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Zigbee is a very popular technology for Internet of things (IoT) networks mainly because of its low power consumption and low-
cost features. It shares the unlicensed 2.4 GHz Industrial, Scientific, and Medical (ISM) radio band with other wireless networks
such as Wi-Fi. Usually, Zigbee and Wi-Fi networks coexist in indoor environments for their respective applications. Hence, the
coexistence introduces interference for both types of networks lowering the performance of the networks, but Zigbee suffers more
significant performance losses because of its lower transmission power than Wi-Fi. Since the number of IoT devices is increasing at
an unprecedented rate due to numerous emerging applications and thus making the indoor environments very populous, the
peaceful coexistence between Zigbee and Wi-Fi networks in proximity becomes an important research study. For this purpose,
this paper presents a comprehensive performance study of a Zigbee network in the presence of a Wi-Fi interference network in a
real-life apartment-based indoor environment where Wi-Fi access points of dense neighbors exist. The experiments were done in a
XBee module-based Zigbee network for measuring the received signal strength indicator (RSSI), packet drop rate (PDR), and
loopback throughput with and without nearby Wi-Fi traffic introduced on purpose. Various networking parameters such as the
operating channels, the distances between Zigbee devices and Wi-Fi devices, the transmit timeout of Zigbee packets, and the
transmission power of the Zigbee transmitter have been used in the experiments to study the network performance. Our results
show that in the deployment of IoT networks in a smart home, radio interference from neighboring homes would not be an
important factor, but serious considerations may need to be taken inside the same home. The experimental observations of this
paper can serve as a good reference study for Zigbee network deployments in real indoor environments, particularly when

interference sources are present in proximity.

1. Introduction

The concept of networking all the physical objects around us
is gaining popularity day by day, and thus, it introduces
diverse applications of the Internet of things (IoT). There are
several fields where the IoT can play a vital role to improve
the standards of our lives. These fields include home au-
tomation, transportation, environment monitoring, and
healthcare [1]. Since the number of IoT devices is growing at
an unprecedented rate, this is also opening new scopes for
emerging applications resulting in a large amount of data
that further couple with artificial intelligence and offer new
opportunities and green innovations for business sectors
[2, 3]. One study has shown that the number of physical

objects connected to the Internet has exceeded the Earth’s
population in 2010 and the number is still growing [4].
Another study has predicted that the number of IoT devices
is projected to cross 29 billion in 2030 [5]. Therefore, in-
novative and adaptive IoT technologies are developing for
collaborating among different physical devices. Zigbee is one
of such IoT technologies defined by the IEEE 802.15.4
standard. Zigbee is effectively used in many sectors such as
industrial sectors [6, 7], home automation [8, 9], and
medical and healthcare sectors [10, 11] as a popular IoT
technology because of its numerous advantages, for example,
low latency, low power consumption, large scaling capa-
bility, low cost, and flexible topology [12]; however, Zigbee
has gained the ultimate popularity in indoor applications
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where new IoT-enabled devices are adding at an unprece-
dented rate and so the application types to meet customers’
diverse demands.

The application of the IoT technology in home auto-
mation is to interconnect almost everything in a home, such
as cell phones, television sets, washing machines, head-
phones, lamps, wearable devices, and thermostats so that
they work together to make the home comfortable and
accommodating to the residents. The prime goal of an IoT
system is to enable autonomous communications among
physical objects for collaboration and information sharing
among them. This is a challenging task since there are di-
verse and heterogeneous types of IoT devices in indoor
environments or in smart home environments. This is be-
coming more challenging because of emerging application
types such as machine-to-machine communication (M2M).
Moreover, there are a significant number of devices oper-
ating in another commonly used wireless technology,
namely Wi-Fi (IEEE 802.11) in indoor environments. Wi-Fi
in indoor environments is mainly used for the Internet
access, video streaming, etc. Both Zigbee and Wi-Fi pro-
tocols operate in the same 2.4 GHz ISM spectrum band and
thus create potential interference opportunities to each
other. Since the smart home environments (also refer to
indoor environments) are getting populous due to the
growing number of IoT devices that operate with different
IoT technologies such as Zigbee and Wi-Fi, the possibility of
interference among such devices is increasing day by day.
Moreover, Zigbee and Wi-Fi operate at some finite number
of channels in the 2.4 GHz spectrum. Table 1 provides a
comparative analysis of the features of Zigbee and Wi-Fi
technologies.

The increasing number of heterogeneous IoT-enabled
devices and their finite number of operating channels in the
2.4 GHz radio band (e.g., 14 and 16 channels for Wi-Fi-
enabled and Zigbee-enabled devices, respectively) [13] are
making the architecture of the IoT system more complex and
congested than before. This results in an ultimate challenge
to find free channels in the 2.4 GHz band for their opera-
tions, especially in indoor environments where Zigbee and
Wi-Fi networks usually coexist. This situation becomes the
worst where multiple IoT networks such as Wi-Fi and Zigbee
coexist in proximity, resulting in interference with each
other. For example, the operation of a Zigbee-enabled device
can be interrupted badly due to interference from a Wi-Fi-
enabled device and vice versa. However, due to the low
transmission power attribute (typically 1 mW) of Zigbee
devices, they tend to suffer more from interference than Wi-
Fi-enabled devices while operating in the same frequency
band (2.4 GHz in this case). Therefore, the coexistence be-
tween Wi-Fi and Zigbee networks in proximity poses severe
challenges in the case of indoor applications of IoT networks
in environments such as smart homes.

Considering the aforementioned challenges for Zigbee
network implementations in smart homes, this article
presents a comprehensive experimental study of a Zigbee
network to analyze the performance of the network in terms
of the received signal strength indicator (RSSI), packet drop
rate (PDR), and loopback throughput. Moreover, to mimic a
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smart home environment, all experiments were carried out
in a real-life home apartment by changing the operating
channels of both Zigbee and Wi-Fi networks, the distance
between Zigbee and Wi-Fi devices and between Zigbee
devices themselves, the Zigbee transmit power, the Zigbee
packet size, and the transmit timeout of Zigbee packets.
Unlike the existing works such as Refs. [14-19] (discussed
broadly in the related work section) where the system
evaluations are performed either in simulated environments
or in impractical environments, as well as in scenarios that
lack considering some actual real network attributes, such as
interference from other networks and continuous trans-
mission from an interference source, that are very common
in real world, our paper provides experimental results ob-
tained from a real hardware-based experimental testbed
located in an indoor environment. The main contributions
of the paper relate to the performance analysis of a Zigbee
network in the presence of a Wi-Fi interference network. To
get real-world data, we implemented a real hardware-based
Zigbee network using Digi International Zigbee XBee
hardware modules [20]. Moreover, the testbed was built in a
real-world apartment home where Wi-Fi access points of
dense neighbors exist. The actual home Wi-Fi network acted
as the testbed Wi-Fi network for the interference source of
the Zigbee network. Our study and the subsequent empirical
analysis reveal that the neighbor apartments’ Wi-Fi access
points do not act as a severe interference source; however,
necessary considerations, such as the distance between
devices and operating channels, need to be taken when
multiple IoT networks are deployed in the same smart home.
The experimental study of this paper can help determine the
network configurations mentioned above during the de-
ployment of actual Zigbee-based devices in practical indoor
environments, particularly in smart home scenarios where
multiple IoT networks coexist.

Regarding our previous works on this research topic, our
earlier preliminary results were published in a conference
proceeding [21]. Having published the initial results of this
work, we provide here a significantly evolved version of that
work offering more comprehensive experimental results and
empirical analyses overcoming some data limitations of our
earlier work. The rest of the article is organized as follows:
Section 2 provides a summary of the literature review on the
coexistence between Wi-Fi and Zigbee networks; Section 3
presents the components of the experimental testbed; Sec-
tion 4 presents the experiments and results of this study; and
finally, Section 5 concludes the paper with a summary of this
study.

2. Literature Review

Wi-Fi and Zigbee have some overlapping operating channels
in the 2.4 GHz ISM radio band as illustrated in Figure 1.
Therefore, a Wi-Fi network may interrupt a Zigbee com-
munication when they coexist in proximity [22]. For this
reason, the increasing popularity of the Zigbee technology in
short-range communications, especially in indoor applica-
tions, is drawing attention of researchers to study the per-
formance of Zigbee communication and its compatibility
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TaBLE 1: Comparisons between Zigbee and Wi-Fi.

Indices Zigbee

Wi-Fi

Standard
Frequency band
Number of channels

IEEE 802.15.4
(2.4 G, 784 M, 868 M, and 91
16

Data rate 20 kbit/s (868 MHz)-250 kbit/s

10-100 mW
100m (line-of-sight)

Power consumption

Range

Scalability

Typical transmission power
Network topology

Main applications

1 mW
Star, tree, and mesh

Thousands of devices

Automation and control

IEEE 802.11b/g/n
802.11b/g/n-2.4 GHz (2.412 G-2.484G) Hz
11-14
802.11 g-6 to 54 Mbit/s
802.11b-1 to 11 Mbit/s
802.11 n-72 to 600 Mbit/s
10 times more than Zigbee
1000 m (line-of-sight)
Hundreds of devices
50-70 mW (<100 mW)
Mainly star
Local area networking
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FIGURE 1: Zigbee and Wi-Fi channel distribution.

issues with other common indoor wireless networks such as
Wi-Fi networks when they locate at proximity. Various
studies and experiments have been conducted to understand
the impact of the coexistence between Zigbee and Wi-Fi
networks on communication performance. Generally, it is
considered that the impact of interference from Zigbee
networks on Wi-Fi communications is negligible, but in
Refs. [23, 24], the authors have pointed out that in some
cases, Zigbee can significantly impact Wi-Fi communica-
tions. However, as aforementioned, Zigbee as a low power-
based technology suffers more from the Wi-Fi interference.
Therefore, in this research article, we have mainly focused on
the performance of Zigbee communication in the presence
of a Wi-Fi network in a smart home environment.

To clearly and concisely build a discussion on the state of
the art of our research topic, we present some related works
in two subsections: 2.1. is on interference study of Wi-Fi over
Zigbee, and Subsection 2.2. is on potential ways to ensure the
coexistence between Wi-Fi and Zigbee.

2.1. Interference Study of Wi-Fi over Zigbee. Jamming to
IEEE 802.15.4 standardized wireless sensor networks
(WSNs) has been studied in Ref. [25] in which the channel
spacing is changed with respect to the distance of a receiver
to a jammer and a transmitter. This paper empirically shows
that the impact of adjacent channel interference is not trivial.
Although the results of the paper are very interesting, they

do not directly applicable to industrial networks based on
IEEE 802.15.4 specifications. The authors in Ref. [26] have
evaluated the performance of Zigbee networks in terms of
packet loss ratio (PLR) and packet error rate (PER) with the
presence of 802.11b/g interference traffic. The analytical
results presented in this paper provide some insightful
findings on the distance between wireless local area network
(WLAN) and Zigbee nodes and the cochannel interference.
The impact of interference on Zigbee networks with respect
to PLR and average round-trip time (RTT) is studied in Ref.
[27] using overlapped and nonoverlapped channels, but no
method to improve the PLR is proposed. A comprehensive
study on evaluating the impact of continuously changing
communication environments on various networking per-
formances (e.g., RSSI and latency) has been conducted in
Ref. [28] in the presence of multiple obstacles that may lead
to severe degradation of the overall performance of the
network. Eventually, a suitable frame size of the Zigbee
packet is suggested for different situations. The interference
of 802.11 over Zigbee has been studied in Ref. [29] using
Zigbee medical sensors. The effect of adjacent and alternate
channel interference has been investigated in Ref. [14] using
packet drop ratio. However, the interference sources used in
this paper are not continuous, while in our paper, trans-
mission from the interference source (i.e., Wi-Fi) is con-
tinuous, which is very common for wireless
communications in practice.



While all the works discussed above are related to the
coexistence between Wi-Fi and Zigbee networks, some
studies have also been conducted that consist of only Zigbee
networks to understand their performance as wireless sensor
networks in indoor environments. For example, in Ref. [15],
the authors perform the rage and timing test of a customized
radio module in an indoor setting. The paper claims that the
effective range of a Zigbee network is approximately
12 meters based on the results obtained from a series of
experiments in an indoor environment where radios go
through drywalls. However, this conclusion is based on a
specific test case and cannot be implied in real-world
wireless communications as a universal truth. In Ref. [16],
Piyare and Lee evaluate XBee module-based Zigbee wireless
sensor networks of both single-hop and multi-hop networks
and claim that the Zigbee modules are suitable for appli-
cations that require lower data rates. Another work on
evaluating the performance of Zigbee-based WSNs for
temperature and humidity monitoring under different en-
vironments reaches the same conclusion [17]. Results ob-
tained from a testbed in an actual household environment
show that the network performance in the line-of-sight case
is better than in the non-line-of-sight case [18], as expected.

While the works in Refs.[15-18] provide some interesting
results and analyses, they fail to consider some real network
scenarios such as interference from other communication
types that are very common in practice. Besides, in our paper,
we have created a real-world network scenario consisting of
an interferer network, i.e., a Wi-Fi network. Moreover, we
have conducted our experiments in a real-life apartment
environment where the communication scenario is very
complex due to the presence of heterogeneous wireless
networks such as Wi-Fi and Bluetooth in dense neighbors.

2.2. Potential Ways to Ensure the Coexistence between Wi-Fi
and Zigbee. Besides analyzing the interference, some re-
searchers have proposed some potential ways to facilitate the
coexistence between Zigbee and Wi-Fi networks for indoor
environments. The traditional method to mitigate the in-
terference between Zigbee and WLAN is to change the MAC
frame structure or MAC parameters, which increases the
protocol complexity of both technologies. Instead, leaving a
time interval between two consecutive packets of Wi-Fi
traffic has been proposed in Ref. [30]. However, this study
does not offer any appropriate time interval that can be used
as a universal case. Another method called WiseBee is
proposed in Ref. [19] to help the coexistence between Zigbee
and Wi-Fi in IoT systems. The experiment of this paper is
conducted in a simulation environment (i.e., Simulink), not
in a real environment where the communication scenario is
very challenging. One of the popular strategies to cope with
the interferers is to detect the interference and retreat from
the interferers by dynamically adjusting power and
switching operating channels [31]. However, in paper [32],
the authors have shown that channel switching and Wi-Fi
radio power adjustment cannot be an effective way to di-
minish the interference in some scenarios where two het-
erogeneous radio modules (Zigbee and Wi-Fi in this case)
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are placed near to each other. Further, a heterogeneous
network integrating multiple wireless technologies has been
proposed to facilitate Wi-Fi networks accessing Zigbee
communications. A cognitive radio (CR) algorithm for
mitigating the interference of IEEE 802.11 b/g/n network to
IEEE 802.15.4 network is presented in Ref. [33], which is
based on the analytical and empirical packet error rate
(PER).

A comparative study of Advanced Clear Channel As-
sessment and Clear Channel Assessment mechanisms is
presented in Ref. [34]. However, those strategies are not
quite sufficient to reduce collisions due to protocol defi-
ciencies of IEEE 802.15.4. Hence, in Ref. [35], the authors
have demonstrated a reduction of up to 50 percent of IEEE
802.15.4 frame losses under strong interference using a
mechanism called the extended network allocation mech-
anism. Moreover, an adaptive scheme has been designed and
evaluated in Ref. [36] to address the coexistence between
802.15.4 and 802.11b in the case of large-scale sensor net-
work applications. The proposed scheme is based on using
multiple radio channels; however, it is difficult to implement
it in practice since Zigbee uses only a single channel in each
personal area network. BuzzBuzz, a MAC solution, has been
proposed in Ref. [37] using an additional header and payload
to enable the coexistence between Wi-Fi and Zigbee net-
works. This solution is particularly effective to mitigate
Zigbee packet losses due to bit errors, but it needs additional
spectrum resources such as 30% additional bytes.

While some of the works discussed in the above two
subsections provide some interesting results, they still lack
considering numerous wireless communication features that
are present in practice. Most of the works have used either
simulation, whereas the result could not be as effective as in
real-world experiments or used environments that are not
practical. Some of the schemes use extra overhead and
payload for Zigbee, which may need additional spectrum
resources and thus cause complexity. In addition, some of
the previous studies have not considered continuous
transmission from interference source(s) in the case of the
coexistence between Zigbee and interferer networks. On the
contrary, in this research article, we present a set of ex-
perimental results using a XBee module-based Zigbee
testbed in the presence of a continuously transmitting Wi-Fi
network. Moreover, all our experiments were performed in
an actual apartment home mimicking a smart home envi-
ronment where Wi-Fi access points of dense neighbors exist
besides the Wi-Fi access point that we purposefully intro-
duced in the proximity in some experiments. We also
propose some guidelines for the positioning of Zigbee de-
vices and selecting operating channels with respect to the
interference network (a Wi-Fi network in our case) in a
smart home environment, particularly when the Zigbee and
interference networks are present in proximity.

3. Overview of the Experimental Testbed

All of the experiments in this study were done in an indoor,
apartment environment. The testbed comprised two IoT
networks: a Zigbee network and a Wi-Fi network. We used
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Digi XBee Zigbee Mesh Kit [20] from Digi International for
the Zigbee network. The Digi International’s XBee Con-
figuration and Test Utility (XCTU) [38], a free multiplatform
application, was used to configure Zigbee modules and to
generate Zigbee traffic between the transmitter and receiver
modules. Communication between the XCTU software and
XBee modules was performed through the XBee USB in-
terface connected to a personal computer (i.e., a laptop)
using a USB cable as shown in Figure 2. The reasons behind
using Digi’s XBee Zigbee modules are that they are quite
popular among research communities for Zigbee experi-
mentations in different environments [39-41] including
indoor environments [30, 42-45] and that they are low-cost
devices. Moreover, the manufacturer states that their
modules can interact with other standard Zigbee modules or
devices [46]. Hence, it is reasonable to use XBee modules as
Zigbee products in our experiments.

In our experiments, the coordinator device and the
end device act as a Zigbee receiver (RX) and a Zigbee
transmitter (TX), respectively. For the rest of the paper,
we refer to XBee Zigbee modules as either XBee modules
or Zigbee modules and transmitter and receiver as
transmitter/TX and receiver/RX, respectively. In addition
to the Zigbee network, a Wi-Fi network was deployed
using a home Wi-Fi router, which acted as a Wi-Fi access
point, along with two smartphones running the Iperf
version 3 software [47] to generate and receive Wi-Fi
traffic. It is worth mentioning here that we used the TCP
data traffic mode of the Iperf to generate the TCP traffic
from one Wi-Fi-enabled smartphone to the other. Figure 3
shows the experimental setup for our testbed, where d,
denotes the distance between the Zigbee TX and the
Zigbee RX, d,,, represents the distance between the Zigbee
RX and the Wi-Fi TX, and d,, indicates the distance
between the Wi-Fi TX and the Wi-Fi RX. Some of our
experiments were done with the topology in Figure 3(a)
where no Wi-Fi transmitter was introduced in the
proximity; some others were done with the topology in
Figure 3(b) where a Wi-Fi transmitter was placed in the
proximity of the Zigbee receiver.

4. Experiments and Results

In our experiments, an experimental testbed comprising a
Zigbee network and a Wi-Fi network, as shown in Figure 3,
was deployed in an apartment home. The performance data
of the Zigbee network were collected and analyzed under
various testbed settings and performance metrics.

We divide the data measurements and analyses into two
sections: Section 4.1, Zigbee Baseline Study; and Section 4.2.,
Zigbee Performance Study. The experiments presented in
Section 4.1 were carried out before the experiments in
Section 4.2 so that some parameters such as the transmit
timeout of Zigbee packets can be studied first. The pa-
rameters such as the transmit timeout of Zigbee packets
determined in Section 4.1 were used for the experiments in
Section 4.2. The experiments together are used to study
Zigbee performance with and without the presence of nearby
Wi-Fi traffic.

F1GURE 2: Interfacing XBee module to the XCTU via USB cable.

4.1. Zigbee Baseline Study. One purpose of this baseline
study was to determine a transmit timeout for the Zigbee
frames when no Wi-Fi traffic was present. We tried to
determine a Zigbee packet transmit timeout that offers a
high loopback throughput and a Zigbee packet transmission
interval that offers a low packet drop rate (PDR). This study
also provides some baseline data for the other experiments.
The experimental setup shown in Figure 3(a) was used in
these experiments.

4.1.1. Baseline Study with Packet Drop Rate (PDR)
Measurement. One XBee module was configured as a Zigbee
end device (also as Zigbee TX), which transmitted Zigbee
frames to the Zigbee coordinator device that acted as the
receiver and counted the number of successfully received
packets over the transmission period. The PDR measure-
ment was conducted using unidirectional traffic; data frames
were transmitted only from the end device to the
coordinator.

In the experiments, the distance between the Zigbee TX
and the Zigbee RX, i.e., d,, was varied in a range from
approximately 0 meters to 5meters. Each experiment was
repeated three times with the same parameter settings for an
average. The experiments were carried out for four different
Zigbee packet transmission intervals such as 100 ms, 200 ms,
400 ms, and 500 ms. In each transmission period, 200 Zigbee
frames were transmitted from the Zigbee TX to the Zigbee
RX and the number of successfully received packets was
counted by the XCTU at the receiver side. The PDR was
calculated using the following formula:

P, -P
Packet Drop Rate PDR (%) % x 100, (1)

Tx

where Py, is the number of Zigbee frames transmitted by the
Zigbee TX, and Py, is the number of successfully received
packets by the Zigbee RX. The configurations used in the
experiments in this section are listed in Table 2.

Figure 4 shows the results of packet drop rate (PDR) vs
d, that were obtained from the experiments. We can see
from Figure 4 that the PDR for a packet transmission in-
terval of 500 ms is, on average, smaller than that for other
packet transmission intervals, which are 100 ms, 200 ms, and
400 ms, although the PDRs are very close to each other under
the same transmission distance. Note that there were always
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FIGURE 3: Testbed topologies: (a) Zigbee without a nearby Wi-Fi network. (b) Zigbee with a nearby Wi-Fi network.
TaBLE 2: Parameters for the experiments in Section 4.1.1.
Parameters Zigbee Wi-Fi
Operating channel 12
Transmit Power, P, 8dBm No Wi-Fi traffic
Payload size 64 bytes
Distance between the Zigbee transmitter and receiver d,=0m-5m (approximately)
Traffic mode Unidirectional

Packet Drop Rate, PDR (%)

-0.5 1 1 1 1

0 0.5 1 1.5 2

1
2.5 3 3.5 4 4.5 5

Distance between Zigbee TX and RX, d, (m)

Unidirectional Traffic Mode

-©- Transmission Interval = 100 ms
=~ Transmission Interval = 200 ms

-~ Transmission Interval = 400 ms
-6~ Transmission Interval = 500 ms

FIGURE 4: PDR versus d, for a range of transmission intervals.

some unrecovered losses at every distance. This was probably
because of environmental noises such as the Wi-Fi traffic
from the access points of dense neighbors in the building.

The authors in Ref. [30] did some experiments to assess
the Zigbee packet arrival rate in the presence of Wi-Fi in-
terference and with various Zigbee data transmission in-
tervals, but they used an environment and network
parameters different from ours.

4.1.2.  Baseline Study with Loopback  Throughput
Measurement. Throughput is a vital performance metric of a
communication network that measures the data transfer rate
between two radio modules located in the same network. We
used the hardware loopback setup in the XCTU to test bi-
directional data on the link. The XCTU software package’s
built-in “throughput tool” [38] was used in our experiments.
For this experiment, a XBee module was configured as a local
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radio module that acted as a Zigbee transmitter and another
XBee module was configured as a remote radio module that
acted as a Zigbee receiver in the same network to perform a
loopback throughput measurement. A hardware loopback
was created by connecting the DOUT pin to the DIN pin on
the receiver XBee module so that the receiver module could
echo back a successfully received frame transmitted by the
host PC, which was connected to the transmitter module [38].

In the experiments, Zigbee frames with a payload of
64 bytes were transmitted with four different Zigbee packet
transmit timeouts (100 ms, 200 ms, 400 ms, and 500 ms)
from the local XBee module to the remote XBee module. The
experiments were also carried out at various distances be-
tween the Zigbee TX and the Zigbee RX, d, (approximately
Om to 5m). In each experiment, 200 Zigbee packets were
transmitted from the local device to the remote device and
each experiment was repeated three times for an averaged
performance. The main configurations used in the experi-
ments are shown in Table 3. The loopback throughput data
were collected from the XCTU controlling the local XBee
module. The throughput was defined based on the following
formula:

8 * Number of bytes successfully echoed (E)

Through put =
rougiipy Transmission period

sec

(2)

The results obtained from the experiments are shown in
Figure 5 as a loopback throughput vs d,, graph. The figure
shows that the loopback throughput with the packet
transmit timeout of 500 ms is higher than that with other
packet transmit timeouts, which are 100 ms, 200 ms, and
400 ms. A longer packet transmit timeout thus helped to
improve the loopback throughput in the experiments. In-
terestingly, a packet transmit timeout of 100 ms resulted in
nearly zero loopback throughput, which showed that the
packet transmit timeout of 100 ms was too small compared
with the round-trip time in the loopback setup.

As aforementioned, in this baseline study, we mainly
focused on testing XBee modules under different Zigbee
packet transmit timeouts and transmission intervals, par-
ticularly to determine a transmit timeout and a transmission
interval for Zigbee frames under an ideal condition, i..,
when no Wi-Fi traffic was present. There is a similar set of
experiments presented in Ref. [16] aiming to assess the
throughput of a XBee module as a function of the baud rate
and the packet length. However, the parameters and other
communication settings are quite different from ours. For
instance, we measure the loopback throughput of the Zigbee
network with bidirectional traffic flow, which is different
than the regular throughput measurement as presented in
Ref. [16]. Moreover, we evaluate the performance of a XBee
Zigbee module under various distances between Zigbee TX
and RX with a fixed Zigbee payload size.

4.2. Zigbee Performance Study. The experiments in this
section were conducted to measure the network

performance in terms of the received signal strength indi-
cator (RSSI), packet drop rate (PDR), and loopback
throughput. The Zigbee transmit timeout (500ms) and
transmission interval (500 ms) determined in the previous
section were used to carry out the experiments in this
section. The experiments also used other communication
parameters, such as the distance between the Zigbee
transmitter and its receiver, the distance between the Zigbee
receiver and the Wi-Fi transmitter, the Zigbee transmission
power, and the operating channels of the Zigbee and the Wi-
Fi networks. The topologies used in these experiments are
shown in Figure 3.

4.21.  Received Signal Strength  Indicator  (RSSI)
Measurement. The received signal strength indicator (RSSI)
is an important performance indicator for a receiver in a
communication network. Our experiments measured the
performance of the Zigbee link in terms of its RSSI values at
the receiver. In the experiments, we used various distances
between the Zigbee TX and the Zigbee RX, d,, and various
Zigbee transmission powers, P,. The experiments were
performed according to the topology in Figure 3(a).

In the experiments, the Zigbee transmitter was config-
ured to transmit 200 frames each with a payload size of 50
bytes. When the Zigbee receiver module received a packet, it
sent back an acknowledgment to the Zigbee transmitter. The
RSSI values at both the local module (the Zigbee TX) and the
remote module (the Zigbee RX) were measured. Each ex-
periment was repeated three times for the averaged RSSI
values. Five different values of the transmission power were
used in the experiments, which were 8 dBm, 5dBm, 1 dBm,
—1dBm, and -5dBm. Other experimental configurations
used in the measurements are shown in Table 4.

Figure 6 shows the RSSI data versus the transmission
distance, in a range of approximately 0 meters to 6 meters.
The data in the figure show the RSSI values for five different
values of the transmission power, P,. As anticipated, the
RSSI values decrease with the increase in the transmission
distance. The figure also shows that the RSSI drops fast in the
first couple of meters and then slows down in decreasing for
longer transmission distances.

4.2.2. Packet Drop Rate (PDR) Measurement. The experi-
ments presented in this section were done to study the
adverse effects of nearby Wi-Fi transmissions on a Zigbee
network in terms of packet drop rate (PDR). The experi-
ments were first done without the nearby Wi-Fi transmis-
sions for reference and then with the Wi-Fi transmissions for
comparison.

(1) Packet Drop Rate (PDR) Measurement without the Wi-Fi
Transmissions. There were no nearby Wi-Fi transmissions
for the experiments shown in this section. The experiments
were conducted using the topology in Figure 3(a). In the
experiments, the distance between the Zigbee transmitter
and its receiver, d,, was varied between approximately 0
meters and 6 meters, and the data were collected to measure
PDR using the same procedure as described in Section 4.1.1.
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TaBLE 3: Parameters for the experiments in Section 4.1.2.

Parameters Zigbee Wi-Fi

Operating channel 12

Transmit power, P, 8dBm -

Payload size 64 bytes No Wi-Fi traffic

Distance between the Zigbee transmitter and receiver
Traffic mode

d,=0m-5m (approximately)
Bidirectional, loopback

5000 T T T T

4000

Loopback throughput (bit/sec)
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0B— - © © © © D
1 1 1 1 1 1 1 1 1
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Distance between Zigbee TX and RX, d, (m)

Bidirectional Traffic Mode

-©- Packet Transmit Timeout = 100 ms
A~ Packet Transmit Timeout = 200 ms

-~ Packet Transmit Timeout = 400 ms
-6~ Packet Transmit Timeout = 500 ms

F1Gure 5: Throughput versus d, for a range of packet transmit timeouts.

TABLE 4: Parameters for the experiments in Section 4.2.1.

Parameters Zigbee Wi-Fi
Operating channel 12

Transmit power, P, 8, 5,1, -1, =5) dBm e
Payload size 50 bytes No Wi-Fi traffic
Distance between the Zigbee transmitter and receiver d,=0m-6m (approximately)

Traffic mode Unidirectional

RSSI (dBm)
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=7~ Transmit Power, P, =5 dBm
-Q- Transmit Power, P, = 1 dBm

-8~ Transmit Power, P, = -1 dBm
-B- Transmit Power, P, = -5 dBm

FIGURE 6: RSSI versus d, for a range of transmit power.
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In each experiment, 200 Zigbee frames were transmitted,
and each experiment was repeated three times for averaging.
Parameters used in the experiments are shown in Table 5.

The PDR data obtained in the experiments are shown
against the transmission distance, d,, in Figure 7. When
there were no nearby Wi-Fi transmissions, the highest PDR
was about 1.67% as shown in the figure. The results imply
that the PDRs were low when there were no nearby Wi-Fi
transmissions. The PDR, in general, increases with the
distance, as expected.

(2) Packet Drop Rate (PDR) Measurement with Nearby Wi-Fi
Transmissions. In the experiments presented in this section, a
Wi-Fi transmitter was introduced in proximity to the Zigbee
receiver as shown in Figure 3(b). The Wi-Fi transmitter
acted as an interference source that was continuously
transmitting Wi-Fi traffic during the experiments. Based on
the Zigbee and Wi-Fi channel distributions shown in Fig-
ure 1, the experiments were carried out to study three in-
terference cases:

(1) Overlapping channels (Zigbee channel 12 and Wi-Fi
channel 1);

(2) Adjacent channels (Zigbee channel 14 and Wi-Fi
channel 1); and

(3) Nonoverlapping channels (Zigbee channel 12 and
Wi-Fi channel 11).

Table 6 presents the experimental parameters used in the
experiments shown in this section. In the experiments, the
Iperf tool was used to measure the Wi-Fi average link speed
in the channel. In each experiment, 200 Zigbee frames were
transmitted from the Zigbee transmitter to its receiver. Each
experiment was repeated three times to obtain an average.

The collected data of PDR are shown against the distance
between the Zigbee receiver and the Wi-Fi transmitter, d,, ,
in Figure 8. In the case of nonoverlapping channels, the PDR
of the Zigbee network was near zero (0.17%) at d,, of
approximately 0 meters and 0.5 meters. The packet drop rate
only slightly increased with the increase in the distance,
which was caused by the attenuation of Zigbee signals over
distance. The data show that the Wi-Fi network operating in
a channel nonoverlapping with that of the Zigbee network
had a negligible impact on the Zigbee network.

The situation changed when the two networks operated at
overlapping channels and adjacent channels. In the case of
adjacent channels, the PDR of the Zigbee network was se-
verely or significantly high when the Wi-Fi transmitter was
within 3 meters of the Zigbee receiver. The PDR became very
low after the Wi-Fi transmitter was moved out of the range of
3 meters. The situation became worse when the two networks
used overlapping channels. As shown in Figure 8, the PDR of
the Zigbee network was severely high when the Wi-Fi
transmitter was within 5 meters of the Zigbee receiver; at
3 meters, the PDR was close to or more than 90%. The PDR
was still significant when the Wi-Fi transmitter was at
6 meters to the Zigbee receiver. During the experiments, the
Zigbee transmitter and the Zigbee receiver sometimes became
even disassociated due to heavy Wi-Fi interference traffic.

4.2.3. Loopback Throughput Measurement. This section
presents a set of experiments studying the adverse effects of
nearby Wi-Fi transmissions on a Zigbee network in terms of
loopback throughput. The experiments were first done
without the nearby Wi-Fi transmissions for reference and
then were done with the Wi-Fi transmissions in proximity.

(1) Loopback Throughput Measurement without Nearby Wi-
Fi Transmissions. The experiments presented in this section
were conducted to understand the behavior of the Zigbee
network when there were no nearby Wi-Fi transmissions. In
the experiments, the topology in Figure 3(a) was used, and
the distance between the Zigbee transmitter and the Zigbee
receiver, d,, was varied in the range of approximately 0
meters to 6 meters. Each experiment was done with the
transmission of 200 Zigbee loopback packets from the
Zigbee TX to the Zigbee RX with the XCTU’s built-in
“throughout tool” [38]. Each experiment was repeated three
times for an average throughput data. The parameters used
in the experiments are listed in Table 7.

The throughput data obtained in the experiments are
shown against the transmission distance, d,, in Figure 9.
When there was no nearby Wi-Fi traffic, the highest
throughput of 3379.2bps was found at the transmission
distance of about 0 meters. The lowest throughput occurred
at the transmission distance of about 6 meters, which was
2426.88 bps. Explicitly, the loopback throughput, in general,
decreases with the distance.

(2) Loopback Throughput Measurement with Nearby Wi-Fi
Transmissions. Experiments introduced in this section were
performed according to the topology in Figure 3(b), where a
Wi-Fi transmitter was placed in proximity of the Zigbee
receiver. In the experiments, the loopback throughput be-
tween the Zigbee transmitter and its receiver was obtained.
There were three interference cases in the experiments:

(1) Overlapping channels (Zigbee channel 12 and Wi-Fi
channel 1);

(2) Adjacent channels (Zigbee channel 14 and Wi-Fi
channel 1); and

(3) Nonoverlapping channels (Zigbee channel 12 and
Wi-Fi channel 11).

The parameters used in the experiments are shown in
Table 8. In each experiment, 200 loopback Zigbee frames
were transmitted from the Zigbee TX to the Zigbee RX. Each
experiment was repeated three times for average throughput
data. Figure 10 shows the throughput as a function of the
distance between the Zigbee RX and the Wi-Fi TX, d,,, for
the above-mentioned three interference cases. In the case of
nonoverlapping channels, the loopback throughput of the
Zigbee network was not significantly affected by the nearby
Wi-Fi transmissions. However, the other two cases were
different.

In the case of adjacent channels, the loopback
throughput increased gradually as the distance between the
Wi-Fi transmitter and the Zigbee receiver increased from
approximately 0 meters to 3 meters. For the distances over 3
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TaBLE 5: Parameters for the experiments in Section 4.2.2 (1).

Parameters

Zigbee Wi-Fi
Operating channel 12
Transmit Power, P, 8dBm No WiFi traffic
Payload size 64 bytes
Distance between the Zigbee transmitter and receiver d,=0m-6m (approximately)
Traffic mode Unidirectional
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F1GURE 7: PDR vs d, without nearby Wi-Fi transmissions.
TABLE 6: Parameters for the experiments in Section 4.2.2 (2).
Parameters Zigbee Wi-Fi
Interference case 1 12 1
Operating channel Interference case 2 14 1
Interference case 3 12 11
Transmit power, P, 8 dBm -
Payload size 64 bytes -
Average link speed — 18.8 mbps
Traffic mode Unidirectional —
Distances between Zigbee and Wi-Fi devices d; =1m, d, =1 i dzy =0m-6m
(approximately)
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FIGURE 8: PDR versus d,,, for three interference cases.
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TaBLE 7: Parameters for the experiments in Section 4.2.3 (1)

Parameters Zigbee Wi-Fi
Operating channel 12

Transmit power, P, 8dBm

Payload size 64 bytes No Wi-Fi traffic
Distance between the Zigbee transmitter and receiver d,=0m-6m (approximately)

Traffic mode Bidirectional
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FIGURE 9: Loopback throughput versus d, without nearby Wi-Fi transmissions.

TaBLE 8: Parameters for the experiments in Section 4.2.3 (2)

Parameters Zigbee Wi-Fi
Interference case 1 12 1
Operating channel Interference case 2 14 1
Interference case 3 12 11
Transmit power, P, 8dBm —
Payload size 64 bytes —
Average link speed — 18.8 mbps
Traffic mode Bidirectional —
d, =1m,d, =1m, d,, =0m-6m

Distances between Zigbee and Wi-Fi devices

(approximately)

meters, the throughput became relatively stable in the test
range of up to 6 meters as shown in Figure 10. In the case of
overlapping channels, the loopback throughout was close to
zero when the Wi-Fi transmitter was within 3 meters of the
Zigbee receiver. The throughput gradually increased after
the distance of 3 meters. In the tested range, the throughput
in the overlapping channel case was always below that in the
adjacent channel case for the same distance between the Wi-
Fi transmitter and the Zigbee receiver.

As discussed earlier, our Zigbee performance study was
aimed to rigorously assess the performance of the Zigbee
network, first without any interference network and then
under Wi-Fi interference. Numerous studies were per-
formed to evaluate the Zigbee network performance under
Wi-Fi interference as we have discussed in the “Literature
Review” section. However, the testbed environments,

network settings, performance metrics, and the goal of those
studies are different from ours. For example, the authors in
Ref. [30] evaluate the impact of Wi-Fi interference on a
Zigbee network with respect to the Zigbee arrival rate for
various distances between Zigbee nodes. Unlike the work in
Ref. [30] where only one interference case was considered,
we rigorously measured the PDR of the Zigbee network
under three different interference conditions and provided
detailed comparisons. The RSSI values of a Zigbee network
were measured under no interference in Refs. [28, 48] for
various distances between Zigbee nodes. We, however, ex-
tensively analyzed the impact of distances on Zigbee’s RSSI
for five different Zigbee transmit powers. Besides, unlike the
works in Refs. [16, 48] where the throughput of Zigbee was
measured under an ideal environment, no interference
environment, and a simulated environment, respectively,
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our paper presents a detailed, empirical analysis and com-
parisons among various interference cases, i.e., no inter-
ference, overlapping channel interference, adjacent channel
interference, and nonoverlapping channel interference in a
testbed located in a real apartment home environment.

5. Conclusion

In this paper, we present the results of an experimental study
on the performance of a Zigbee network in an environment
where Wi-Fi access points of dense neighbors exist besides a
nearby one introduced on purpose. Our experiments were
conducted in an apartment building where each of the
closely spaced neighbors was supposed to own a Wi-Fi access
point. Besides considering a robust environment, we per-
formed all our experiments in a real hardware-based testbed.

We first conducted some baseline experiments without
introducing a nearby Wi-Fi transmitter on purpose. In the
experiments, we measured the packet drop rate of unidi-
rectional traffic and the throughput of bidirectional traffic in
the Zigbee network. We varied the distance between the
Zigbee transmitter and its receiver during the experiments.
We also varied the transmission power of the Zigbee
transmitter in some experiments. The goals of these ex-
periments were to determine a suitable Zigbee transmit
timeout and an appropriate Zigbee transmission interval
under an ideal environment, i.e., without any nearby Wi-Fi
interference.

After that, we did some experiments with a Wi-Fi
transmitter introduced in the proximity of the Zigbee re-
ceiver. We focused on three interference cases in our ex-
periments. The first case was that the Zigbee network and the
Wi-Fi network used channels that did not overlap with each
other and were relatively far away from each other in the
spectrum. The second case was that the channels were ba-
sically adjacent but not severely overlapped. In the third case,
the channels were fully overlapping.

By comparing the experimental data obtained from the
experiments in which a Wi-Fi transmitter was not intro-
duced on purpose in the proximity of the Zigbee receiver
with the results obtained from the experiments with such an
introduced Wi-Fi transmitter, we found that neighbors” Wi-
Fi access points did not severely interfere with the operation
of a Zigbee network in an apartment home. So, the de-
ployment of IoT networks in a smart home would not need
to seriously consider the neighbors’ radio interference.
However, the data from the experiments in which a Wi-Fi
transmitter was introduced in the proximity of the Zigbee
receiver show that considerations need to be taken when
multiple IoT networks are deployed in the same smart home.
The factors include the distances between the devices of
various types of networks and the channel selections among
the networks for optimal performances, particularly when
an owner chooses manual network configurations. Our
analyses based on real-world data can also serve as a good
reference study for the deployment of Zigbee-enabled de-
vices in smart-home environments where interfering
sources such as Wi-Fi networks are present.

Finally, our study is based on a relatively small testbed of
Zigbee and Wi-Fi networks. Each experiment in our testbed
used two Zigbee nodes and two Wi-Fi nodes to observe the
interference between those two types of networks. Although
our testbed was in a very small physical area so that intense
interference scenarios were effectively created in our ex-
periments, experiments in a larger testbed involving more
nodes and more links might produce some other interesting
results or insights. We plan to explore such scenarios in our
future studies of the topic.
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