may
induce traffic load imbalance.

Cell selection based on cell range extension (CRE) bias
is introduced to LTE-Advanced HetNet to mitigate traffic
load imbalance during PeNB-MeNB deployment [16]. This
technique successfully increases PeNB utilization by offload-
ing UE to the PeNBs. However, CRE bias values must be
carefully selected because of the dynamic nature of traffic
distribution and service demand to avoid poor bias setting
[17]. Thus, a cell selection technique that adapts to UE
distribution and load conditions in HetNet is introduced
for load balancing in accordance with the methods for
dynamic deployment of PeNBs-MeNBs. Several algorithms
of this cell selection technique have been studied [6–10].
Gu et al. [6] proposed a practical adaptation algorithm
with resource block utilization ratio (RBUR) as a metric to
estimate load condition in a system. Subsequently, Gu et al.
[7] improved RBUR and proposed RBUR extension (RBUR
ext); in RBUR ext, constant bit rate (CBR) traffic was adopted
to estimate load condition in a system. Moreover, a simple
decentralized adaptive cell association (SDACA) algorithm
was developed using a combination of resource and MeNB
indices to estimate load condition [9]. Q-learning-based
adaptive cell selection using a set of resource blocks (RBs)
and UE distribution was also proposed to represent load

condition in a system [8]. Furthermore, cell selection based
on adaptive control CRE (ACCRE) was presented to estimate
load condition for adaptive cell selection; this algorithm was
based on the SINRofUE and the ratio of the number of pieces
of UE connected to PeNBs and MeNBs [10].

This paper provides a review of adaptive cell selection
techniques in LTE-Advanced to attain improved balanced
traffic and system capacity. Adaptive bias-based cell selection
methods exhibit higher performance than that of static bias
methods. Methods of load estimation, as metric for adaptive
cell selection, are also compared. Moreover, load estimation
is compared among adaptive cell selection methods as a
metric for system performance. Adaptive cell selection based
on the RBUR ext exhibits the optimal performance in load
estimation using CBR traffic compared with estimation using
the number of pieces of UE in other cell selection algorithms.

The remaining portion of this paper is structured as
follows. Section 2 presents the overview of the LTE-Advanced
in HetNets. Section 3 provides a discussion of issues in
MeNB-PeNB deployment. Section 4 enumerates the cell
selection process. Section 5 displays the results of different
examined adaptive cell selection techniques with related
load conditions to determine the effect of unbalanced load.
Section 6 shows a comparison of adaptive cell selection
techniques under different load conditions. Finally, Section 7
imparts the conclusion of the study and suggestions for future
work.

2. Overview of LTE-Advanced in HetNets

The International Telecommunications Union (ITU) has set
requirements for IMT-A radio access technology to improve
its performance compared with the evolved IMT-2000. ITU
aims to satisfy the ever-increasing demand for high data
rates caused by proliferation of mobile devices. The key
considerations of the IMT-A include the following: wide
transmission bandwidth of up to 40MHz and possible
extension to 100MHz; increased peak spectral efficiency up
to about 30 bps/Hz in downlink and 15 bps/Hz in uplink;
reduced latency to less than 10ms in UE; increased data rates
up to 1 Gbps in downlink and 500Mbps in uplink; increased
cell-edge user efficiency up to 0.075 bps/Hz in downlink and
0.05 bps/Hz in uplink; and other considerations related to
deployment flexibility and cost-effectiveness of the overall
system. Radio access technologies that satisfy the IMT-
A requirements are also known as fourth-generation (4G)
wireless access technologies, which are currently deployed by
some mobile service providers [18].

The 3GPP adopted LTE Release 8/9 (LTE Rel. 8/9) as
the baseline for enhancement to comply with the IMT-A
requirements. Enhanced LTE Rel. 8/9 was submitted as a
proposal for IMT-A and then approved by the ITU as a
qualified IMT-A radio access technology, known as LTE-
Advanced (LTE-A Rel. 10/11). The new enhanced features of
LTE-A Rel. 10/11 that exceed the ITU requirements include
the following: carrier aggregation (CA), advanced multiple
input multiple output (MIMO) techniques, coordinatedmul-
tipoint transmission/reception (COMP), relaying, and sup-
port for multitier deployment [5], also known as HetNet.
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Figure 1: MeNB-PeNB deployment scenario [3].

The forecasted high data traffic explosion has prompted
LTE-Advanced to improve network capacity by increasing
node densification [19]. However, intercell interference and
capital expenditure cost associated with high-power node
deployment render this approach as not feasible. These
challenges are addressed by using low-power node technol-
ogy. Low-power nodes are classified as PeNBs, Femtos, and
relays on the basis of their access configuration, transmit
power, or deployment method [3, 13]. A network with a
mixed composition of macrobase station and low-power
nodes, mixed access modes, and backhaul is referred to as
HetNet.

PeNBs are an important component for improving the
overall system capacity when deployed in a local region with
high data traffic. PeNBs refer to low-power nodes deployed
by the operator with backhaul and access features similar
to those of MeNBs (Figure 1). These nodes are normally
deployed in a hotspot area to serve UE within the range of
300m and hold a typical transmission power between 23
and 30 dBm [20]. PeNBs are mainly deployed to improve the
capacity, extend services to indoor or outdoor environments
with coverage holes, and operate in open access mode. Thus,
any user within the network range can automatically connect
to PeNBs. However, the cell splitting gain of a PeNB is
limited by its small transmission power, which allows several
pieces of UE to connect to MeNBs. CRE [21] influences the
offloading of additional traffic to PeNBs for load balancing
and increasing throughput. A positive bias value, called CRE
bias, is added to the RSRP of the UE to extend the coverage
of PeNB transmission within the MeNB (Figure 1). CRE bias
influences the UE to connect to PeNBs as their serving cell
in a maximum (RSRP + CRE bias) cell selection criterion
[22], thereby increasing the offloading gain. CRE bias is set
by compensating the differences between the transmission
power of MeNBs and PeNBs. The CRE bias setting can be
based on UE distribution and traffic models [13]. However,
CRE is limited by the effect of interference from MeNBs,
especially cell-edge UE [23, 24].
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Figure 2: Example of ABS for eICIC [3].

The cell splitting gain of the HetNets can be achieved
when the effects of intercell interference by aggressor cells
on the victim UE are mitigated. For instance, MeNBs
severely interfere with PeNB cell-edge UE in a MeNB-
PeNB CRE scenario. As such, enhanced intercell interference
coordination (eICIC) is employed to mitigate the effect of
interference by the MeNB. The eICIC [3, 25] concept is a
custom-planned technique used to alleviate the potential
downlink interference that may arise in multilayer networks
because of cochannel deployment of MeNBs and PeNBs. In
contrast to LTE Rel. 8, which mitigates interference based
on data signals, LTE Rel. 10 access scheme offers protection
for physical data and control channels by using eICIC. The
eICIC concept refers to the muting of certain subframes of
some MeNBs to reduce interference to other cells (Figure 2)
[3]. The muted subframes are called almost-blank subframes
(ABS). The LTE normal subframes carry both data and
control signals, whereas ABS resources are characterized by
minimum transmission required for backward compatibility
with legacy LTE operation, such as the Common Reference
Signals (CRS) [26], as well as other mandatory system
information. The orientation and number of CRS depend on
the type of ABS used. For instance, theMultimedia Broadcast
Multicast Service Single-Frequency Network (MBSFN) type
ABS is used for Multimedia Broadcast Multicast Service
(MBMS) in LTE. The MBSFN ABS does not contain CRS



4 Journal of Computer Networks and Communications

MME

S-GW P-GW

HSSS1-MME

S1
-M

ME
S1-U

S6a

S1-U S5/S8

X2
PeNB

MeNB

Figure 3: Deployment of the MeNB-PeNB architecture [3].

in the Physical Downlink Shared Data transmission Channel
(PDSCH), where data traffic is transmitted. Moreover, non-
MBSFN is built from normal subframes and contains CRS in
PDSCH [27, 28]. The challenge in using CRE with eICIC is
the optimal selection of the muting ratio with the associated
CRE bias value to increase cell-edge UE throughput, average
UE throughput, and system area throughput.

3. PeNB-MeNB Deployment Challenges

PeNBs are deployed by the operator in the MeNB-PeNB
architecture (Figure 3). The PeNBs are placed in the MeNB
cell-edge or in a hotspot area to improve UE throughput.The
PeNBs hold the same functionalities and protocol stacks as
the MeNBs but transmit with lower power [3]. Both MeNBs
and PeNBs are connected to the Mobility Management
Entity (MME) and Serving Gateway (S-GW) through the S1
interface. The X2-based interface backhaul connects PeNB
andMeNB as well as the neighboring MeNBs and PeNBs [2].
Therefore, this deployment supports both S1- and X2-based
UE handovers, where X2 interfaces facilitate interference
coordination between the MeNB and PeNB. The difference
in transmission power and control signals between MeNB
and PeNB poses numerous deployment challenges in load
balancing and interference management.

The coverage area is not affected by load imbalance in
the uplink because the UE possesses equal transmit power.
In the downlink, the cell that maximizes RSRP is selected as
the serving cell.TheMeNB or PeNB that provides the highest
uplink coverage for UE may not be the best in the downlink,
and the UE cannot select different nodes for the uplink and
downlink. Thus, the problem of selecting the best cell as
serving cell by theUE is imperative [29, 30].TheUEmeasures
and selects the cell with the highest RSRP in the downlink
as its serving cell. Thus, PeNBs will serve a smaller number
of pieces of UE compared with MeNBs because of the small
transmission power of the former. This phenomenon causes
load imbalance because the PeNBs will be underutilized and
the MeNBs will be overloaded. Therefore, CRE is employed
to correct load imbalance in the downlink. However, the
primary challenge of using CRE in the downlink is the
resulting poor setting of the bias value, which results in low
offloading gain because of the small coverage area of PeNB

and severe interference from MeNB, especially to the PeNB
cell-edge UE.

The conventional static bias setting provides a fixed CRE
bias to all UE from the donor MeNB. Basically, the high
CRE bias value implies higher uploading of UE to the PeNB,
whereas the low CRE bias value uploads a small number
of pieces of UE to the PeNBs. Nevertheless, some issues
persist in the static CRE bias setting from the overall system
perspective. The low bias values result in unfavorable system
performance when only minimal UE is offloaded to the
PeNBs because of the small coverage area; thus, the resource
usage opportunity in the PeNBs is not adequately exploited.
The PeNB coverage area is enlarged with a large bias value,
which leads to high number of users being accommodated.
However, the PeNBs experience scheduling outage because
of the large distance of some pieces of UE from PeNBs and
the poor RSRP.Moreover, theUE close toMeNBs experiences
severe interference [29].The offloadedUE cannot achieve the
desired data rate if resources for scheduling are insufficient;
therefore, resource availability is an important factor that
should be considered in designing cell selection algorithms
[31, 32]. Furthermore, bias values in PeNBsmust be optimally
designed to achieve the optimal system performance.

4. Cell Selection

Cell selection is a process in which pieces of UE attach
themselves to the serving cell for communication under
certain criteria. In conventional cell selection, the UE choice
of serving cell is determined by the highest received power
called the RSRP. The MME in Figure 3 [3] is the main entity
in the control plane responsible for the signaling between
the UE and core network. The radio resource control (RRC)
layer controls the information required by UE to access the
first point of entry to the network. The UE at any given
time is in either one of two RRC states: RRC IDLE or
RRC CONNECTED.

In the RRC IDLE state, the UE initiates an RRC connec-
tion which MeNB adopts for communication. This process
is known as cell selection, which is followed by processes
of initial cell detection, received signal strength measure-
ment, reading of system data, and final association. In
the RRC CONNECTED state, this process is initiated and
managed by the network and is known as handover. The
handover in the RRC CONNECTED state depends on the
link quality and other parameters [33]. The architecture of
the MeNB-PeNB deployment supports both S1 and X2 UE
based handovers as depicted in Figure 3. X2 interface acts
as a backhaul that connects the MeNB and PeNB and also
enables interference coordination between the two. However,
given the difference in the power of transmission in the
MeNB-PeNB scenario, a little enhancement in the handover
process is needed to offloadmore data traffic to PeNB. Hence,
cell selection in MeNB-PeNB scenario employed X2-based
handover with CRE bias technique embedded by the MeNB
as part of the handover decision in RRC CONNECTED state
[34].



Journal of Computer Networks and Communications 5

UE eNB (source) PNB (target) 

HO decision

Resource setup

Target cell acquisition

Measurement report

Forward data

HO REQUEST

HO REQUEST ACK

RESOURCE RELEASE

HO COMPLETE

HO COMMAND

Figure 4: X-2-based handover procedure [3].

The MeNB-PeNB X2-based handover procedure is illus-
trated in Figure 4. The RSRP of neighboring MeNBs and
PeNBs is measured by the UE and reported to its serving
MeNB periodically. The handover (HO) decision [13, 35] is
based on the RSRP measurement report. If PeNB holds the
highest RSRP, the handover request (HOREQUEST)message
will be initiated byMeNB and forwarded via the X2 interface.
The PeNB will respond with a handover acknowledgment
(HO ACK) message after receiving the HO REQUEST mes-
sage and preparing radio resources for the UE. The MeNB
will then initiate the acquisition process of the PeNB by
sending an HO COMMAND to the UE.TheMeNB will then
initiate data forwarding to the PeNB to prevent any data
loss. The UE informs the PeNB of the completion of cell
acquisition process with an HO COMPLETE message. After
receiving the HO COMPLETE message, the PeNB sends a
RESOURCE RELEASE message to the MeNB via the X2
interface, signifying the completion of the whole handover
process. The goal of the CRE bias embedding by the MeNB
as part of the handover process in a MeNB-PeNB scenario
is to increase the PeNB coverage such that more UE is
handed over to the MeNB. Given the relatively small power
of transmission of the PeNB, the CRE bias is added to the
RSRP of the PeNB before comparing with the RSRP of the
MeNB [36]. Hence, the MeNB can hand over UE even with a
relatively smaller RSRP value to the PeNB. Consequently, this
occurrence would increase the system cell splitting gain and
the offloading of UE to the PeNB.

5. Adaptive Cell Selection

In this section, adaptive cell selection techniques are dis-
cussed with associated load conditions.The number of pieces
ofUE in the cellmaynot be accurately known in reality to rep-
resent the traffic load conditions in a cell. This shortcoming

may result in a wrong bias value setting. Different techniques
are presented to represent the load conditions that adaptively
decide the bias values to be assigned for optimal throughput
performance. The metrics considered are offloading gain,
cell-edge, and average UE throughputs, respectively.

5.1. Adaptive Cell Range Control with RBUR. The authors
in [6] proposed an adaptive cell range control algorithm
based on RBUR. It more accurately estimates the varying
load condition in each cell than other algorithms to avoid
severe interference to cell-edge UE. As such, the proposed
algorithm achieves throughput maximization and traffic load
balancing in the system.The algorithm dynamically increases
the coverage area of PeNBs using the RBUR to avoid the
unnecessary severe interference associated with the CRE.
Cell-specific offset (CSO), another name of CRE bias, adjusts
the coverage area of PeNBs based on this metric. A threshold
value of RBUR and the initial value of CSO are set, and a new
attempted value of CSO is calculated. A RBUR greater than
the threshold suggests that the MeNB is overloaded, and the
CSO will be increased to offload traffic to PeNB.The increase
in the CSO value is directly proportional to the cell load.

System throughput depends on channel quality and
availability of resources for UE scheduling. Thus, regardless
of channel quality in a high traffic network, the through-
put is determined jointly with the available resources. The
throughput of a given cell is limited by the channel quality
and available resources for low and high traffic, respectively.
Figure 5 compares the cell-edge UE throughput of MeNB
with and without PeNBs at a fixed CSO under different traffic
situations. The cell-edge UE throughput in a hotspot area is
degraded at low traffic volume because of impairment in the
SINR when the PeNB is added. However, the cell-edge UE
throughput increases in high traffic volume because of the
availability of sufficient resources to schedule addition of UE.
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Figure 5: Cell-edge UE throughput with and without PeNB [6].

Given the varying traffic situation in a real network, a fixed
CSO cannot guarantee the optimal throughput performance.
Therefore, adaptive CSO that extends the PeNB coverage
based on the traffic situation can optimally improve the
cell-edge UE throughput. The RBUR CSO will be updated
adaptively to produce a new CSO value that can optimally
improve the cell-edge UE throughput using RBUR metric to
represent the cell load.TheRBUR is lowwhen the throughput
of UE is limited by its SINR, and thus, low CSO is selected to
avoid increasing the number of pieces of UE in the cell-edge.
Conversely, a high RBUR implies that the MeNB is resource
limited, and high CSO is selected to offload more pieces of
UE to the PeNBs with more available resources. Therefore,
the CSO level can be varied depending on the load condition
in the cell.

5.2. Capacity Analysis and Optimization with Adaptive Cell
Range Control Using RBUR. The authors in [7] proposed an
adaptive extension of a PeNB coverage area by adding a CSO
during cell selection.This extension of adaptive RBUR-based
CSO produces a new CSO value that can optimally improve
the overall capacity using RBUR metrics to represent the cell
load.The RBUR, in this case, considers a typical traffic called
CBR services against the number of UE RBUR-based traffic
types in [6]. The RBUR threshold is set for comparison; in
this case, the UE in the cell is considered to be resource
limited, when the RBUR is larger than the threshold and
SINR limited, when the RBUR is lower than the threshold.
This adaptive algorithm adjusts the CSO setting to optimize
the overall system capacity. The CSO setting is periodically
updated in the algorithm. The current CSO value is updated
with a new value instantly, such that the new attempting value
will increase overall capacity. The attempting CSO setting is
obtained by either increasing or decreasing a step relative to
the current CSO.The new CSO that results in the best overall
system capacity is then selected.The graph of normalized cell
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Figure 6: Cell load with different CSOs [7].

loadwith theCSO is shown in Figure 6.The cell load increases
with the increasing CSO in all the PeNBs and decreases with
an increase in CSO in the MeNBs.

The extension of the adaptive RBUR algorithm is simple,
and it exhibits a better throughput and offloading perfor-
mance in the uniform distributed scenario. The extension
holds the ability to adaptively select the CSO from RBUR
measured directly from the network with no feedback from
the UE. The updating algorithm must consider the number
of PeNBs, and, therefore, a coordination betweenMeNBs and
PeNBs is necessary for the algorithm.

5.3. Q-Learning-Based Adaptive CRE with RB Rationing. Q-
learning, a machine learning (ML) technique that may serve
as an alternative to trial-and-error (static)methods of the bias
setting in HetNets, is proposed in [8] to optimally determine
the bias value.Themain feature of Q-learning is the ability to
compare an action with previous actions to give the desired
or intended output through learning without any reference
model of the environment. The ML determines applications
in HetNets with different radio accesses but coexist in the
same environment, where the parameter adjustment poses
a great challenge [37]. Q-learning finds applications in
distributed interference management in multicell networks
[38], resource allocation capacity self-optimization, and cell
selection [39]. In essence, knowledge exchange and intelligent
behavior are two main features of Q-learning. However,
Q-learning is a learning-based algorithm that involves a
repetitive process; hence, memory problems may appear
because of long convergence time. The Q-learning flow is
illustrated in Figure 7. In the concept of Q-learning-based cell
range expansion [8], all pieces of UE act as agents and can
independently decide their bias values to minimize outages.
Q-learning is also distributed because the UE does not share
information unlike the centralized method.The advantage of
the distributed Q-learning method in cell selection is that it
allows UE to create an independent decision on increasing
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the offloading gain by decreasing loads from the MeNBs to
the PeNBs.

The bias values that minimize the number of other
UE outages are decided by the UE in accordance with the
strongest RSRP fromMeNBs or PeNBs with added bias value
and also the available RBUR between MeNBs and PeNBs.
Each piece of UEmakes its decision on selecting optimal bias
values depending on the aforementioned situations using Q-
learning. Learning is enhanced by increasing the number of
stored states in theQ-table, andmemory constraint is avoided
by the use of a priori data to accelerate the convergence.
Figure 8 depicts the performance of the Q-learning approach
compared with the common bias approaches in terms of the
best and fixed bias values in a system-level simulation. The
common bias approaches use the trial-and-error method to
search for the bias value that minimizes the number of pieces
of UE in an outage.The channel condition is dynamic; hence,
the fixed bias approach requires a longer time to converge,
and therefore, it is not suitable for the practical environment.
The overall system throughput of the Q-learning approach

exhibits a better performance when compared with the fixed
bias value approach.

TheQ-learning of the adaptiveCREbias approach focuses
mainly on the machine learning process. The model engages
UE as an agent in multiagent systems that observe its state of
the environment from the corresponding sets in the Q-table.
The UE learns from the previous performance by analyzing
the system parameters. This method is more superior to the
cognitive approach because the UE learns from its previous
performance before accepting a decision. However, the algo-
rithm in Q-learning will be a complicated architecture in
a hotspot area where many PeNBs are deployed for traffic
offload. Moreover, the multiagent system can converge only
when agents are static and, hence, are not suitable for pieces
of UE that are in high speed.

5.4. SDACA. The SDACA method proposed in [9] holds the
advantage of fast convergence on the basis of individual UE
feedback assisted by a broadcast from respective MeNBs.
The method does not require inter-MeNB coordination in
cell association decision. The SDACA method is based on
the expected throughput measured by each piece of UE
when the expected resource bandwidth is broadcasted by
the MeNBs. The resources are categorized and indexed as
either protected or nonprotected using frequency domain
intercell interference coordination (ICIC). A metric based
on the combination of MeNB and resource indices, which
represent an expected increase in throughput, is used by the
UE to determine the cell association. The metric is fed back
toMeNBs on each broadcasted resource, and the UEwith the
highest metric is chosen by the MeNBs before adding to the
resource. Each MeNB updates the cell association based on
the feedback metric. This method also adapts to the variance
in the UE distribution.

The performance of the SDACA method is compared
with twoCRE-based approaches in a system-level simulation:
the CRE-equal bandwidth (CRE-EB), which allocates equal
resources to the UE, and the CRE-proportional fair (CRE-
PF), which allocates resources to maximize the geometric
mean of UE throughput. Figure 9 depicts the cell-edge UE
and average UE throughput as a function of ICIC with the
hotspot UE distribution.The SDACAmethod achieves better
cell-edge UE throughput compared with the two CRE-based
methods regardless of UE distribution.This result is achieved
because the CRE method requires MeNB cooperation in the
selection of a common bias to all PeNBs that will maximize
the cell-edge UE throughput. Therefore, selecting any bias
value may not be optimal.

5.5. Parameter Optimization for Adaptive Control CRE. The
authors in [10] proposed an ACCRE that increases the cell-
edge UE throughput and preserves the average UE through-
put. The method assumed two different CRE bias values in
an easy-to-use approach that results in an optimal CRE bias
to each piece of UE. The two CRE bias values are designated
as CREhigh and CRElow with wide and small coverage areas,
respectively. The cumulative distribution function (CDF) of
the SINR measured by all the UE is used to determine
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Figure 9: Cell-edge and average UE throughputs versus ICIC (𝛼) in
hotspot UE distribution [9].
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Figure 10: CDF of SINR adopted to decide on CSOhigh or CSOlow
[10].

two different CRE biases (Figure 10). The SINR threshold
(SINRth) is assumed to satisfy a certain fixed CDF value 𝛼,
and this condition also holds for the relationship between the
CRE and SINR. Thus, CRElow is applied to UE with SINR
greater than SINRth and CREhigh for UE with SINR lower
than SINRth.The SINR ismeasured by the UE from the RSRP
of MeNBs. The CRElow and CREhigh settings are based on a
previous research on the parameter investigation in [40].

Figure 11 depicts the comparison of the average UE
throughput and the cell-edge UE throughput of the ACCRE
and the conventional cell selection methods. The average UE
throughput decreases with increasing CRE bias (CSO) for
the conventional cell selection methods. ACCRE-based cell
selection is simple; it increases the cell-edge UE throughput
while maintaining the average UE throughput.The algorithm
is clarified relative to the conventional (static) CRE-based cell
selection.
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Figure 11: Throughput performance of the ACCRE algorithm [10].

6. Comparison of the Adaptive Cell
Selection Techniques

Essentially, cell association schemes are intended for traffic
load balancing as well as interference minimization and data
ratemaximization. An effectivemethod for interferencemiti-
gation needs to be incorporated into the cell association algo-
rithm to further enhance the performance of the offloaded
UE, especially for the cell-edge UE. The RBUR algorithms in
Gu et al. [6, 7] are traffic load-aware and channel-aware cell
associations for load balancing and capacity maximization.
The work in [7] considered the traffic loads in both MeNB
and PeNB for adaptive bias setting, whereas the work in [6]
used only the MeNB load condition. The study assumed that
the PeNB is always resourced sufficiently, but this case is not
always true, especially in a hotspot scenario. The ACCRE
scheme in [10] considered only SINR as a criterion for the
cell selection, and the SDACA algorithm in [9] used the
combination of SINR and load condition to maximize the
data rate of UE as a metric for cell association. The load
condition and access probability derived from the schedul-
ing technique employed can seriously affect the system
throughput. For instance, an overloaded PeNB is resource
limited; therefore, offloading even high SINR UE can further
deteriorate the load situation in the PeNB. The Q-learning-
based adaptive CRE algorithm in [8] is based on the amount
of outage reduction to improve both cell-edge and averageUE
throughputs. Although the algorithm considered RB splitting
as a measure for balancing the traffic load and interference
minimization, there was no clear measurement conducted
to maintain a balance between the metrics. Moreover, the
number of outages broadcast from the MeNB through the
backhaul may further add to the traffic load in the backhaul,
and the signal may suffer delay or error from the amount of
backhaul traffic.

The RBUR algorithm in Gu et al. [6, 7] also employed
compensation for the data rate degradation due to interfer-
ence by RB provisioning at the PeNB.There was no provision



Journal of Computer Networks and Communications 9

for the mitigation of the interference experienced by the cell-
edge UE in the RBUR cell association algorithm. The Q-
learning- [8] and SDACA- [9] based adaptive cell association
schemes employed frequent domain ICIC to mitigate the
effect of interference. The latter left a fraction of unused
MeNB spectrum for the protection of PeNB UE and used
all the spectrum for the PeNB. By contrast, the former used
spectrum splitting between PeNB and MeNB, a strategy that
is not optimal. A limitation of spectrum splitting is that
it does not explain the procedure on how to arrive at a
particular splitting ratio. Furthermore, spectrum splitting
restricted the use of the spectrum to a fraction, thereby
reducing the expected throughputs, especially the PeNB
center UE and MeNB UE, which are not severely affected by
the interference. The ACCRE algorithm in [10] used SINR as
a metric for the cell association, and it impacted positively on
the cell-edgeUE throughput and enhanced the overall system
performance.

The existing algorithms of adaptive cell association have
failed to resolve the issue of imbalance between load bal-
ancing and rate maximization. The metrics were considered
separately and not jointly optimizing the combination of
the metrics as a new single metric which will result in
a balanced system and better performance. Notably, the
bias-based adaptive cell association prioritizes the MeNB
through the maximum received signal strength-based cell
selection and by assuming the PeNBs are always resource
sufficient. This assumption is not always true because in
hotspot scenarios, PeNBs are sometimes resource limited.
Therefore, offloading more UE will further deteriorate the
throughput performance. An unbiased cell association, for
instance, the distance-based cell association, prioritizes the
PeNBs and ensures load balancingwhen combinedwith load-
aware or access-aware metrics in a hybrid manner. Optimal
interference mitigation by resource muting or power control
based on the ratio of the cell-edge UE and the MeNB UE
needs to be incorporated into the hybrid algorithm to protect
the offloaded cell-edge UE.

Nevertheless, adaptive cell selection techniques have been
compared in terms of cell-edge UE throughput and average
UE throughput performances. The network-acquired load
estimation for cell association using the RBUR algorithm
adaptively achieves a better throughput performance for the
different UE distributions. As shown in Figure 12, the RBUR-
based cell load estimation proposed by Gu et al. [6] exhibits
higher cell-edge throughput performance despite the use of
the number of pieces of UE to estimate the cell traffic load
condition. This was achieved because the RBUR algorithm
has accurately estimated the load condition that enabled
cell association. Also considering that the load estimate is
acquired from the network side, thus it is immune to feedback
errors. Unlike the first version of the RBUR algorithm, the
RBUR extension proposed inGu et al. [7] considered a typical
CBR traffic service for a more accurate RBUR-based load
estimation; this attribute is responsible for the performance
improvement in terms of average UE throughput.

The Q-learning-based adaptive CRE algorithm in [8] is
based on the amount of outage reduction for improving
both cell-edge and average UE throughputs. Compared with
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Figure 12: Comparison of average UE throughput.

the works of Gu et al. in [6, 7], the Q-learning inputs to
the adaptive algorithm are acquired by UE on the basis
of learning from previous experience. However, despite the
learning ability of this algorithm and its distributed nature,
some serious drawbacks, such as the long convergence time
and feedback errors, exist unlike in Gu et al. works in [6, 7].
Hence, the works of Gu et al. [6, 7] demonstrated improved
performance in terms of cell-edge throughput and average
UE throughput (Figure 12).

Unlike all the other cell selection techniques, the SDACA
algorithm proposed in [9] is decentralized in nature, and
hence the coordination amongMeNBs is not necessary.Thus,
it has better performance of cell-edge UE throughput and
average UE throughput when compared to the Q-learning
algorithm as shown in Figure 12. These attributes make the
SDACA approach converge faster with better adaptation and
control in accordance with the UE distribution. However,
the approach is also associated with the problem of large
signal overheads from feedback and ping-pong handover
by multiple pieces of UE. This is because the effect of
realistic propagation channel is not considered in the SDACA
algorithm.

The centralizedACCRE algorithmwas based onUESINR
[10]; as such, it adopted the ratio of the number of pieces of
UE connected to the PeNBs and MeNB to represent the cell
load metric similar to the algorithm proposed by Gu et al.
[6]. However, despite the simplicity of this algorithm and its
ability to solve the trade-off between cell-edge and averageUE
throughputs, it exhibit drawbacks such as feedback errors and
inaccurate load estimation using a number of pieces of UE.
Thus, the algorithm holds the least cell-edge UE throughput
relative to all the other cell selection techniques explored
(Figure 12). Nevertheless, the approach performs better in
terms of average UE throughput when compared with the Q-
learning and SDACA algorithms.

Table 1 depicts the comparative summary of the adaptive
cell selection techniques, with emphasis on cell load repre-
sentation, as input to the adaptive algorithms.The advantages
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Table 1: A comparative summary of the adaptive cell association schemes.

Proposed
scheme

Algorithm
based on

Cell load
metric

representation

Inputs to cell
association
algorithm

Cell-edge UE
throughput gain

Average UE
throughput gain Advantages Drawbacks

Gu et al., 2013
[6]

Practical
adaptation
based on

cell-edge UE
capacity

Number of
pieces of UE
based RBUR

Network
acquired

Nearly optimal
with 70% gain
over static at

6 dB

Not provided

Simplicity and
immune to

feedback delays
and errors

No criteria for
selecting the cell
load threshold

Gu et al., 2014
[7]

Practical
adaptation
based on
predicted
overall
capacity

CBR traffic
based RBUR

Network
acquired based
on system
capacity
prediction

Not provided
−9.4% gain

compared to the
optimal

Can achieve nearly
optimal

performance in all
cell load conditions

The algorithm
updating

mechanism is
based on trial
and error

Kudo and
Ohtsuki, 2013
[8]

Q-learning
based on the
amount of
outage

reduction

Set of ratio of
RBs and UE
distribution

Distributed:
pieces of UE
learn their
optimal bias

values

61% gain over
no learning

scheme at 20%
PRB

200% gain
compared to

optimal at 40%
PRB

Pieces of UE learn
its bias values from
past experience to
maximize network

throughput

Long
convergence
time makes it
not suitable for
real systems.
Effect of UE
mobility not
considered.

Koizumi and
Higuchi, 2013
[9]

Simple
adaptation
based on
expected
minimum
average UE
throughput

A combination
of MeNB index
and resource
index that

maximizes UE
throughput

Decentralized:
no need for
coordination
among MeNBs

1.3-fold gain
compared to the
no ICIC case

1.3-fold
compared to the
no eICIC case

Faster
convergence,

further enhanced
performance with

eICIC, and
adapting according
to the variation of
UE distribution

Large overheads
due to feedback.

Ping-pong
handover

problem with
multiple pieces

of UE

Kikuchi and
Otsuka, 2013
[10]

Adaptive
control CRE
based on
SINR

Ratio of the
number of
pieces of UE
connected to
PeNBs and
MeNBs

Centralized
based on the
feedback from

UE

Near-optimal
performance

Slightly
above-optimal
performance:
3.3Mbps

compared to
optimal with
3.2Mbps

Simple algorithm.
It has the ability to
solve the trade-off
between cell-edge
UE throughput

and the average UE
throughput

Delay due to
feedback from
UE. Number of
pieces of UE

cannot
accurately
estimate the
cell’s load
condition

and drawbacks of the techniques are also highlighted. The
data show the importance of load estimation in traffic
balancing and data rate improvement. For instance, the
RBURalgorithmpossesses themost accurate load estimation,
which generates a high data rate. Further improvement to the
RBUR algorithmusing CBR traffic load produces an excellent
throughput performancewhen comparedwith the traffic load
estimation based on number of pieces of UE.

7. Conclusion

The HetNets deployment by LTE-Advanced is a technique
employed by 3GPP to improve capacity when other methods
evidently approach their Shannon capacity limits. However,
the main challenge of overlaying PeNBs onto MeNBs in
HetNets is the cell selection; this process results in a nonuni-
form traffic offload. The problem of cell selection in HetNets

is attempted to be resolved using the CRE bias-based cell
selection technique. However, given the dynamic nature of
UE distribution and service demand, the desired goal of
improved cell-edge and overall spectral efficiency cannot
be achieved unless proper bias-based selection techniques
are applied. Cell selection techniques using adaptive CRE
bias algorithms to balance the traffic load for improved data
rates were extensively reviewed in this work. The adaptive
CRE bias-based cell selection with traffic load estimation
offered a better solution for load balancing and improved cell
splitting gain.TheRBUR-based adaptive bias approach exhib-
ited a better load balancing that results in high-throughput
performance when compared with the other adaptive cell
selection algorithms considered in this work. Furthermore,
the RBUR ext algorithm using CBR performed excellently,
and this result is due to the simplicity of the algorithm and
the consideration of the data traffic while estimating load
condition in the cell instead of using number of pieces of
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UE. This finding showed that traffic-load-based estimation
improves the cell splitting gain when using adaptive cell
selection in the downlink.

We suggest that future adaptive bias-based cell associ-
ation be hybridized with the combination of the multiple
metrics reviewed in this work and ensured a balance between
themetrics to optimize systemperformance. Additionally, we
recommend the development of hybrid non-bias-based cell
association algorithm that prioritizes PeNBs. For instance,
combined channel gain-aware and load-aware cell associa-
tion can be jointly maximized with the optimal interference
mitigation technique. This strategy not only would solve
the problem of load balancing but also will result in an
optimal joint uplink and downlink aware cell associationwith
interference mitigation.
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