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Wireless sensor network (WSN) faces severe security problems due to wireless communication between the nodes and open
deployment of the nodes.-e attacker disrupts the security parameters by launching attacks at different layers of theWSN. In this
paper, a protocol layer trust-based intrusion detection system (LB-IDS) is proposed to secure the WSN by detecting the attackers
at different layers.-e trust value of a sensor node is calculated using the deviation of trust metrics at each layer with respect to the
attacks. Mainly, we consider trustworthiness in the three layers such as physical layer trust, media access control (MAC) layer
trust, and network layer trust. -e trust of a sensor node at a particular layer is calculated by taking key trust metrics of that layer.
Finally, the overall trust value of the sensor node is estimated by combining the individual trust values of each layer. By applying
the trust threshold, a sensor node is detected as trusted or malicious. -e performance of LB-IDS is evaluated by comparing the
results of the three performance parameters such as detection accuracy, false-positive rate, and false-negative rate, with the results
of Wang’s scheme. We have implemented jamming attack at the physical layer, back-off manipulation attack at the MAC layer,
and sinkhole attack at the network layer using simulations. We have also implemented a cross-layer attack using the simulation
where an attacker simultaneously attacks the MAC layer and network layer. Simulation results show that the proposed LB-IDS
performs better as compared with Wang’s scheme.

1. Introduction

WSN is widely used in many applications such as industrial
monitoring, environmental monitoring, forest monitoring,
health care, and military. -e architecture of WSN is cat-
egorized into clustered and flat [1]. In the flat architecture,
the sensor nodes (SNs) communicate with the base station
(BS) directly or by relaying the data through other nodes.
When a WSN is clustered, the SNs are arranged within a
specific area by forming a cluster. One node acts as a cluster
head (CH) to control the whole communication between the
nodes. -e SNs communicate with the BS through the CHs.
An SN exchange its information by forwarding the data to its
CH, and then the CH sends the data directly to the BS or

relaying the data through the CHs. Clustering is an im-
portant mechanism in WSN for many advantages such as
energy efficiency, reduction in communication overhead,
delay minimization, better communication, and topology
management.

Security in WSN is a major issue during the past decade
due to open deployment of SNs and wireless communica-
tions between them [2–4]. -e attacker disrupts the security
attributes by launching attacks at different layers. At the
physical layer, a malicious node can be attacked by denial of
service (DoS) attack by jamming the physical channel [5–9].
In this attack, an attacker continuously interferes with the
frequencies used for communication by broadcasting un-
necessary signals. -ese signals jam the network, and a
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genuine node denies to give services because it is busy in
receiving the signals. -e codes in the SN can also be
modified, and the node can be tampered or replaced with an
untrusted node [1, 7]. At theMAC layer [10, 11], the attacker
disrupts the network availability by obtaining unfair channel
priority, collisions, etc. -e MAC layer include many types
of attack such as back-off manipulation attack, RTS/CTS
frame modification, guaranteed time slot attack, and colli-
sions. At the network layer [12–14], the attacker attacks by
disrupting the routing of data from source to the destination
by acquiring control on the data. -e attacker attacks using
selective forwarding attack, sinkhole attack, wormhole at-
tack, black hole attack, sybil attack, etc. Apart from the single
protocol layer attack, there is another type of attack called as
cross-layer attack where multiple layers are attacked [15–17].
IDS plays an essential role in securing the WSN as a second
wall, where it detects the misbehavior of the nodes that
violates the security mechanisms [18–23]. In WSN, it is
difficult to use complex security mechanisms because it
increases the energy consumption of a SN.-erefore, WSNs
are applying light-weight security mechanisms for pro-
tecting the network [24, 25], and IDS is providing a platform
by recording the misbehavior of the SNs and reporting it to
the administrator for taking countermeasures.

IDS is mainly divided into anomaly detection andmisuse
detection [26, 27]. In misuse detection, there is prior
knowledge about the attacks, and it is easy to detect the
attacks. However, it is difficult to detect the unknown at-
tacks. Unknown attacks are detected using anomaly de-
tection. Anomaly detection compares the current operations
of a node with the behavior and status of a normal node to
check the misbehavior. In this paper, we have mainly fo-
cused on the anomaly detection system (IDS). However,
many IDS schemes only work on particular type of attacks
based on a single layer. It is needed to identify the cross-layer
attack where an attacker attacks multiple layers at a time. It is
difficult to identify such type of attacks because the attacker
has different behavior at a time. To improve the detection of
such attacks, the trust metrics are selected at each protocol
layer, and the parameters have a high impact on the per-
formance of the IDS.

We are mainly motivated from the method proposed by
Wang et al. [1]. -e authors proposed an IDS for WSN using
trust-based system. In this model, a trust is separately cal-
culated for each SN at the physical layer, MAC layer, and
network layer using trust metrics. Finally, each layer trust is
combined to form a single overall trust value. -is trust value
is called as the direct trust value of node A on node B, where
node A is the evaluator node or monitoring node. In this
model, the monitoring node calculates the trust value of the
monitored node by using the direct experience with the
monitored node (according to the trust metrics). -is may
reduce the performance of the system by reducing the de-
tection accuracy (DA) and increasing the false-positive rate
(FPR) and false-negative rate (FNR). However, in our model,
we have calculated the trust value of the monitored node by
taking direct experience and the experiences of other nodes
(neighbor nodes) with the monitored node.-is increases the
DA and reduces FPR. If the trust value of a monitored node is

higher than a threshold, then the node is treated as a reliable
or genuine node. -e main motivation is also elaborated with
respect to the three layers as follows. In [1], at the physical
layer, energy consumption is considered as the trust metric
for the trust value calculation. As jamming attack is con-
sidered, a node that jams the network has high energy
consumption due to continuous signal generation. However,
if a genuine node in the communication range has performed
communication for a longer time, then it has a low energy,
and this node is considered as a malicious node [1].-erefore,
we have calculated the trust using the direct experience and
experiences (signal reception) of other neighbor nodes with
the monitored node. At the MAC layer, back-off time is
considered as the trust metric for the trust value calculation.
As back-offmanipulation attack is considered, a node that has
less back-off time will get higher access to the channel for
communication. However, if a genuine node in the com-
munication range sends more messages for communication,
then this node is considered as amalicious node [1], because it
is gettingmore channel priority.-erefore, we have calculated
the trust using the direct experience and experiences (channel
priority) of other neighbor nodes with themonitored node. At
the network layer, the number of hops advertised is con-
sidered as the trust metric for the trust value calculation. As
sinkhole attack is considered, a node that broadcasts less
number of hops is considered as a malicious node. However,
if a genuine node in the communication range has less
number of hops, then this node is considered as a malicious
node [1]. -erefore, we have calculated the trust by using the
direct experience and experiences (hop count advertisement)
of neighbor nodes with the monitored node. -is increases
the DA and reduces the FPR. -is scheme is applicable for
clustered and flat networks. -e main contributions of this
paper are stated as follows:

(1) LB-IDS is proposed to detect the malicious nodes in
the clustered WSN. In this method, a trust value of
an SN is individually calculated at the physical layer,
MAC layer, and network layer using the deviation
of trust metrics. -e deviation is calculated from the
direct experience and experiences of the neighbor
nodes with the monitored node.

(2) -emonitoring node or evaluator node estimates the
trust value of themonitored node using the deviation
factor. -en, the individual trust values of each layer
are combined to calculate the overall trust value of an
SN. -en, the trust value is transferred to the CH.
-en, the CH decides whether the SN is genuine or
malicious using a threshold value. -is trust value is
updated at regular intervals.

(3) -e analysis of LB-IDS is performed in terms of
message complexity, memory overhead, energy
consumption, and trust evaluation.

(4) Simulation results show that LB-IDS performs better
than the model by Wang et al. [1] in terms of DA,
FPR, and FAR. -e performance is analyzed by
considering the jamming attack in the physical layer,
back-off manipulation attack in the MAC layer, and
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sinkhole attack in the network layer, and finally
cross-layer attack is also implemented at the network
layer and MAC layer.

-e remaining portion of the paper is organized as
follows. Section 2 presents the work done in the field of trust-
based security inWSN. Section 3 describes the proposed LB-
IDS model. Section 4 presents the trust estimation at each
layer. Section 5 presents the analysis of the LB-IDS. Section 6
presents the results and discussion. At last, the conclusion
and future work is presented in Section 7.

2. Related Works

Securing wireless sensor network using trust-based schemes
are very effective methods for supporting WSN against the
security threats and vulnerabilities. Many research works are
performed to secure the network using the trust-based
models [28–33]. -e trust-based models mainly use fuzzy
models, probability models, statistical methods, weighting
methods, etc. LB-IDS mainly focuses on the statistical
method where it uses the average and deviation of trust
metrics to detect an attack in a layer.

In [25, 34, 35], to determine the trust degree, the authors
have used the fuzzy theory concept in the network. Feng
et al. [34] proposed a trust evaluation algorithm (NBBTE)
based on banding belief theory. In this scheme, a node finds
the trust value of its neighboring node using the direct and
indirect trust based onmany trust factors.-en, fuzzy model
is used to know the level of trustworthiness of each neighbor
node.-en, DS evidence theory is used to aggregate the trust
values to find a final trust level of a node. Wu et al. [35]
proposed a trust model for securingWSN using fuzzy model
and evidence model. Fuzzy set theory is used for finding
trust level of the sensors, and evidence theory is used for
aggregating the trust value. Shao et al. [25] proposed a trust
model for WSN where the trust recommendations provided
by the sensors are evaluated using fuzzy model. In [36, 37],
the authors calculated the trust value of a sensor node using
probability distribution method. Ganeriwal et al. [36] pro-
posed a method that is based on distributed reputation
framework. It uses watchdog technique to observe behaviors
of nodes. Luo et al. [37] used identity labels for the sensor
nodes to design a dynamic trust management scheme. In
[24, 38–42], the authors used the weighting method for trust
calculation and evaluation. Atakli et al. [38] used weighting
method to detect malicious activity in the network by
maintaining the hierarchy and continuous monitoring.
Shaikh et al. [41] detected the malicious nodes in a clustered
network by finding group trust for a node. Yao et al. [42]
proposed a parameter and localized based trust management
scheme to provide security to WSN. Li et al. [24] proposed a
simple and dependable trust model for clustered environ-
ment of WSN. Jiang et al. [40] used direct as well as indirect
trust for trust calculation of a sensor node in WSN. Direct
trust calculation includes energy, data, and communication
trusts. Indirect trust calculation includes the recommen-
dations from the neighbor nodes for the monitored node.
Ishmanov et al. [43] measured the weightage of misbehavior

of a node for the detection of malicious nodes in the net-
work. Bao et al. [44, 45] proposed a trust model for WSN
using weighting parameters and reduced the false-positive
rate using statistical methods. Zhang et al. [46] proposed a
trust model based on cloud model for clustered WSN.
Rajeshkumar et al. [47] proposed an adaptive trust-based
acknowledgment IDS using active successful deliveries. In
this method, Kalman filter is used to estimate the trust factor
of a node. In [48], we have proposed a physical layer IDS to
provide security at the physical layer. -is method only
detects the denial of service attack due to jamming attack. It
lacks security at MAC layer and network layer.

From the literature discussed above, it is observed that
selecting proper trust metrics to calculate the trust of an SN
is very essential. -erefore, to design an IDS, the behavior of
the nodes should be monitored. In this work, we have se-
lected the proper trust metrics at each layer for trust cal-
culation and detected the behavior of a node according to the
attack. To the best of our knowledge, very less work has been
done in this area to design a protocol layer trust-based IDS.
In this paper, the trust is calculated at each layer by con-
sidering the deviation of trust metrics. -en, the overall
trustworthiness of a sensor node is estimated by combining
the individual trust values.

3. System Model

-e system model describes about the topology and com-
munication, and also about the attack models used in this
work.

3.1. Network Model. -e network model consists of a WSN
that is clustered. A cluster in the network has a CH and SNs.
-e SNs communicate with each other using wireless
communication.-e SNs can directly communicate with the
base station (BS) using wireless communication or indirectly
through other SNs. -e CHs can communicate with each
other using wireless communication. -e CH has high
processing and high computing capability. It is assumed that
the CH has high battery power. In this model, an SN
evaluates its neighbor using the LB-IDS model. -en, the
trust value is periodically transferred to the CH. -e trust is
periodically updated at the CH in Δt time. Here, each node
applies the watchdog technique, where a node monitors its
neighbor nodes continuously by updating the trust value.
Figure 1 shows the clustered WSN framework. -e indi-
vidual trust is calculated at each layer, and it is finally ag-
gregated to generate the overall trust of an SN. -e trust
metrics are considered as the behavior of the nodes at each
layer. -ese parameters are used for trust calculation at each
layer.

-e model for LB-IDS is shown in Figure 2, and the
notations used in this paper are presented in Table 1. In this
model, an SN monitors its neighbor node by estimating the
trust value at each layer such as physical layer, MAC layer,
and network layer. Most of the attacks are mainly on the
network layer because this layer is mainly used for routing
the data in the network [1]. -erefore, we have only
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considered these three layers to estimate final trustworthi-
ness of an SN [1, 48]. Firstly, the trust metrics are chosen to
calculate trust at each layer. -e trust metrics at the physical
layer are energy consumption of an SN and the number of

messages received from the SN. -e trust metrics at the
MAC layer are back-off time and the number of successful
transmission. -e trust metrics at the network layer is the
number of hops advertised. In the later sections, we have

Key parameters for the layers

Physical layer MAC layer Network layer

Energy and
number of messages

received

Backoff time and
number of successful

transmissions
Number of hops

TrustPHY TrustMAC TrustNET

Trust = trustPHY + trustMAC + trustNET

Malicious SN
or

genuine SN

Figure 2: LB-IDS for clustered WSN.

Base station

SN

CH
CH

CH

CH

 Sensor node

Cluster head

Figure 1: A wireless sensor network with CHs, BS, and SNs.
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justified why these parameters are considered for individual
trust calculation at each layer. -e overall trust of an SN is
calculated by aggregating all individual trusts of each layer.
-en, the overall trust value of the SN is forwarded to the
CH. -e CH finds whether the SN is malicious or genuine
using the thresholding scheme.

Let Tjk(t) is the overall trust value of node k at time t,
calculated by node j. -is is represented as follows:

Tjk(t) � λ1 × T
PHY
jk (t) + λ2 × T

MAC
jk (t) + λ3 × T

NET
jk (t),

(1)

where TPHY
jk (t) is the trust calculated at the physical layer

(PHY) by considering the deviation, TMAC
jk (t) is the trust

calculated at the MAC layer (MAC) by considering the
deviation, and TNET

jk (t) is the trust calculated at the network
layer (NET) by considering the deviation. -e sum of the
weight parameters λ1, λ2, and λ3 are 1 (λ1 + λ2 + λ3 � 1). -e
value of individual weight λ ϵ [0, 1].-e values of the weights
are decided according to the IDS, i.e., whenever there is
attack at the physical layer, the λ1 will be considered by the
IDS as 1 and the rest of λ2 and λ3 are considered as 0.
However, at the time of cross-layer attack between the MAC
layer and network layer, λ2 and λ3 values are given equal
weights and λ1 is considered as 0. To reduce the complexity
of the network, we have chosen parameters according to the
requirement. We have considered the minimum number of
parameters that are mostly suitable to detect the attacks at
each layer. -e trustworthiness of a node is updated peri-
odically after a Δt time:

Tjk(t) � μ × Tjk(t−Δt) +(1− μ) × Tjk(t), (2)

where Tjk(t−Δt) represents the past trust value of node j on
node k. -e weight value μ ϵ varies between 0 and 1. -e
value of μ depends on the IDS. -is weight factor describes
the priority of previous trust value and current trust value to
generate the new trust value for a node. From equation (2), it
is observed that the past experience is also considered be-
cause the overall trust should take the previous and current
trust values. In the next section, we have computed the trust
values at each layer.

3.2. Attack Model. In the attack model, we have discussed
those attacks that are used for evaluating the performance
of LB-IDS. -e attacks are described with respect to each
layer such as physical layer, MAC layer, and network
layer.

3.2.1. Attack at the Physical Layer. At the physical layer,
jamming a network is a common security problem where a
malicious node continuously transmits short range signals.
-ese signal transmission create traffic in the network. Due
to this traffic, a genuine node remains busy in receiving the
unnecessary signals and denies other applications. -is is
called as denial of service (DoS). -e attack model can be
represented mathematically as follows:

i � e + m, (3)

where i is the information that may be correct or incorrect
depending on the IDS, e denotes the information expected,
andm denotes the information which has malicious content.
In this layer, energy consumption (Ecm) and the number of
messages received (Nmr) are considered as the i to detect the
malicious nodes in the network. Figure 3 shows the jamming
attack where the malicious node k sends continuous signal to
the genuine node j. In this model, we assume that the
number of messages (nm) generated for a genuine node in a
particular time interval is smaller than the number of
messages generated by a malicious node (nm′), where
nm′ >nm. In this model, the number of messages generated
follows the pseudorandom number uniform distribution
pattern.

3.2.2. Attack at theMAC Layer. At the MAC layer, getting a
channel priority is a major factor. -erefore, we have
considered back-off manipulation attack where the
malicious node attacks the system by modifying the back-
off time. Here, back-off time is random in nature. It is
manipulated by lowering the back-off time, so that the
priority of getting the channel access increases. -is in-
creases the number of successful transmissions (Nst). In
this layer, back-off time (Bt) parameter and the number of
successful message transmission (Nst) parameter are
considered as i to detect the malicious nodes in the
network. Figure 4 shows the back-off time manipulation
attack where the malicious node k sends continuous signal
to the genuine node j by getting the channel priority in less
time.

3.2.3. Attack at the Network Layer. At the network layer,
routing information is mainly affected by the attackers by
advertising incorrect information in the network like the
minimum hop count. In this work, we have considered the
sinkhole attack. In this attack, the malicious node send
regular updates by advertising bogus routing information
like low hop count. From Figure 5, it is observed that the
malicious node 2 advertises minimum hop count to the
destination (to the source node 1). -e node 1 then
forwards the data in the direction of node 2. -e data may

Table 1: Notation and description.

Notations Description
SN Sensor node
CH Cluster head
Tjk(t) Trust value
Λ Weight factor for overall trust calculation
t Time
μ Weight factor for updating trust
Nmr Number of messages received
Ecm Energy consumed
Nst Number of successful transmissions
Bt Back-off time
hp Hop count
Dv Relative deviation
Rec Recommendation
α Weight factor for TPHY

jk calculation
β Weight factor for TMAC

jk calculation
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be selectively forwarded to the next node or all packets are
dropped. We assume that the node advertises the low hop
count information in the route reply packet (RREP)
during route discovery in Ad hoc On Demand Distance
Vector routing protocol (AODV) [1]. -erefore, the
sinkhole attack needs to be detected. In this layer, hop
count (hp) parameter is considered as i to detect the
malicious nodes in the network.

3.2.4. Cross-Layer Attack. In cross-layer attack, a mali-
cious node in the network attacks two or more layers at a
time. In this model, we have considered the back-off
manipulation attack and sinkhole attack at the MAC
layer and network layer, respectively. -e attacker gets
high priority of accessing the channel and advertises
minimum hop count information. -is attack should also
be detected by the LB-IDS. Figure 6 shows the cross-layer
attack by the malicious node k on the MAC layer and
network layer.

4. Estimation of Trust

In this section, we have estimated the trust at the physical
layer, MAC layer, and network layer.

4.1. Estimation of Physical Layer Trust. At the physical layer,
Ecm and Nmr are considered as the trust metrics to calculate
the deviations. -e physical layer of the protocol layer
represents the transmission of bits and receiving of bits [48].
-erefore, energy consumption is a trust metric for the
transmission of or receiving a message of length lM bits.
According to the jamming attack at the physical layer, an
attacker continuously transmits signals or packets, due to
which energy consumption occurs.-erefore, Ecm and Nmr

DIFS DIFS

SIFS SIFS SIFS SIFS SIFSBack-off

Back-off time manipulation

Back-off

RTS RTS

CTS CTSACK

Data Data

Figure 4: Back-off manipulation attack at the MAC layer.

Malicious node
sending incorrect

routing information

Source

Destination

Malicious

Genuine

Source/destination

1

2 3

4

5

6

Figure 5: Sinkhole attack at the network layer.

Sinkhole
attack

Backoff
manipulation

attack

Application

Transport

Network

MAC

Physical

K

Figure 6: Cross-layer attack at the protocol layer.

Malicious Genuine

DoS
Continuous

signal
transfer

k j

Figure 3: Jamming attack at the physical layer.
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are considered as the trust metrics for trust estimation at the
physical layer. Here, the monitoring node j collects rec-
ommendations from its neighbor nodes after the time period
Δt. -ese recommendations are the Ecm and Nmr values
generated by direct experience of the neighbor nodes with
monitored node k. -e average of the recommendations
(Ecm and Nmr) are calculated as follows:

RecEcm �
1
n

􏽘

n

i�1
Ecmn,

RecNmr �
1
n

􏽘

n

i�1
Nmrn,

(4)

where RecEcm and RecNmr are the average of the recom-
mendations collected after Δt time, respectively, and n is the
number of neighbor nodes. -e Ecm provided by the
neighbor node to the monitoring node j is computed by the
energy consumed in transmission during the Δt time and it
is represented as follows [49]:

Ecmbit � current × voltage × time,

EcmNt
� Nt × lM × Ecmbit,

(5)

whereNt is the number of messages transmitted by node k to
the neighbor node. From Nt, we can know the number of
messages received Nmr at the neighbor node.

After calculation of RecEcm and RecNmr, the relative
deviation of the trust metrics of node k (monitored node) are
represented as follows:

DvEcm �
ΔEcmk(t)−ΔRecEcm(t)

ΔRecEcm(t)
,

DvNmr �
ΔNmrk(t)−ΔRecNmr(t)

ΔRecNmr(t)
,

(6)

where DvEcm and DvNmr are the deviations of trust metrics,
respectively. ΔEcmk(t) is Ecmk(t−Δt) − Ecmk(t) and
ΔNmrk(t) is Nmrk(t−Δt) − Nmrk(t). Ecmk(t) denotes the
energy consumed at time t and ΔEcmk(t) is the energy
consumed during Δt time (between node j and node k).

Now, we calculate the individual trust using the Ecm and
Nmr parameters as follows:

T
Ecm
jk (t) �

1−DvEcm(t), if ΔEcmk(t)>ΔRecEcm(t),

1, else,

⎧⎨

⎩

(7)

T
Nmr
jk (t) �

1−DvNmr(t), if ΔNmrk(t)>ΔRecNmr(t),

1, else.
􏼨

(8)

From equations (7) and (8), it is observed that if
ΔEcmk(t) and ΔNmrk(t) are greater than the average values,
then the trustworthiness of the node reduces. -e final trust
at the physical layer is calculated as follows:

T
PHY
jk (t) � α1 × T

Ecm
jk (t) + α2 × T

Nmr
jk (t), (9)

where α1 and α2 belong to [0, 1] and the sum is 1
(α1 + α2 � 1). -e values of α1 and α2 depend on the IDS
system.

4.2. EstimationofMACLayerTrust. At the MAC layer, back-
off time Bt and the number of successful message trans-
mission Nst are considered as the trust metrics to calculate
the deviations.-eMAC layer of the protocol layer is mainly
used for accessing the channel. -erefore, back-off time is a
trust metric for the successful transmission of a message.
According to the back-off manipulation attack in the MAC
layer, a malicious node shortens the back-off time to get
quicker channel access. -en, it successfully transmits the
messages to the neighbor nodes with a high channel priority.
-erefore, Bt and Nst are considered as the trust metrics for
trust estimation at the MAC layer. Here, the monitoring
node j collects recommendations from its neighbor nodes
after the time period Δt. -ese recommendations are the Bt
and Nst values generated by direct experience of the
neighbor nodes with monitored node k. -e average of the
recommendations (Bt and Nst) are calculated as follows:

RecBt �
1
n

􏽘

n

i�1
Btn,

RecNst �
1
n

􏽘

n

i�1
Nstn,

(10)

where RecBt and RecNst are the average of the recommen-
dations collected after Δt time, respectively, and n is the
number of neighbor nodes.

After calculation of RecBt and RecNst, the relative de-
viation of the trust metrics of node k (monitored node) are
represented as follows:

DvBt �
ΔRecBt(t)−ΔBtk(t)

ΔRecBt(t)
,

DvNst �
ΔNstk(t)−ΔRecNst(t)

ΔRecNst(t)
,

(11)

where DvBt and DvNst are the deviations of trust metrics,
respectively. ΔBtk(t) is Btk(t−Δt) − Btk(t) and ΔNstk(t) is
Nstk(t−Δt) − Nstk(t). Btk(t) denotes the back-off time at
time t and ΔBtk(t) is the back-off time during Δt time
(between node j and node k).

Now, we calculate the individual trust using the Bt and
Nst parameters as follows:

T
Bt
jk(t) �

1−DvBt(t), if ΔBtk(t)<ΔRecBt(t),

1, else,

⎧⎨

⎩ (12)

T
Nst
jk (t) �

1−DvNst(t), if ΔNstk(t)>ΔRecNst(t),

1, else.
􏼨

(13)

From equations (12) and (13), it is observed that when
ΔBtk(t) is lesser than average, the node is less trustworthy,
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and when ΔNstk(t) is greater than average the node has less
trustworthiness. -e final trust at the MAC layer is calcu-
lated as follows:

T
MAC
jk (t) � β1 × T

Bt
jk(t) + β2 × T

Nst
jk (t), (14)

where β1 and β2 belong to [0, 1] and the sum is 1
(β1 + β2 � 1). -e value of β1 and β2 depends on the IDS
system. -e value of β depends on the IDS. -ese weight
factors β1 and β2 describe the priority of back-off time and
the number of successful message transmission to generate
the trust value of a node at the MAC layer.

4.3. Estimation ofNetwork Layer Trust. At the network layer,
hop count hp is considered as the trust metric to calculate
the deviation. -e network layer of the protocol layer is
mainly used for routing. -erefore, hop count is used as the
route metric for the successful delivery of the message.
According to the sinkhole attack at the network layer, a
malicious node advertises bogus route information. It may
advertise low hop count in the path for reliable data delivery.
-erefore, hp is considered as the trust metric for trust
estimation at the network layer. Here, the monitoring node j
collects recommendations from its neighbor nodes after the
time period Δt. -ese recommendations are the hp values
generated by direct experience of the neighbor nodes with
monitored node k. -e average of the recommendations
(hp) is calculated as follows:

Rechp �
1
n

􏽘

n

i�1
hpn, (15)

where Rechp is the average of the recommendations collected
after Δt time and n is the number of neighbor nodes.

After calculation of Rechp, the relative deviation of the
trust metric of node k (monitored node) is represented as
follows:

Dvhp �
ΔRechp(t)−Δhpk(t)

ΔRechp(t)
, (16)

where Dvhp is the deviation of trust metric. Δhpk(t) is
hpk(t−Δt) − hpk(t). hpk(t) denotes the hop count at time t
andΔhpk(t) is the hop count duringΔt time (between node j
and node k).

Now, we calculate the individual trust using the hp as
follows:

T
hp
jk (t) �

1−Dvhp(t), if Δhpk(t)<ΔRechp(t),

1, else.

⎧⎨

⎩ (17)

From equation (17), it is observed that when Δhpk(t) is
lesser than the average the node has less trustworthiness.
Here, T

hp
jk (t) is the trust TNET

jk (t) at the network layer.

5. Analysis of LB-IDS

In this section, we have analyzed the message complexity,
memory overhead, energy consumption, and trust evalua-
tion of LB-IDS.

5.1.MessageComplexity. -emessage complexity of LB-IDS
scheme depends on the individual trust calculation of a layer.
Let there exists a clustered WSN, where c denotes the
number of clusters existing, and the average number of SNs
in a cluster is n. If the average number of neighbors for an SN
is p, then n × p communication occurs to calculate the overall
trust values of the SNs in a cluster in Δt time. -erefore, the
message complexity to calculate the overall trust Tjk(t) of all
SNs in a cluster is O(n × p). For c clusters, the time com-
plexity of the clustered WSN is O(n × p × c).

Figure 7 shows the message overhead in a cluster net-
work with 50 SNs. According to LB-IDS, if node j estimate
the trust value of node k then it requires a recommendation
message from those n neighbors those have a direct expe-
rience with node k. -en, the total number of messages N to
compute the trust value of k is n. For 50 SNs, the total
number of messages is 50 × navg, where navg is the number of
average neighbors that provides the recommendation
message. From Figure 7, it is observed that when the number
of average neighbors increases, the number of messages in
the network also increases.

5.2. Memory Overhead. From the above scenario, if a single
cluster is considered, then n × p communication occurs to
calculate the overall trust values in a cluster. If a recom-
mendation message of length lM bits is received from a
neighbor node for trust calculation, then the whole cluster
requires (n × p × lM) memory overhead. Hence, the memory
overhead to calculate the overall trust values of a clustered
WSN is (n × p × c × lM).

5.3. Energy Consumption. From the above scenario, if a
single cluster is considered, then n × p communication
occurs to calculate the overall trust values of a cluster. Let a
message of length lM bits is transmitted from a neighbor
node for trust calculation, and the energy consumed is η
joules. For receiving the message, let energy consumed is ρ
joules. -en, the whole cluster consumes (n × ρ + n × p × η)
joules. -erefore, the energy consumption of the clustered
WSN is (n × ρ + n × p × η) × c joules during Δt time.

Figure 8 shows the energy consumption in a cluster
network with 50 SNs. According to LB-IDS scheme, if a node
j estimates the trust value of node k, then it requires a
recommendation message from those n neighbors those
have a direct experience with node k.-emessage size in this
simulation is considered to be 4 bytes, and the energy
consumption is taken as 3.12 μJ/bit [49]. Hence, for 4 bytes
transmission, 99.84 μJ energy is consumed. For receiving a
message of size 4 bytes, 74.88 μJ energy is consumed because
the energy consumption to receive a bit is taken as 2.34 μJ
[49]. From Figure 7, it is observed that when the number of
average neighbors increases the energy consumption also
increases in the network.

5.4. Trust Evaluation. In LB-IDS, we have considered the
trust calculation of an SN using the direct experience and
experience of the neighbor nodes with node k. -erefore, the
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hybrid of indirect experience and direct experience gives
better detection accuracy because in direct trust computa-
tion, the monitoring node uses only its experience with other
nodes, which may be incorrect.

6. Results and Discussion

�e performance of LB-IDS is evaluated by comparing the
results of the three performance metrics such as detection
accuracy, false-positive rate (FPR), and false-negative rate
(FNR) with the results of Wang’s scheme. Detection accu-
racy calculates the accuracy of IDS in detecting the malicious
nodes. FPR and FNR calculate at what ratio the detection
accuracy is true or false. �e computer simulations are
performed using MATLAB R2015a. �e machine in which

the simulation is performed has 6 Gb RAM, core i7
processor, and Windows 10 platform. �e LB-IDS
scheme is compared with the most recent Wang et al.
[1] scheme, which is also based on protocol layer trust.
�e performance metrics for the simulation are de�ned
as follows:

(1) Detection accuracy: the number of malicious SNs
detected from the total number of malicious SNs
present in the network.

(2) False-positive rate (FPR): the number of genuine SNs
detected as malicious from the total number of
genuine SNs.

(3) False-negative rate (FNR): the number of malicious
SNs detected as genuine from the total number of
malicious SNs.

6.1. Simulation Setup. �e simulation is set in an area of size
100 × 100m2. �e area is considered as a cluster network
with 1 CH and 50 sensor nodes. �e nodes are randomly
deployed using the coordinates (x, y), which are generated
using randi().�e communication range of an SN is set to be
20m. In this simulation, we have considered 4 types of attack
such as (1) jamming attack, (2) back-o�manipulation attack,
(3) sinkhole attack, and (4) cross-layer attack. To evaluate the
LB-IDS scheme, we have varied the attackers from 2–25% of
the SNs. For example, if 10% nodes are added as malicious,
then 5 SNs are malicious in the network. At the physical
layer, an SN is created as malicious by transmitting 1–10
messages of size 4 bytes during Δt time. Similarly, in this
layer, a node is created as genuine by transmitting 1–3
messages of size 4 bytes. �e Nmr is generated using the
randi(). �e energy consumption for sending a bit is
3.12 μJ/bit [49]. At the MAC layer, the malicious SN is
created by setting the back-o� time between 10 and 25 μs.
Similarly, for a genuine node, the back-o� time is set be-
tween 20 and 30 μs. �e Bt is generated using the randi(). At
the network layer, a node is created as malicious by setting
the hp between 1 and 2 and for a genuine node, it is set
between 1 and 5. �e hp is generated using randi(). �e
values of α1, α2, β1, and β2 are set to 0.5. We have considered
equal weightage to all the parameters used for trust calcu-
lation in LB-IDS. When the jamming attack is implemented
at the physical layer, then the value of λ1 is taken as 1 and rest
of λ2 and λ3 are taken as 0. Similarly, for the back-o�
manipulation attack at the MAC layer, λ2 � 1, and the
rest of the λ values are 0. For the sinkhole attack at the MAC
layer, λ3 � 1, and the rest of the λ values are 0. At the time of
cross-layer attack implementation, λ2 and λ3 values are given
equal weights (0.5) and λ1 is considered as 0. Table 2 shows
the simulation setup.

6.2. Results. Figure 9 shows the calculation of trust value of a
malicious node under di�erent types of attacks. It is ob-
served that when a malicious node uses jamming attack, the
trust value is below 0.8. Similarly, when a malicious node
uses back-o� manipulation attack, cross-layer attack, and
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sinkhole attack, the trust values are below 0.74, 0.67, and
0.62, respectively. It is also observed that when the number
of iterations or observations increases, the trust value gains
stability. However, when the number of iteration is between
1 and 4, the trust value fluctuates due to less number of trust
value data. From equation (2), we combined the previous
experience with the current experience, and this leads to
stability of the trust values. -ese trust threshold values are
used to detect the malicious nodes in the network.

Figure 10 shows combined detection accuracy of Wang
et al. [1] and LB-IDS scheme under different types of attacks.
It is observed that the detection accuracy of LB-IDS is greater
than Wang et al. [1] scheme under different attacks. From
Table 3, it is observed that when the number of malicious
nodes increases in the network, the average DA reduces.
When jamming attack is implemented, the average detection

accuracy of Wang et al. [1] and LB-IDS are 87.33% and
89.83%, respectively. When back-off manipulation attack is
implemented, the average detection accuracy of Wang et al.
[1] and LB-IDS are 89.66% and 92.16%, respectively. When
cross-layer attack is implemented, the average detection
accuracy of Wang et al. [1] and LB-IDS are 93.66% and 95%,
respectively. When sinkhole attack is implemented, the
average detection accuracy ofWang et al. [1] and LB-IDS are
95.53% and 96.83%, respectively.

Figure 11 shows the combined result comparison of LB-
IDS with Wang et al. [1] scheme. It is observed that the FPR
of LB-IDS is lower than that of Wang et al. [1] scheme under
different attacks. From Table 4, it is observed that when the
number of malicious nodes increases in the network, the
average FPR increases. When jamming attack is imple-
mented, the average FPR of Wang et al. [1] and LB-IDS are
18% and 15.66%, respectively. When back-off manipulation
attack is implemented, the average FPR of Wang et al. [1]
and LB-IDS are 15.16% and 13.16%, respectively. When
cross-layer attack is implemented, the average FPR of Wang
et al. [1] and LB-IDS are 10% and 8.66%, respectively. When

Table 2: Simulation setup.

Parameters Values
Area 100 × 100m2

Number of SNs 50
Number of malicious nodes 2–25% of SNs
Communication range 20m
Energy for transmit [49] 3.12 μJ/bit
Message size 4 bytes
Nmr for genuine node 1–3
Nmr for malicious node 1–10
Bt for genuine node 20–30 μs
Bt for malicious node 10–25 μs
Nst for genuine node 1–3
Nst for malicious node 1–10
hp for genuine node 1–5
hp for malicious node 1–2
μ, α1, α2, β1, β2 1/2
Number of iterations 10
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Table 3: Average of detection accuracy.

Attacks Wang et al. [1] LB-IDS
Jamming attack (%) 87.33 89.83
Back-off manipulation attack (%) 89.66 92.16
Cross-layer attack (%) 93.66 95
Sinkhole attack (%) 95.53 96.83

10 Journal of Computer Networks and Communications



sinkhole attack is implemented, the average FPR of Wang
et al. [1] and LB-IDS are 8.33% and 6.66%, respectively.

Figure 12 shows the combined result comparison of LB-
IDS with Wang et al. [1] scheme. It is observed that the FNR
of LB-IDS is lower than that of Wang et al. [1] scheme under
different attacks. From Table 5, it is observed that when the
number of malicious nodes increases in the network, the
average FNR increases. When jamming attack is imple-
mented, the average FNR of Wang et al. [1] and LB-IDS are
16% and 15%, respectively. When back-off manipulation
attack is implemented, the average FNR of Wang et al. [1]
and LB-IDS are 13.50% and 11.66%, respectively. When
cross-layer attack is implemented, the average FNR of Wang
et al. [1] and LB-IDS are 6.8% and 6.66%, respectively. When
sinkhole attack is implemented, the average FPR of Wang
et al. [1] and LB-IDS are 8.33% and 6.66%, respectively.

7. Conclusion

-e proposed LB-IDS secures the WSN by detecting the
jamming attack, back-off manipulation attack, sinkhole
attack, and cross-layer attack at the physical layer, MAC
layer, and network layer, respectively. -e threshold values

of the trust at each layer are used for detecting the malicious
nodes and genuine nodes in the network. From the results, it
is observed that LB-IDS performs better than that of Wang
et al. [1] scheme in terms of detection accuracy, false-positive
rate, and false-negative rate. -e analysis for LB-IDS is also
performed in terms of message complexity, memory over-
head, energy consumption, and trust evaluation. LB-IDS will
be a better security solution for the clusteredWSN. In future,
we will implement and validate the proposed LB-IDS using
wireless transceiver modules deployed in an outdoor
environment.
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Table 5: Average of false-negative rate.

Attacks Wang et al. [1] LB-IDS
Jamming attack (%) 16 15
Back-off manipulation attack (%) 13.50 11.66
Cross-layer attack (%) 7.8 5.33
Sinkhole attack (%) 6.8 6.66
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Table 4: Average of false-positive rate.

Attacks Wang et al. [1] LB-IDS
Jamming attack (%) 18 15.66
Back-off manipulation attack (%) 15.16 13.16
Cross-layer attack (%) 10 8.66
Sinkhole attack (%) 8.33 6.66
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