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Wireless Sensor Networks (WSNS) have become an indispensable tool in this epoch of technological advancements, particularly
for progress made in the Internet of things. Wireless sensor nodes are deployed to collect and transmit vital data from the
environment to a base station for analysis. Nevertheless, the limited battery power of the sensor nodes is rapidly drained when they
stay awake for an extended period. Research has shown that signi�cant sources of energy dissipation of sensor nodes are idle
listening, packet collision, control overhead, and overhearing. One optimal solution is employing a low duty cycle mac protocol,
particularly the sensor mac (SMAC) protocol. It is essential to have a detailed knowledge of the challenges identi�ed in SMAC and
solutions suggested to mitigate these challenges and the future directions. In this paper, we review techniques in SMAC protocols
implemented in WSNS. In particular, we provide highlights of recent developments in the schemes used in SMAC for mitigating
the challenges in SMAC and present research gaps in SMAC protocol. Finally, we discuss open issues that need to be addressed to
advance the design and implementation of SMAC in WSN applications.

1. Introduction

Wireless Sensor Networks (WSNs) are independent, dedi-
cated, and spatially dispersed tiny nodes to sense, collect, and
wirelessly transmit data from a speci�ed environment to a
central location for analysis [1]. In WSNs, the nodes are
autonomous but are designed to cooperate or communicate
with each other in their operation [2]. �e data collected by
sensor nodes from their immediate environment are
aggregated and sent to a sink node or base station.�e data is
processed and analyzed at the base station for relevant
stakeholders’ decision-making, as illustrated in the archi-
tecture shown in Figure 1.

WSNs have found applications in several domains,
including healthcare monitoring [3–9], environmental
monitoring [10–14], military monitoring [15–17], vehicle
monitoring [18, 19], industrial [20, 21], agriculture [22–24],
and urban monitoring applications [25]. �ese numerous
application areas have made WSN areas of intense research

in wireless communications [26]. Figure 2 illustrates some of
the application areas in WSNs.

�e tiny low-cost, and battery-powered sensor nodes are
the primary drivers behind WSN applications. Sensor nodes
can detect and collect data from their deployed environ-
ment. Sensor nodes (SNs) typically consist of four major
components: a computing unit, a sensor unit, a transceiver
unit, and a power unit [27], as shown in Figure 3.

�e power unit is the SN’s primary energy source, and it
is typically powered by batteries such as lithium-ion (Li-ion),
lithium-polymer (LiPo), nickel-metal hydride (NiMH), and
alkaline [28, 29]. �e capacities, voltages, advantages, and
disadvantages of the various types of batteries (see Table 1)
used in energy-e£cient WSN applications have gained
attention since batteries are the heart of wireless sensor
nodes. Each component unit within the sensor node is
powered by the same energy source, the battery. �e
transceiver unit or communication module in any of its
states (i.e. transmission, reception, idle, standby, or sleep
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states) consumes the most battery power when compared to
other components such as the processing and sensing units
[31, 32]. Data transmission and reception energy costs are
proportional to the distance between the source and des-
tination nodes. As a result, the greater the communication

distance between source and destination nodes, the greater
the energy cost. Narrowband, multipath, low signal-to-noise
ratio (SNR), and hidden node interferences cause corrupt
frames. (e corrupt frames result in layer two retrans-
missions of corrupted frames, thereby increasing energy
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Figure 1: Wireless sensor network architecture.
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Figure 2: Wireless sensor network applications.
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Figure 3: Components of a wireless sensor node.
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consumption, whereas shorter transmission and reception
distances between nodes consume less energy in WSNs
[33–35]. It has been shown that even in the Idle states (when
the node is passive and doing ‘nothing’), much energy is still
expended, especially in event-driven applications, as illus-
trated in Figure 4. (e energy/power consumed by the SN in
WSNs during transmission, reception, idle, and standby/
sleep states are depicted in Figure 4. (e three states,
transmission, reception, and idle, will be observed to expend
significantly more power than the other states.

Wireless sensor nodes typically share a single commu-
nication channel or medium. As a result, if two or more
nodes communicate over the channel simultaneously (by
transmitting and receiving packets), their data packets may
collide or interfere with one another. Packet collisions result
in corrupted packets that must be retransmitted. As a result,
extra energy is consumed to retransmit the corrupted
packets, reducing network lifetime, uptime, and throughput
[36]. Overhearing packets waste energy because sensor
nodes (SNs) receive packets not intended for them. Energy is
also expended by additional data added to the payload, such

as control messages broadcasted over the network (i.e.
packet control overhead).

Understanding these sources of energy dissipation in
WSNs is essential because it enables researchers to propose
and implement techniques/algorithms to reduce energy
wastage in WSNs and extend network lifetime [37, 38]. As a
result, various solutions have been proposed and imple-
mented over the last decade to address this problem. Low
Duty Cycle Medium Access Control (LDC-MAC) protocols
[39–41], Energy Harvesting (EH) and Wireless Energy
Transfer [36, 42–46], and Clustering and Routing Algo-
rithms [47–60] are notable among the approaches. Among
these techniques and protocols, LDC-MAC protocols,
particularly Sensor Medium Access Control (SMAC), has
proven to be the best solution for reducing energy con-
sumption at the MAC layer [40].

(e SMAC protocols use energy-saving methods to
reduce idle listening, packet collisions, overhearing, and
control overhead [61]. However, there may be specific
difficulties with adopting SMAC. Challenges posed by
SMAC include high energy consumption of border nodes
adopting a schedule in a diverse environment [62], fixed
duty cycle [63], fixed contention window [64], wasteful idle
listening, and latency [65]. (ere are suggested solutions to
improve SMAC’s limitations [66–68].

We present an in-depth evaluation of SMAC protocols in
WSNs in this article. We provide an overview of synchro-
nous MAC protocols by first describing the available MAC
protocols (synchronous, asynchronous, semisynchronous,
or hybrid) and the types within each category. We discuss
the current challenges, solutions, and future directions for
SMAC implementations used for environmental monitor-
ing. To the best of our knowledge, no survey in the literature
currently exists that presents the current state of the art,
research gaps, and future directions on SMAC in the field of
WSN. As a result, this paper attempts to conduct a SMAC
survey that captures the current improved SMAC protocols
and their limitations, the research pattern and gaps, and
propose future research directions.

Table 1: Comparison of battery chemistries used in WSNs (adapted from Battery University [30]).

Battery
chemistry

Energy
density
(Wh/kg)

Cycle life Cell voltage
(nominal)

Capacity
(mAh)

Operating
temperature

(°C)
Pros Cons

Alkaline 80 (initial) 503 1.5 Varies 0 to 65 High energy density, cheap,

Heavily affected by
load, heavyweight,

high internal
resistance

Li-ion 110–160 500–10003 3.6 730 -20 to 60
High energy density, low
maintenance, low self-

discharge

Expensive, not fully
matured

LiPo 100–300 300–500 3.6 930 0 to 60
Flexible form factor,

lightweight, more resistant to
overcharge

Expensive, low energy
density, decreased

cycle count

NiMH 60–120 300–5002,3 1.256 2500 -20 to 60

Simple storage and
transportation,

environmentally friendly, less
prone to memory

Limited service life,
high self-discharge,
longer charge time
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Figure 4: Power consumption in WSNs of a sensor node’s
components [31].
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(e rest of the paper is organized as follows: (e
motivation for SMAC implementation inWSNs is presented
in Section 2. Section 3 provides an overview of Medium
Access Control (MAC) protocols, emphasising low duty
cycle MAC protocols for WSNs. In Section 4, SMAC is
discussed. Section 5 discusses improved SMAC propositions
and their limitations concerning each identified SMAC
limitation; some identified SMAC implementations in WSN
applications, challenges, and future research directions for
SMAC implementation in WSNs. Finally, Section 6 con-
cludes the paper.

2. Motivation

An essential requirement for Wireless Sensor Networks
(WSNs) is that they can operate for extended periods
without any intervention. Unfortunately, sensor nodes are
battery-powered and hence have limited energy. Over the
past few years, various techniques, including energy har-
vesting, energy transfer, routing, and clustering algorithms,
have been employed to improve the energy deficit of sensor
node devices. Solar energy is the most widely used and
efficient energy harvesting source, requiring installing solar
panels made up of numerous solar/photovoltaic (PV) cells to
harvest the sun’s energy and power the sensor nodes.(e PV
cells of monocrystalline and polycrystalline materials harvest
the sun’s energy. (e energy is converted into useable
electricity to power WSN components. PV is a well-known
solar cell with a power density of 15–100mW/cm2, a high-
output voltage that is only available during the day, and low
efficiency during cloudy days. It generates limited energy
[69]. As a result, multiple solar panels (monocrystalline,
polycrystalline, and thin-film) can be used to generate
energy to power sensor nodes [70]. Monocrystalline panels
are entirely composed of silicon, polycrystalline panels are
composed of melted silicon crystal fragments, and thin-film
panels, which are still under development, are composed of
various materials, including silicon (8M Solar [71].

(e solar panels may be externally mounted or
embedded on the enclosure’s front containing a sensor node
[69, 72–74] in the WSN application. Wireless energy/power
transfer (WPT) techniques have been proposed to recharge/
transfer power to sensor nodes to maximize network lifetime
using branch and bound (B&B) algorithms [75]. Despite
researchers’ efforts to incorporate WPT into all layers of the
OSI reference model in WSN applications, energy efficiency
in WSNs remains a critical design issue. To improve on
WPT, the hybrid algorithm that combines B&B and beam
selection algorithms [75], a collaborative recharging tech-
nique to offload recharging workload to local chargers for
on-demand and low charging latency [76], an optimized
scheduling strategy (EHMDP) that optimizes the scheduling
of WPT and data collection of rechargeable wireless sensor
networks (RWSNs) [77], single wire transfer method [78],
magnetically coupled resonant WPT [79], and static or
mobile chargers with the ability to provide stable power for
the sensor nodes have been proposed [80–84].

Aside from using energy harvesting and energy transfer
to augment the sensor nodes’ energy, routing and clustering

algorithms are the most utilized techniques to extend the
battery lifetime. (ese algorithms are designed to minimize
the energy required to send data throughout the network at
the physical link (MAC) and network layers to ensure that
the sensor nodes collect sufficient data [36]. In work done by
Adu-Manu et al. [36]; the authors highlighted advances in
protocol design at the physical, MAC, and network layers. At
the physical layer level, power adjustment protocols that seek
to enhance the system performance based on link quality
parameters [85], multiantennas [86], and joint source-
channel coding [87] have been developed. At the MAC layer
level, adaptive duty cycle-based [88, 89], CSMA/CA-based
[90], and polling-based protocols [91] have been developed
over the years. Similarly, routing protocols [92, 93] have
been developed at the network layer to minimize the energy
consumed by sensor devices.

Researchers have recently focused much attention on an
efficient link layer protocol design. (eMAC layer protocols
are classified into synchronous or asynchronous. Synchro-
nous protocols, such as sensor MAC (SMAC), rely on nodes
sharing the sleep schedules. (e asynchronous protocols are
mainly grouped into transmitter-initiated [94, 95] and
receiver-initiated schemes [96–98]. In transmitter-initiated
schemes, the nodes wakeup periodically and check for a
preamble from the transmitter. In the receiver-initiated
scheme, the receiver nodes send periodic beacons to indicate
their readiness to receive data [99].

One of the popular protocols at the MAC layer is the
SMAC. (e SMAC is one of the robust synchronous low
duty cycle MAC protocols to mitigate energy dissipation
issues at the MAC layer of WSNs. SMAC utilizes periodic
listen and sleep, collision and overhearing avoidance, and
message passing mechanisms. Several works are proposed in
the area of SMAC [62, 64–68, 100–109]. (e existing
approaches are designed to improve the original SMAC
design. Researchers have proposed novel analytical models
for SMAC’s protocol design and performance analysis
[110–114]. Existing reviews in the area of MAC focus on the
general overview of MAC protocols for WSNs [115–120],
LDC-MAC protocols [121–124], synchronous LDC-MAC
[113, 125], asynchronous LDC-MAC [125], mobility-aware
MAC protocols [126, 127], receiver-initiated energy har-
vesting MAC protocols [128], and MAC layer protocols
implemented in WSN applications [129–134]. In most of
these works, the interest has been in the protocol designs,
advantages and disadvantages, challenges, and future
directions in WSN.

Over the last decade, a lot of work has been performed in
SMAC to solve the limitations of the traditionalMACprotocol.
Researchers have focused on solving challenges related to (1)
High energy consumption of border nodes, (2) Fixed duty
cycle, (3) Increased end-to-end delay/latency and packet loss,
(4) High control overhead, (5) Unnecessary idle listening, and
(7) Fixed contention window or poor backoff in SMAC
protocol. Despite the amount of work contributed by
researchers in this area, no single publication has surveyed the
breakthroughs so far achieved. We are motivated to
methodically discuss the innovations and most recent devel-
opments made thus far while highlighting the challenges and
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need for additional work to open up the possibility for other
advancements, especially in light of the enormous amount of
work done over the years. SMAC serves as the cornerstone for
most synchronous LDC-MAC cycle protocols. Although some
works have been published, there remain significant limitations
stemming from these papers that aimed at improving the
protocol considering some implementation challenges of
SMAC. A survey on SMAC will bring together the novel
developments and the current research pattern, challenges, and
future directions for a significant contribution in the area. In
WSNs, formonitoring applications, energy-efficient techniques
to reduce the energy consumed by sensor nodes to prolong the
network lifetime will be beneficial [135].

Given the above, it is essential to clearly define the
performance metrics and design requirements that impact
WSNs applications using the SMAC protocol given energy
limitation in sensor nodes. Hence, in this article, we survey
the current state-of-the-art techniques for SMAC for WSNs
and the latest protocols and algorithms that optimally
minimize the energy to support the application goals and
provide continuous environmental monitoring. We also
surveyed the novelty of the improved SMAC protocols and
the recent implementation of SMAC in WSN applications.

3. Medium Access Control (MAC)
Protocols for WSN

(e media access control (MAC) layer is the second layer in
WSNs that coordinates channel access to the sharedmedium
ofWSNs [136].(e rationale for designingMAC protocols is
to ensure channel fairness, avoid packet collisions, and, most
importantly, maximize energy efficiency in the MAC layer
[137]. Despite the traditional MAC protocol’s attempt to
minimize packet collision, there are still sources of energy
waste in the MAC layer. Packet collision, overhearing, idle
listening, and control overheads caused by ready to send
(RTS), clear to send (CTS), and acknowledgement (ACK)
control frames are all sources of energy wastage. (e size of
headers and trailers can sometimes contribute to energy
waste [138]. MAC protocols are intended to ensure the
quantitative measures of quality of service such as channel
fairness, network throughput, delay/latency, scalability, and
robustness [139] in WSN applications. Although primitive
MAC protocols such as ALOHA and CSMA do an excellent
job of avoiding packet collisions, the best way to reduce
energy waste is to use low duty cycling.(e radio transceiver
unit of a sensor node is switched to sleep when idle. As a
result, our review paper focuses on developments in low
duty cycle (LDC) MAC, with particular emphasis on the
synchronous low duty cycle (i.e., sensor MAC (SMAC)).

3.1. Low Duty Cycle (LDC) MAC Protocols for WSN. Duty
cycling is used in digital and logic systems, electric motors, air
compressors, and lighting systems in our homes and offices to
save energy by switching them on and off. When necessary,
these devices are switched on and turned off as soon as they are
no longer required or the task for which they were switched is
finished. (e on and off (duty cycling) principle is also used in

WSNs, specifically MAC protocols. Duty cycling in WSNs
reduces the energy dissipation, specifically idle listening and
packet overhearing [121]. In WSNs, energy dissipation is a
critical design issue. According to research, the amount of
energy consumed by SNs while listening to a channel without
communicating and receiving unnecessary packets is nearly the
same as the amount of energy consumed in packet trans-
mission and reception in the radio transceiver unit [31]. As a
result, there is a need to address the issue of energy con-
sumption; duty cycling has proven to be one of the most
efficient solutions [40, 41, 121, 140, 141].

Duty cycle MAC protocols regulate the radio of SNs,
alternating between active and sleep modes [119]. SNs in active
mode can sense, monitor, transmit, and receive data packets,
and they automatically switch to sleep mode when there is no
event to sense and transmit [142]. (e sleep/wakeup period is
the total cycle of the network’s SN’s periodic listen and sleep off
the SNs in the network [121]. Because the sleepmode consumes
almost no energy, the energy consumption during idle listening
is reduced. Although duty cycling aims to put SNs to sleep for
extended periods to save energy, there is a tradeoff in end-to-
end delay and high energy consumption due to node syn-
chronization [143]. When all SNs are in active mode, they
communicate with their next-hop neighbours.

On the other hand, active nodes targeting sleep modes
may have to wait until the sleep cycle is completed before
receiving the transmitted data packets. Long waiting periods
cause delay, affecting latency [141]. Furthermore, some duty
cycle schemes necessitate node synchronization by broad-
casting their schedules across the network whenever a
schedule is created. Node synchronization consumes more
energy because it takes more energy to create and broadcast
schedules. Furthermore, a long wakeup period followed by a
short sleep cycle increases energy consumption because SNs
require a lot of energy to stay active for a long time [141].

LDC-MAC protocols may be classified based on the
following criteria: (1) (e synchronization mechanism, (2)
(e length of the preamble, (3) (e receiver or transmitter
initiation mechanism, (4) (e number of channels required,
(5) Random or on-demand wakeup, and (6) Clustering
[40, 121]. In this paper, LDC-MAC protocols are classified as
synchronous, asynchronous, and semisynchronous/hybrid
schemes adapted from Ahmad et al. [121]. Asynchronous
schemes do not require synchronization because nodes sleep
and wakeup independently of the other nodes in the network
[99]. Asynchronous schemes include protocols that use
receiver-initiated, transmitter-initiated, preamble-sampling,
on-demand wakeup, and random approaches [144, 145]. In
the receiver-initiated approach, SNs will notify their neigh-
bours that they are ready to receive data packets. Such
notification can be in the formof a preamble, control packets,
and acknowledgements. (e SNs will continue to use these
notification packets until they reach the active period of the
destined SN in the transmitter-initiated approach.

In the preamble-sampling approach, the burden of energy
consumption by the receiver is shifted to the sender. Nodes
sleep asynchronously and wakeup occasionally to check pre-
amble transmission and then wait for incoming data frames
[40]. On the other hand, sensor nodes in the sleep state are
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switched to the listen/wakeup state immediately when needed
in the on-demand wakeup approach. In contrast, nodes in the
random approach switch between sleep and wakeup at
irregular intervals. Examples of asynchronous schemes include
Wise MAC [146], Berkeley MAC (B-MAC) [94], and Short
Preamble MAC (X-MAC) [95], and Asynchronous IEEE
802.15.4 [144] protocols.

Protocols in synchronous schemes create schedules to put
SNs to sleep and wake them up simultaneously. Rendezvous
and skewed/staggered synchronous schemes are two syn-
chronous schemes that are widely used [40, 145]. In the
synchronous rendezvous scheme, all sensor nodes turn their
radio transceivers on and off simultaneously using a guard
time. In contrast, nodes wakeup in the skewed/staggered
synchronous scheme at different times. However, a synchro-
nization mechanism that controls how nodes can simulta-
neously turn their radios on and off is required in both
rendezvous and skewed/staggered schemes. Examples of
synchronous schemes are Power-Aware Clustered TDMA
(PACT) [147], Low-Energy Adaptive Clustering Hierarchy
(LEACH) [148], Self-Organizing Slot Allocation, Timeout-
MAC (T-MAC) [149], Traffic-Adaptive Medium Access [150],
Dynamic MAC (DMAC) [151], Synchronous IEEE 802.15.4
MAC [144], Sensor MAC (SMAC) [61], and many more. In
their operation, the semisynchronous/hybrid scheme duty
cycle scheme combines the advantages of synchronous and
asynchronous schemes, such as easy synchronization of
neighbour nodes in the clustering/synchronous scheme [40].
Random, spontaneous clustering, topology control, sentinel,
comparative schedule, and elected cluster-head are all examples
of the semisynchronous scheme [40, 145].

In spontaneous clustering, nodes organize themselves
into clusters without an elected head. In contrast, in an
elected cluster-head semisynchronous scheme, nodes are
elected as cluster heads to coordinate the activities of cluster
formation and traffic aggregation. On the other hand, the
sensor MAC (SMAC) protocol is usually classified as a
synchronous scheme due to its fixed schedules and node
time synchronization. However, Carrano et al. [40] classified
it as a semisynchronous scheme due to virtual cluster for-
mation after nodes broadcast their schedules for other nodes
to follow. Figure 5 depicts the various low duty cycle MAC
protocols classification discussed in this paper. (e three
major categories of LDC-MAC protocol are described in the
following sections. Our discussion highlights key develop-
ments in each category and compares the three groups (i.e.
synchronous, asynchronous, and semisynchronous).

3.1.1. Synchronous Low Duty Cycle (SLDC) Protocols. In
SLDC schemes, MAC protocols typically use sleep/wakeup
schedules (i.e. sleep and wakeup time of sensor nodes) that
necessitate node synchronization. Sleep/wakeup schedules are
then broadcasted in the network for nodes to follow, deter-
mining when a node goes to sleep to save energy and the time
nodes can wakeup to communicate. Some MAC protocols in
this scheme use adaptive duty cycling, where the duty cycle is
altered based on the traffic load [67, 149, 152, 153]. (us, the
sleep/wakeup periods alternate depending on the traffic load:
long active periods for heavy traffic loads and vice versa.

(e periodic sleep/wake cycle consists of a sleep period
represented by Tsleep and the active period denoted by
Tactive in each cycle of Twakeup-period as shown in Figure 6
[154]. Figure 6 depicts how SLDC works, with synchroni-
zation achieved through frequent beacon frame trans-
missions.When a node enters the active period, it broadcasts
its beacon frames to neighbouring nodes to share its current
schedule and status information [121]. Hence, all nodes can
learn about the schedules of their neighbours and use this
information for data communication.

(e carrier sensing of the active period is when the
channel is sensed for any incoming data packet or to see if
the channel is free before sending the data frame to the
destination node. SNs are synchronized via a long preamble
reception of beacon frames from neighbouring nodes to
discover their schedules and frequency channels [154]. (e
sleep/wake schedule is frequently used in continuous
monitoring because of its periodic traffic pattern [155].
Synchronous schemes save energy, but their synchroniza-
tion mechanism necessitates additional control packets
[145]. Sensor MAC (SMAC), proposed by [61], was the first
and most widely used synchronous duty cycle protocol
developed to reduce idle listening, while T-MAC [149],
DSMAC [156], and ADV-MAC [66] SMAC’s limitations
(such as fixed duty cycle, long sleep period, and energy
wastage) were addressed by SLDC protocols.(ese protocols
lay the foundations for more recent synchronous schemes.
Most researchers investigate SMAC and offer solutions to its
limitations, focussing on increasing network throughput,
latency, and network lifetime. A comparison of critical
SLDC MAC protocols is shownin Table 2.

3.1.2. Asynchronous Low Duty Cycle (ALDC) MAC Protocols.
Unlike in the synchronous scheme, where SNs sleep and
wakeup simultaneously, SNs in the asynchronous scheme
have different sleep and wakeup periods and do not require
node synchronization. Asynchronous protocols use chan-
nel/preamble sampling and low power listening (LPL) [163].
Most of the time, the SNs sleep, but they wakeup to sense the
channel for a preamble or send preambles to notify target
receivers of incoming data packets within a time interval.

Target receivers stay awake to receive all the data packets
after detecting a preamble, while nontargeted receivers sleep.
Each of the frames transmitted begins with a long preamble
denoted by Tpreamble that lasts longer than the channel
interval denoted by Tinterval shown in Figure 7 at the start of
transmission in asynchronous schemes [154]. (e periodic
channel sampling uses this to detect the preamble of each
transmission before the transmission of the actual data. In
contrast to synchronous schemes, asynchronous schemes
have lower packet overhead because there is no fixed sleep/
wakeup for synchronization and virtual clustering. Although
asynchronous schemes outperform synchronous schemes in
a multihop network with low data rates and heavy traffic
loads, low energy consumption, frequent channel sampling,
long preambles for transmission and reception, and high
overhearing result in increased energy dissipation [154].
Some popular asynchronous low duty cycle MAC protocols
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include Berkeley MAC (B-MAC) [94] and Wise MAC [146],
and short preambleMAC (X-MAC) [95]. Table 3 illustrates a
comparative study of some key ALDC MAC protocols.

3.1.3. Semisynchronous Low Duty Cycle (SSLDC) MAC
Protocols. SSLDC MAC protocols combine the features of
synchronous and asynchronous to reduce energy dissipation
in WSNs. Clusters of SNs are frequently formed, and nodes
in each cluster are synchronized to wakeup or sleep
simultaneously, but clusters communicate asynchronously
[145]. Hybrid schemes are another name for semi-
synchronous schemes. Hybrid protocols include Low-
Energy Adaptive Clustering Hierarchy (LEACH) [148],
Zebra MAC (Z-MAC) [174], and Flow-Aware Medium

Access (FLAMA) [175]. Table 4 depicts a comparative study
of SSLDC MAC protocols.

4. Sensor MAC (SMAC) Protocol

SMAC [61] is a well-known synchronous low duty cycle
protocol that improves the 802.11 protocol. (e SMAC
protocol seeks to reduce the sources of energy dissipation in
the MAC layer by addressing issues such as idle listening,
packet overhearing, packet control overhead, and packet
collision. (rough the SMAC’s periodic listen and sleep
mechanism, the SN’s radio is switched between active and
sleep modes based on the SN’s schedule for sleep and
wakeup periods reducing idle listening. SMAC uses the
802.11 protocol’s Request-to-Send (RTS), clear-to-send
(CTS), and carrier sensing (CS) mechanisms to avoid col-
lisions caused by hidden and exposed terminals that cause
packet collisions in the MAC layer. (e SNs are put to sleep
to avoid packet overhearing (i.e. preventing SN from
receiving unintended/uninterested packets). As a result,
neighbour nodes that may interfere with the receiver and the
sender fall asleep immediately after hearing or sensing the
RTS or CTS. Furthermore, the SMAC protocol’s message
passing mechanism reduces packet control overheads by
breaking the long messages into small fragments and
sending them in a burst. Moreover, the RTS/CTS/DATA/
ACK mechanism ensures that all data fragments are suc-
cessfully transmitted from the sender to the receiver.

Since its inception, SMAC research has focused on
investigating and improving SMAC’s shortcomings for
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Figure 5: Low duty cycle MAC protocols for WSN.
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WSN applications. T-MAC protocol, for example, was
created to compensate for SMAC’s fixed duty cycle [149].
Some studies did propose improvements in latency, adaptive
duty cycle, and energy efficiency in SMAC by Lin et al. [156];
Ye et al. [157]; Lu et al. [158]; and Suh and Ko [177]. T-MAC
could be further enhanced by adjusting RTS, CTS, DATA,
and ACK’s transmission power levels [178–180] proposed
and analyzed the significance of the schedule unifying
algorithm for eliminating border node problems in SMAC.
Although SMAC propositions are more energy-efficient,
adaptable to traffic load variations, and improve network
performance, traditional SMAC is still being investigated to
suit current WSN application design and provide insights
and innovative ideas for researchers and developers. As a
result, researchers use the following criteria to address the
issue of fixed duty cycle and contention window for traffic
adaptation in SMAC: (1) A mechanism for reversal, (2) A
duty cycle mechanism; and (3) A power control mechanism
for the transmission [181]. Because traffic load variations in
WSN are difficult to predict, proposed SMAC backoff
mechanisms dynamically adjust the contention window of

SMAC to accommodate changes in network traffic load
[64, 68, 181]. On the other hand, adaptive duty cycle
mechanisms dynamically adjust the duty cycle of SMAC to
account for variations in traffic load. To conserve energy,
SMAC’s sleep period is reduced during high traffic periods
and increased during low traffic periods [182].

(e duty cycle of SMAC can be tuned based on traffic
loads [67], node strength, and the use of fuzzy logic to
determine network traffic load uncertainties [152], traffic
pattern, unnecessary idle listening [63], traffic loads pre-
diction models such as the auto-regressive and moving
average (ARMA) [183], duty cycle factor or threshold [184],
and queuemanagement, and feedback control systems [185].
Additionally, SMAC’s transmission power control mecha-
nism compensates for the shortcoming of fixed transmission
power’s high energy consumption. Nodes’ transmission
power is dynamically adjusted to minimize collisions,
establish more reliable links, maximize medium/channel
reuse, and maintain a low energy cost during communi-
cation [186]. Ideally, nodes’ ideal transmission powers are
identified, computed, assessed, and stored before being

Rx

Tx

Rx

Tx

Source

Destination

time

time

Channel Sampling
Data frame
Carrier Sensingc

c
TpreambleTinterval

Tinterval

Preamble

Wait for data

Figure 7: (e operation of asynchronous duty cycle [154].

Table 2: Comparative study of SLDC MAC protocols.

Reference Problem identified Proposed solution Limitation
Lin et al.
[156] Sleep delays, fixed duty cycle SMAC with dynamic duty cycle

(DSMAC) Increased overhead

[157] Delay SMAC with adaptive listening Long end-to-end delay

[158] Data forwarding interruption problem, latency,
and fixed duty cycle of LDC-MAC protocols

Energy-efficient and low latency
MAC (DMAC) protocols are

proposed.

Increased overhead alongside traffic
load and network topology limited to

tree-based topology

[159] Latency in multihop forwarding, end-to-end
delivery latency, poor traffic contention control

Routing enhanced MAC (R-
MAC) protocol Collisions due to two hidden terminals

Ray et al.
[66] Idle listening, energy wastage in T-MAC Advertisement MAC (ADV-

MAC) Increased overheads

[160]

High energy dissipation of sensor nodes as a
result of random movements, as well as the use of
RSSI in predicting mobility in mobility-aware

SMAC (MS-MAC)

Energy-efficient mobility-aware
SMAC (EMS-MAC) protocol

Limited mobility zones, high mobility
failures

[161] Energy dissipation in idle listening Improved T-MAC with power
saver mode Increased overhead

[162] Energy dissipation, fixed duty cycle, queuing
delay

Energy-efficient and QoS-aware
(EEQ)

Homogeneous scenarios, symmetric
radio channel
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Table 4: Comparison of studies on semisynchronous low duty cycle MAC protocols.

Reference Problem solved Proposed solution Limitations

[148]
Static clustering, energy

dissipation of fixed positions of
cluster heads

Low-energy adaptive clustering hierarchy (LEACH)
Fixed clustering structure, designed
for homogeneous sensor network

scenarios

[172] Number of transceiver
switches, the fixed sleep interval Lightweight MAC (L-MAC) protocol Fixed frame length

[150] Collision, idle listening,
channel utilization Traffic-adaptive medium access (TRAMA) protocol Increased idle listening and

overhearing

[173] Idle listening, intracluster and
intercluster data collisions

Multihop time reservation using adaptive control for
energy efficiency (MH-TRACE) Not adaptable to topological changes

[174] Latency, channel utilization Zebra MAC (Z-MAC) protocol
Adds additional overhead to detect
abandoned slots, hidden terminal

problem

[175] Idle listening, data collision,
delay Flow-aware medium access (FLAMA) protocol Complex and inflexible

[176] (e hidden terminal problem of
Z-MAC

An improved Z-MAC protocol introduces tiny RTS/
CTS packets to address the hidden terminal problem
of Z-MAC and an enhanced DRAND algorithm for

neighbour discovery

A tradeoff between overheads and
collisions

Table 3: Comparative study of ALDC MAC protocols.

Reference Problem solved Proposed solution Limitations

[94] Idle listening, collision, channel
utilization Berkeley MAC (B-MAC) protocol Large overheads caused by preambles

[146] Idle listening, collision, long preamble,
control overhead Wireless MAC (wise MAC) High latency

[95] Low-power listening Short preamble MAC (X-MAC) protocol Inability to handle immediate traffic
fluctuations

[164]

Energy consumption, overhearing and
idle listening of sender-based

scheduling approach for asynchronous
MAC protocols.

O-MAC is based on a pseudorandom
staggered for optimal energy efficiency

Collisions, no defined retransmission
mechanism for collisions

[96] Latency, long preamble Receiver-initiated MAC (RI-MAC)
protocol

Increased sender duty cycle and end-to-
end latency.

[165] A tradeoff between energy dissipation
and latency Express MAC (EX-MAC) protocol Frequent collisions as well as extra

reservation traffic

[166] Hardware and operating system delays
and clock drifts, energy consumption

Predictive-wakeup MAC (PW-MAC)—
on-demand prediction error correction,
efficient prediction-based retransmission

mechanisms.

Increased overhead as a result of
beacons and idle listening

[167] End-to-end delay in multihop WSN Cooperative low-power MAC (CL-MAC)
protocol

Inadequate analysis of the backoff
algorithm’s effects on throughput,
delay, and energy consumption

[168] Collision, delivery latency, and control
overhead

(e sender centric MAC (SC-MAC)
protocol avoids channel collision in burst
traffic with reduced control overhead and

optimizes packet delivery latency.

Overheads due to irregular periods and
high energy dissipation for data

transmission over channel reservation

[169] Energy dissipation, latency, overheads Low-latency asynchronous MAC (LA-
MAC) protocol Collisions in congested WSN

[172] Long end-to-end delay of asynchronous
LDC-MAC protocols Virtual tunnel (VT) MAC protocol Possible collisions due to on-demand

synchronization

[171] Energy dissipation Energy-efficient asynchronous QoS
(AQSen-MAC)

Performance of AQSen-MAC
compared with only receiver-initiated
QoS protocols and no other ALDC

MAC protocols
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dynamically alternated before minimizing energy con-
sumption. Power control in SMAC (PSMAC) [187, 188], power
controlled sensor MAC (PC-MAC) [189] and dynamic power
control MAC (DPCMAC) are some of the fundamental
transmission power control mechanisms for SMAC [190].

In this section, we present a review of the limitations of
SMAC and suggested improvements to these limitations.
(is section also covers the simulation tools and perform-
ance metrics used in their design and implementation.

4.1. Limitations and Improvements in SMAC. (is section
investigates the current state of the art on SMAC from 2009
to date to determine the advances, challenges, and future
directions of SMAC that are important to WSN researchers
and developers. From 2009 to the present, we have studied
and reviewed SMAC publications based on the following
criteria: (1) High energy consumption of border nodes’
adoption to multiple schedules, (2) Fixed duty cycle, (3)
Increased end-to-end delay or latency. (4) Fixed contention
window or poor backoff algorithm, (5) Unnecessary idle
listening, and (6) Significant control overheads. Figure 8
depicts the literature on improvements and limitations of the
original SMAC protocols and the percentage of publications
addressing the associated challenges.

In the following sections, we discussed these limitations
and the suggested improvements provided thus far by
various researchers in the field.

4.1.1. High Energy Consumption of Border Node’s Adoption of
Multiple Schedules in SMAC. Node synchronization in
SMAC’s periodic listen and sleep generates virtual clusters
where nodes adhere to a schedule. On the other hand, nodes
straddling two or more clusters tend to use multiple schedules
from the clusters for intercluster communication (see Fig-
ure 9). Border nodes or intermediary nodes exist between
different clusters. (ese border nodes deplete their energy
more quickly because they must stay awake for extended
periods due to the network’s multiple schedules. SMAC has
high energy consumption and a short network lifetime due to
border nodes using multiple schedules. Many solutions have
been proposed to reduce or eliminate the number of border
nodes in the network to ensure maximum network lifetime
and mitigate high energy consumption (see Table 5).

Reference [191] eliminates border nodes and replaces
them with a sink node that acts as the synchronizer to create
and broadcast node sleep schedules, whereas [62, 103]
propose a unified scheduling algorithm. (e sensor nodes
are forced to follow a single sleep and wakeup schedule to
avoid the multiple schedule adoption by border nodes,
thereby reducing high energy consumption. However, [192]
employed the selective intermediate node (SIN) algorithm to
minimize border node energy consumption. Nodes in the
SIN algorithm send unicast messages to a synchronizer
announcing its schedule and requesting permission to follow
its schedule. When a unicast message is received, the syn-
chronizer sends an acknowledgement to a selected node.(e
additional schedule to the one already assigned to them can
only be followed by nodes that have received an

acknowledgement. (us, a border node requests a different
schedule only if the synchronizer responds with an ACK.
Hence, SIN reduces the multiple schedules of border nodes.
Some proposed protocols save energy at the expense of
increased control overhead to reduce the energy con-
sumption of border nodes [103, 192]. Control overhead may
increase as the enhanced protocols introduce additional
fields and modifications to the original SMAC SYNC packet.

4.1.2. Fixed Duty Cycle. (e periodic listen and sleep
mechanism in SMAC saves energy by utilizing a fixed duty
cycle that determines fixed sleep and listening periods.
SMAC’s fixed duty cycle is volatile because a long listen
followed by a short sleep period for low traffic may result in
extended idle listening. A long sleep period followed by a
short listen period, on the other hand, may result in
increased latency. Furthermore, afixeddutycycle isunsuitable
for a network with varying traffic loads because the duty cycle
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is not adaptable to load variations.(e fixed duty cycle can be
solved by employing dynamic and adaptive scheduling
techniques, as illustrated in Table 6, in which node sleep and
listen periods are dynamically altered to accommodate the
network’s various traffic loads and routing algorithms. Unlike
protocols that dynamically adjust the fixedduty cycle basedon
traffic load [67, 153], node actual traffic strength [152], Jagriti
[63] proposes an analytical model that alternates the sleep
mode based on unnecessary idle listening. Zhang et al. [152]

use a fuzzy logic system to determine traffic uncertainties and
dynamically adjust the fixed duty cycle of the original SMAC
based on the traffic pattern.

4.1.3. Increased End-to-End Delay/Latency and Packet Loss.
Increased latency or end-to-end is the tradeoff for SMAC’s
low energy consumption due to the fixed duty cycle, par-
ticularly long sleepperiods of SMAC.As a result, nodes awake

Table 5: Improved protocols for high energy consumption in SMAC protocol.

Reference Problem Proposed solution/Purpose Description Limitations
High energy

consumption of
border nodes in

SMAC

Schedule unifying algorithm
(SUA)

SUA tracks the multiple schedules
followed by the border nodes and
immediately triggers a procedure to

unify the schedules.

# High control overhead

# Network throughput not
measured.

[191]
High energy

consumption of
border nodes

Low overhead WSN MAC
(LO-MAC)

Introduced a unified schedule that
lessens the synchronization time of the
original SMAC by avoiding sending

sync packets.

# No intercluster
communication

# Not adaptable to an
extensive network

# Higher average delay as
sending interval increases
# Has shorter sleep time

[192]
High energy

consumption of
border nodes

An enhanced SMAC is
proposed using selective
intermediate nodes (SIN)

# SIN is utilized when border nodes
send a unicast request to follow a
schedule that is already following

another schedule.

# Algorithm does not
expatiate.

# An ACK is sent to nodes allowed to
adapt to the schedule to reduce the
number of schedules adopted by a

border node.

# High control overhead

[193]
Forced wakeup

problem in adaptive
SMAC

CL-MAC protocol

(e CL-MAC protocol utilizes routing
layer information to determine nodes
that need to be awake to communicate.

Hence, nodes in sleep modes are
excluded from the routing paths for

data transmission.

# It does not ensure fairness in
terms of the traffic loads

# Simulation tool not
mentioned.

[189] High energy
consumption

Power controlled sensor
MAC (PC-MAC)

# Modified the SMAC schedule table to
include each node’s minimum power

levels.
# (e protocol is limited to

reducing only the
transmission power and
energy consumption

# Uniform, exponential, and Gaussian
distributions were used for the

experiment.

[62]
High energy

consumption of
border nodes

A new unified scheduling
algorithm is introduced to
improve the lifetime of

border nodes.

Constructs border nodes and
broadcasts uni-scheduling packets
from the border nodes to unify all
schedules into a single schedule

# High control overhead

# (roughput not measured

[101]
High energy

consumption of
border nodes

Improved SMAC algorithm
by merging virtual clusters

Virtual clustering in the original SMAC
is modified to merge clusters to follow
one cycle, thereby reducing the number
of border nodes’ multiple schedules

Cross-layer optimizations

A dynamic duty cycle is utilized

108

# Inefficient use of
energy

Energy-efficient sensor MAC
(ES-MAC)

# Modified SMAC and T-MAC
algorithms. # Multihop scenarios

# Transmission of
redundant data

# Selective data transmission is used to
minimize the number of transmitted
packets sleep interval improved by

applying data cycle (DDC)

# Back-off mechanism

[194] High energy
consumption

ASS-MAC protocol
dynamically alters the nodes’
sleeping time based on the

last observed traffic.

(e protocol “provides the schedule of
the next period based on network

behaviour during previous periods to
adapt to network traffic”

# Network throughput
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and ready-to-send data packets to their neighbour nodes
during their sleepperiodsmustwaituntil theywakeupandare
ready to receive. Sleep delay refers to the end-to-end delay
caused by the sleep schedule. SMAC’s sleep delay causes
packet loss because packets are dropped when they reach
next-hop neighbours in sleep modes. (e increased delay/
latency is caused by SMAC’s fixed duty cycle, so the duty
cycle should be adjusted to avoid end-to-end delay. To
minimize delay in transmitting high-priority data, [195]
propose ADV-SMAC, introducing two message queues:
high priority and low priority. (e duty cycle of SMAC is
adjusted based on the number ofmessages in a node’s queue
[196]. As a result, the duty cycle increases when the number
of queuedmessages exceeds a certain threshold. In contrast,
a fast-binary exponential backoff algorithm is proposed to
reduce latency [109]. Table 7 depicts ongoing research on
mitigating high end-to-end delay/latency and packet loss
incurred at the expense ofmitigating idle listening in SMAC
protocol.

4.1.4. High Control Overhead. High control overhead occurs
as a result of the exchange of schedule information for node
synchronization and neighbour discovery, as well as the
exchange of control packets such as ready to send (RTS),
clear to send (CTS), and an acknowledgement (ACK) among
sensor nodes to avoid packet collision and overhearing in the
SMAC protocol. (ese control packets have high overheads
and require more energy to exchange, thereby increasing
energy consumption. Investigations into theSMACprotocols

have shown high control overhead cost incurred while
mitigating idle listening. Hence, optimal solutions have been
proposed to improve on this shortcoming in SMAC (see
Table 8). For instance, the SYNC, RTS, CTS, and ACK from
the original SMACcan be combined, for example, SYNCplus
RTS at the start of the node’s cycle to avoid high control
overheads, andACKplusRTS for bidirectional transmissions
[138]. To save energy, the components of the SMAC data
frame headers and trailers can also be minimized [152].

4.1.5. Unnecessary Idle Listening. SMAC’s primary goal is to
reduce idle listening and packet collision. On the other hand,
the fixed duty cycle of SMAC’s periodic listen and sleep
mechanism incurs some costs in idle listening, particularly
in long listening periods for low traffic loads. Nodes with no
data to send or receive are forced to remain idle until their
listen time expires. According to Yang and Zhang [193];
nodes are forced to wakeup for idle listening if they are part
of a communication routing path. (ey proposed CL-MAC,
which applies route information to wakeup nodes with
actual data and forms part of a communication routing path.
CL-MAC is implemented in RTS and CTS control frames by
including the final destination address and the following
communication address. Furthermore, the combination of
MAC and PHY layer information has been shown to reduce
unnecessary idle listening in situations where nodes are
designed to proactively inform their neighbours of their data
transmission plans [65]. Table 9 elaborates on propositions
for mitigating unnecessary idle listening in SMAC protocol.

Table 6: Enhanced protocols/algorithms for fixed duty cycle limitation of SMAC protocol.

Reference Problem Proposed solution/Purpose Description Limitations

[152] Fixed duty cycle
control overhead AD-MAC protocol

An adaptive duty cycle is proposed
where the duty cycle, particularly the

sleep schedule, is altered to
accommodate different traffic

patterns. # Packet delivery ratio and
throughput not considered.Wake-up time can be extended for

incomplete data transmissions.
(e use of a fuzzy logic system to
determine node traffic uncertainties.

[153] Fixed duty cycle L-MAC protocol

Dynamically adjust the duty cycle of
SMAC to adapt to changes in the

environment of greenhouse
environmental monitoring

# Performance evaluation is
limited to energy consumption.
# Algorithm for the protocol not

clearly given

[110]
Fixed duty cycle
and unnecessary
idle listening.

Designed a novel analytical
model to mitigate

unnecessary idle listening
caused by a fixed duty cycle.

A novel analytical model is designed to
conserve energy and reduce

unnecessary idle listening by creating a
dynamic sleep period depending on

the traffic conditions.

# (ey excluded how the model
dynamically puts nodes to sleep

to conserve energy.
# (e reason for exempting the

sensing energy for the
computation of total energy was

not given.

[67] Fixed duty cycle
and idle listening

Variable traffic-adaptive duty
cycle sensor MAC (VTA-

SMAC)

Virtual clustering, adaptive duty cycle,
and dynamic sleep algorithms are

utilized to solve high energy
consumption of border nodes, traffic
load variation and low data traffic

issues of SMAC, respectively

# A comparative paper of VTA-
SMAC and other asynchronous
low duty cycle MAC protocols.
# Implementation of VTA-

SMAC in NS-3
# Repetitive calculation of duty

cycle.
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Table 7: Enhanced protocols/algorithms for increased end-to-end delay/latency and packet loss of SMAC protocol.

Reference Problem Proposed solution/
Purpose Description Limitations

[196]
Latency and

redundant packet
transmission

Express energy-
efficient media access
control (EX-MAC)

EX-MAC introduces a mechanism that
dynamically adjusts the duty cycle based
on the traffic load or message queue.

(e minimization of redundant
packet transmission is not clearly

explained and justified. High control
packet overhead.

[197]
Delay and packet

loss for high-priority
applications

Advanced SMAC
(ADV-SMAC)

protocol

# (e protocol uses different queues for
high priority and low priority traffic.

# Collisions may occur in sending
high-priority packets in ADV-SMAC
as channel sensing is excluded in the

subphases.

# It uses a contention-based approach
for low priority traffic, while a TDMA
approach is used for high-priority

traffic.
# Channel sensing is excluded in ADV-
MAC for high-priority packets to aid in
faster transmission and reduce end-to-

end delay.

[112] Delay

Designed an analytical
model of SMAC

An analytical model of a multihop
wireless sensor network incorporating

the original SMAC protocol that
constitutes a network controller based
on network delay for multihop and

single-hop scenarios.

# (e effects of network scheduling
algorithm on network stability.

Analyzed the delay
SMAC

# Analytical model on throughput
and energy consumption

[198]
Delay in sending and
processing high-
priority data

Addition of priority
bits to the beacon
frame of SMAC for

WVSN

# (e priority bit introduced in SMAC
indicates criticality and the need to

process that data first in the
coordinator. # (e adaptability of the proposed

algorithm in mesh or ring topologies.# (e priority bit is either 0 or 1. A data
sent with a priority bit set to 0 indicates
that the data is critical and must be

processed first and vice versa.

[78] Latency

Division-multiple
access-media access
control (MDA-

SMAC)

# MDA-SMAC applies fast-binary
exponential backoff algorithm to reduce

data latency.

# Heterogenous scenarios# To reduce the collision probability of
data, schedules are split into multiple

microduties.
# Adopts adaptive duty cycle and

backoff algorithm.

Table 8: Enhanced protocols/algorithms for high control overheads in SMAC protocol.

Reference Problem Proposed solution/Purpose Description Limitations

[152]
High
control
overhead

AD-MAC

# An adaptive duty cycle is proposed
where the duty cycle, particularly the

sleep schedule, is altered to
accommodate different traffic patterns.

# Packet delivery ratio and
throughput not considered.

# Minimized SMAC data frame headers
and trailers by. . ..

[138]
High
control
overhead

Adaptive energy-efficient MAC
(AEEMAC)

AEEMAC protocol combines the
SYNC and RTS control packets into
one and RTS and ACK packets to

reduce the number of control packet
exchanges in the original SMAC.

# Comparative paper of
AEEMAC with other MAC

protocols.

[199]
High
control
overhead

Comparative paper of SMAC
(synchronous MAC protocol) and
RI-MAC (asynchronous duty cycle

MAC protocol).

Performance analysis of SMAC and RI-
MAC based on contending flow and

data gathering scenarios.

# Missing improved SMAC’s
high control overhead and energy
consumption in a contending

flow scenario.
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4.1.6. Fixed Contention Window/Poor Backoff Algorithm.
SMAC’s backoff algorithm (i.e. an algorithm implemented to
resolve collisions whereby the sensors wait for a random
time before transmitting during collisions) consists of the
physical layer’s slot size and a random integer distributed
between zero (0) and the fixed contention window (CW).
(e backoff time may be expressed as

Btime � random∗slotTime, (1)

where Btime represents the backoff time, random () is equal
to [0, CW] and slot Time.

Researchers believe that because the CW of SMAC is
fixed and constant, and the backoff time is computed from a
random fixed CW that does not suit the dynamic nature of
the channel state as well as the number of nodes in a real
WSN environment, it should be improved [64]. Others
argue that the SMAC backoff algorithm is simple, archaic,
and unsuitable for dynamic channel states and improved
node fairness [200]. Lu et al. [200] proposed a modification
to the SMAC backoff algorithm that improves node fairness,

collision avoidance, and network longevity, back-off
depends on queue and retry (BDQR) algorithm. On the
other hand, Qi et al. [64] dynamically modify the CW based
on data reception success and failure. As a result, successful
data receipt implies fewer accidents. As a result, the con-
tention window is reduced to maximize network throughput
and minimize latency while being increased for failed data
reception to reduce packet collisions. Furthermore, [201]
modified the SMAC contention window by using a self-
adaptive contention window and channel neighbour com-
petition. Although SMAC’s improved contention window
and backoff algorithms (see Table 10) have been demon-
strated to improve energy efficiency, end-to-end throughput,
and latency, packet transmission priority and network
topological changes are not considered.

4.1.7. Analytical Modelling and Comparative Studies of
SMAC. Analytical models are used by researchers to model
protocols and undertake performance analysis. Some pro-
posed protocols and performance analyses are accomplished

Table 9: Proposed protocols/algorithms for mitigating unnecessary idle listening in SMAC protocol.

Reference Problem Proposed solution/Purpose Description Limitations

[193] Unnecessary idle listening CL-MAC protocol

(e protocol utilizes routing layer
information to determine nodes that need
to be awake to communicate. Hence,

nodes in sleep modes are excluded from
the routing paths for data transmission.

# It does not ensure
fairness in terms of the

traffic loads
# Simulation tool not

stated.

[65]

# Unnecessary idle
listening

# A mechanism known as
announce to send (ATS) is

proposed
ATS solves unnecessary idle listening in
SMAC by proactively informing its

neighbour nodes of their transmission
plan.

# Overhearing and
packet collisions# Fatal bugs in the original

implementation of SMAC
in NS-2

# (e original
implementation of SMAC
was modified to fix fatal bugs

Table 10: Enhanced protocols/algorithms for fixed contention window/poor backoff algorithm.

Reference Problem Proposed solution/
Purpose Description Limitations

[202] Fixed contention
window

An improved SMAC
protocol is proposed.

Enhanced SMAC algorithm that adjusts
the contention window according to the

traffic load in coal mine WSN.

# Localization of mobile sensor nodes in
the coal mine tunnels.

[200] Poor backoff
algorithm

Back-off depends on
queue and retry

(BDQR)

BDQR improve on the original backoff
algorithm of SMAC by introducing a
failure counter (Fcounter), q variable,
and a disjunctive window threshold

(CWm).

# (e experimental results that reduced
channel collision and improved node

communication fairness were not clearly
explained.

[64]
Fixed contention
window/backoff

algorithm

R-MAC in MAC
layer

Combines adaptive contention window
and forecasting data flow based on
SMAC’s nodes length of the queue.

#(e algorithm for the protocol design is
not given.

# Unequal performance metrics for both
star and mesh topological scenarios.

[201] Fixed contention
window ACW-MAC protocol

Adjusts the SMAC contention window
using self-adaptive and neighbour
competition of the channel in
conjunction with the MIMLD

algorithm.

# Priority of packet transmission and
topological changes.

[68] Poor backoff
algorithm

Adaptive back-off
and duty cycle for
SMAC (ABDC-

SMAC)

(e flow factor measures network traffic
and dynamically changes the duty cycle
for improved energy consumption and

transmission delay.

(e duty cycle is not varied.
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using SMAC analytical models (see Table 11). Jagriti [63]
proposed an analytical model that reduces energy con-
sumption by stimulating the activities of a node in its active
state. (e activities were used to model the activities using
the transmission energy, receiving energy, overall energy,
switching energy, sleeping energy, sampling energy, and
delay. Other literature designed models for multi-hop,
single-hop, heterogeneous, homogeneous networks and
performance metrics were derived from these models for
performance evaluations [111–114]. SMAC protocols, on
the other hand, are utilized as a performance benchmark for
other energy-efficient MAC protocols through performance
analysis and comparative studies.

4.2. Simulation Tools. Developing, testing, and exper-
imenting with new and existing WSN algorithms, theo-
ries, and protocols in the early stages of design and
evaluation in a real-world environment is costly, time-
consuming, and challenging. During the early stages of
network protocol design, developers and researchers test
and evaluate the performance of protocols and algorithms
to ensure their efficiency and accuracy before deploying or
implementing in the real world to save money and ensure
protocol accuracy. Some proposed algorithms and theo-
ries may also be impossible to implement in real-world
scenarios. As a result, there is a need to simulate or
emulate these theories and algorithms in controlled

Table 11: Analytical modelling and comparative studies of SMAC.

Reference Problem Proposed solution/purpose Description Limitations

[105] Energy
consumption

A performance evaluation of
SMAC in combination with OLSR,
AODV, DSR and DSDV routing
protocols to improve the energy

efficiency of SMAC.

(e routing protocols
implemented in SMAC to

determine the effect of routing
protocol on the energy
consumption of SMAC

depending on the network
topology and WSN application.

# Unknown reason for DSR
failure in conjunction with
SMAC implementation.

[203]
Energy efficiency
and routing packet

overhead

Comparative study of SMAC in
AODV and AOMDV.

A comparative paper and
evaluation of the impact of single

path AODV and multipath
AOMDV routing protocols on
SMAC’s energy efficiency and

routing packet overhead.

# (roughput and latency were
not considered.

[204] Fixed duty cycle A comparative study is conducted
for SMAC and T-MAC.

(e comparative paper was based
on static and dynamic sleep

schedules.

# No experiments or
simulations to justify the

comparative paper.

[205] Energy
consumption

SMAC and T-MAC performance
analysis is based on a static and
homogeneous network scenario.

(e authors deduced that energy
saving depends on the duty cycle
value. (e higher the duty cycle
value, the more energy used and
the less energy saving. Hence, a
duty cycle of 10% was used in
their simulation and analysis.

# Delay and throughput not
considered.

[139] Energy
consumption

A comparative paper of SMAC
and T-MAC.

A comparative paper was
conducted on SMAC and T-MAC

to ascertain the energy
consumption of the protocols in a
static network for two scenarios of

25 and 49 nodes.

# Factors influencing the high
energy consumption of nodes
in SMAC for the two scenarios

were not given.

[102]
Energy

consumption and
throughput.

Performance analysis of SMAC
and other protocols.

In conjunction with LEACH,
LEACH-C, MTE and static
clustering protocol, SMAC is

analyzed and simulated.

# Simulation results on SMAC
are not clearly explained.

[111]

Energy
consumption,
throughput and

latency.

Analytical model for SMAC
performance in a heterogeneous
scenario with different medium

access priorities.

# A two-dimensional discrete-
time Markov chains (DTMC) are

utilized in the model.

# Energy consumption of
sensor nodes in application-

specific environment excluded.
# Performance parameters such as
energy consumption, throughput,
and average packet delay were

modelled.

# Infinite transmissions not
considered.

[104]

Energy
consumption,

throughput, delay,
and PDR.

SMAC performance evaluation in
energy, throughput, delay and
packet delivery ratio (PDR).

It dynamically adjusted the duty
cycle according to the number of

nodes and traffic load.

# Implementation of SMAC in
NS-3 to compare results with

that of NS-2.
# No evaluation on traffic load

variation.
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environments that are flexible, simple, and inexpensive.
Tests, experiments, and evaluations can be repeated for
accurate results before implementing or deploying them
in a production environment. Network simulation is a
popular WSN performance evaluation method among
developers and researchers due to its effectiveness, fea-
sibility, and low cost of evaluating and testing algorithms
and protocols [206, 207].

Simulators, or simulation tools, simulate real-world
components such as sensor nodes and network topologies
[208]. (ey have built-in network protocols such as physical
layer protocols, MAC layer protocols, transport layer pro-
tocols, routing protocols, and graphical user interfaces
(GUIs). (ey also implement physical layer models like
wireless transceivers, signal propagation and delay models,
energy consumption models, and others [218]. Popular
WSN simulators include Network Simulator version 2 (NS-
2) [208–215], Network Simulator version 3 (NS-3) [211],
Optimized Network Evaluation Tool (OPNET) [212–214],
Objective Modular Network Testbed in C++ (OMNET++)
[218, 215], and Matrix Laboratory (MATLAB)
[218, 216, 217]. We investigated the simulators used by
researchers to evaluate the performance of SMAC variants to
identify the most commonly used simulators. It was dis-
covered that the majority of SMAC’s variants (66%)
patronized NS-2 (see Figure 10) because it contains SMAC
implementation and is thus easy to modify to suit proposed
SMAC variants. In contrast, new models, frameworks, or
implementations are created to depict proposed algorithms
for those lacking SMAC modules such as NS-3, MATLAB,
OMNET++, OPNET, and many more.

NS-2 is widely used because of the ease with which
traditional SMAC can be modified; however, it is outdated
and lacks updated features that support recent WSN
enhancements. Furthermore, Kuo and Liu [65] discovered
bugs in the NS-2 SMAC implementationmodule, such as the
incorrect implementation of the backoff timer, incorrect
time to initiate adaptive listening (AL), extended duration
time for packet retransmissions, incorrect calculation of the
number of fragments in SMAC’s message passing, and many
others.(ese flaws were never discovered in previous SMAC
simulations. As a result of the author’s assertion that the
bugs mentioned above had a detrimental effect on SMAC’s
energy consumption. (e bugs were fixed following the
literature, and the simulation results improved energy
consumption compared to the original SMAC imple-
mentation. Regardless of bugs in SMAC in NS2 imple-
mentation identified by Kuo and Liu [218]; no literature has
either supported or refuted it. Other WSN simulators that
support improved features and abstractions of recently
improved WSN MAC protocols should be used by
researchers.

4.3. Performance Metrics of SMAC. Performance metrics
are typically used to quantify the quality of service pro-
vided by a computing system [36]. (e most commonly
used performance metrics in WSN are delay, throughput/
packet delivery ratio, and energy consumption [219].

4.3.1. Delay. (e time it takes for a packet to travel from one
node to another or from the source node to the destination
node is also known as an end-to-end delay. End-to-end delay
is typically measured in seconds or milliseconds (ms).

4.3.2. Packet Delivery Ratio (PDR). (e ratio of the total
number of packets received at the destination to the number
of packets sent by the source node. (is may be expressed as
PDR�Tr/Ts where Tr � total number of received packets by
the destined node and Ts� total number of sent packets by
the source node. PDR is usually represented in percentages
(%), i.e. PDR� (Tr/Ts)∗ 100%.

4.3.3. Energy Consumption. Energy consumption is the
quantitative measure of the sum of all energy dissipated by
the various activities of the sensor nodes in the network
[32, 110, 219]. (e activities of the sensor nodes include
transmission, reception, sensing, processing, and idle lis-
tening. Energy consumption can also be defined as the
difference between the initial energy (IE) and the remaining
energy (RE). Hence, the total energy consumption of a node
is the sum of used transmit energy (ETX), receiving energy
(ERX), sensing energy (ES), processing energy (EP), idle
energy (EID), and sleep energy (ES).

According to our review, because SMAC is an energy-
efficient MAC protocol for WSNs, most SMAC variants
prioritized energy efficiency over delay, throughput, packet
delivery ratio, and packet loss ratio, with 45%, 27%, 22%, 4%,
and 3%, respectively (see Figure 11). Our findings indicate
that future energy efficiency and throughput tradeoffs must
be addressed.

5. Implementations of SMAC-Based
WSN Applications

SMAC is an asynchronous duty cycle MAC protocol
appropriate for monitoring applications that do not require
SNs to transmit data regularly. Water quality monitoring
(WQM), wireless body area network (WBAN), precision
agriculture, climate change and pollution mitigation, water
and sanitation, and many other applications are included
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Figure 10: Distribution of WSN simulators used in SMAC
variants.
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[220]. As a result, we present some SMAC applications in
WQM, WBAN, precision agriculture (PA), coal mine
monitoring, underwater acoustic sensor network
(UWASN), and wireless video sensor network (WVSN) (see
Figure 12).

5.1. Water Quality Monitoring SMAC. Water quality mon-
itoring is a WSN environmental monitoring application in
which wireless sensor nodes are deployed in a body of water
to monitor and detect changes in water quality. Temper-
ature, pH, dissolved oxygen, and other water quality
parameters prevent contaminated water supply [221–224].
Similarly, sensor nodes in WQM have energy consumption
issues due to battery power limitations. Energy-efficient
techniques and protocols have been proposed to address this
issue, and SMAC is one of the promising solutions for the
energy drainage of sensor nodes in WQM. A practical
application of SMAC-based WSN for WQM has been
demonstrated [225].(e authors used SMAC in their remote
water quality monitoring application to reduce SN energy
waste. (e nodes were programmed to sleep for 12 seconds
before waking up to communicate and check for water
pollution. If a pollution event is detected, the wakeup time is
reset to around 2 hours.(e nodes can send event data to the
gatherer, who aggregates the data from the nodes. As a
result, the SMAC protocol is valuable and applicable inWSN
applications.

5.2. Wireless Body Area Network (WBAN) SMAC. WBAN
enables real-time and continuous monitoring in medicine,
entertainment, sports, and military training where sensors
are placed on or inside the human body [226]. WBAN
typically consists of many lightweight battery-powered
medical and nonmedical nodes placed on/around or
implanted in the human body (Huang, Shan, & Shen, 2011).
(ese battery-powered nodes collect physiological data such

as temperature, heart rate, glucose, and more from the
human body.(ey send it to a centralized node known as the
coordinator or the gateway. Figure 13 shows WBAN
architecture adapted from Crema et al. [227]. (e gateway
communicates with a base station (BS), which wirelessly
transmits the data collected by the nodes to a remote
computer [228]. However, battery-powered sensors, par-
ticularly implantable sensors, are difficult to remove and
replace when the battery dies or wastes energy, causing harm
to the human body. Due to high control packet, overheard,
packet collision, over-emitting, over-hearing, and idle-lis-
tening, data transmission is the primary cause of energy
waste in WBAN [229].

SMAC is used as a MAC layer protocol in WBAN to
reduce energy dissipation caused by idle listening [132, 230].
SMAC is also used as a performance benchmark with other
MAC protocols [231, 232] to compare the performance of
SMAC’s energy efficiency over proposed MAC protocols.
Otoum et al. [233]; on the other hand, used SMAC in an
epileptic patient monitoring system (EPMS). (e EPMS was
created to help reduce response time for immediate seizures
and protect patients from severe consequences. In EPMS,
the SMAC protocol was used as the MAC protocol in
conjunction with a multipath routing algorithm to minimize
delays and maximize system throughput. A 10% duty cycle
was used alongside 1/10 syncFlag and selfConfigFlag. (e
EPMS simulation was carried out in NS-2 using SMAC and
Zigbee. (e simulation results showed that SMAC achieved
the shortest end-to-end delay and the highest throughput
compared to the Zigbee protocol. As a result, SMAC has
been deemed the best and most appropriate MAC protocol
for medical monitoring applications. Although SMAC is
mentioned as an energy-efficient MAC protocol for WBAN,
its implementations and design are inadequate compared to
other MAC protocols. A fixed duty cycle does not accom-
modate current traffic load variations in WSN applications
like WBAN.

Wireless Video
Sensor Network

(WVSN)

Water Quality
Monitoring

(WQM)

Precision
Agriculture

Coal Mine
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Wireless Body
Area Network
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Underwater
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Implemen-
tation Areas

Figure 12: Implementation of SMAC in WSN applications.
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5.3. Precision Agriculture SMAC. Unlike traditional agri-
culture, precision agriculture employs technologies to
ensure that specific agricultural inputs such as irrigation,
fertilizers, and medications are applied in the precise
quantities required [234]. Precision agriculture reduces
farmers’ weeding, harvesting, sowing, and pesticide
application workloads [235]. WSNs are used in precision
agriculture by deploying sensor nodes to sense, monitor,
collect, and measure various environmental parameters.
Soil moisture, soil PH values, soil temperature, soil sal-
inity, and soil humidity are measured parameters to
improve the quantity and quality of agricultural produce
[236, 237]. (e sensor nodes are used for monitoring in
the agricultural field. Similarly, sensor nodes rely on
limited battery power for precision agriculture operations
and face issues with energy consumption. To provide
optimal solutions for WSN in precision agriculture,
energy-efficient schemes such as sleep/wake schemes that
include duty-cycling, MAC protocols, and topology
controls have been proposed [235]. For precision agri-
culture, Ping Drowsy MAC (PD-MAC) was designed by
Sahota et al. [234] to save energy during the wakeup
synchronization phase in the MAC layer.

SMAC without RTS and CTS was also implemented as a
performance benchmark for PD-MAC with no contention
in its schedule. Because of SMAC’s high overheads during its
wakeup synchronization phase, the simulation results
showed that PD-MAC consumed 65% less energy than
SMAC. On the other hand, Lee et al. [238] used SMAC
alongside X-MAC and LP-MAC (Link Quality based on
Power MAC) protocols in their ubiquitous agriculture
application to determine the best energy-efficient and low
transmission delay MAC protocol in an agricultural site.
With many nodes and small transmission packets, LP-MAC
with a credible duty cycle of 22% proved to be the best
energy-efficient MAC protocol over SMAC with a 22% duty
cycle and X-MAC (16.3% duty cycle) [238]. Ndindiriyimana

[220]; on the other hand, proposed an improved SMAC
protocol that reduced the high energy consumption of
border nodes that use multiple schedules for precision
agriculture, giving SMAC the attention it required.

5.4. Industrial Environment SMAC. Shi et al. [112] devel-
oped a multi-WSN model based on SMAC for industrial
environments. SMAC is typically used in industrial com-
munication to reduce the energy consumption of sensor
nodes. (e time delay was specified in their model. (eir
model improved on the analytical model of Luo et al. [114],
which lacked a network control model. As a result, Shi et al.
[112] established a network controller based on network
delay. (e model was simulated to verify its accuracy and
performance in a multihop industrial network versus a
single-hop network. However, a model for energy con-
sumption and throughput for practical performance eval-
uation was omitted.

5.5.CoalMineMonitoring SMAC. WSNmonitoring systems
detect or sense pressure, flammable and poisonous gases in
the coal mine, and track and protect underground miners
from hazards or harmful accidents. Mobile and fixed WSN
nodes, a base station, a console, and an information-gath-
ering server comprise the coal mine monitoring system
[239]. SMAC is a MAC protocol used in coal mine mon-
itoring systems to control sensor node communication,
synchronization, and energy consumption. However, the
original SMAC is limited to the poor backoff algorithm,
binary exponential back-off (BEB), which affects energy
consumption, delay, and throughput due to the fixed con-
tention window. As a result, Xuan-min and Shu-yuan [202]
created an improved and adaptive backoff algorithm based
on the current contention window (CW) and the channel
state (i.e. either idle or busy) for a coal mine security
monitoring and alarming system. (e experimental results
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Figure 13: WBAN architecture.
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demonstrated that the improved SMAC protocol is more
adaptable to traffic load, resulting in less delay and lower
energy consumption than the original SMAC protocol.

5.6. Underwater AcousticWireless Sensor Network (UWASN)
SMAC. Another WSN environmental monitoring appli-
cation type is UWASN, which entails deploying sensor
nodes to sense, collect, and monitor an aquatic envi-
ronment in real-time for analysis and decision-making via
a wireless medium. AlthoughWSN performs admirably in
UWASN, the limited battery power combined with dif-
ficult battery recharging makes energy dissipation difficult
[240]. MAC protocols have been proposed in response to
the activities that cause high energy dissipation in the
MAC layer. However, limited bandwidth, propagation,
and delay variance continue to be a problem in MAC
protocols that require more exploitation [241]. Li et al.
[131] evaluated SMAC, IEEE 802.11, and TDMA in the
underwater acoustic channel based on bandwidth uti-
lization, time-lapses, and energy consumption, where
SMAC and IEEE 802.11 demonstrated more energy sav-
ings than TDMA.

5.7. Wireless Video Sensor Network (WVSN) SMAC.
SMAC is a popular energy-efficient MAC protocol for WSN
monitoring applications, but WVSN operates differently.
SMAC was designed to support single-channel architecture,
whereas WVSN employs MAC protocols that support
multichannel architecture. SMAC also saves energy at the
expense of end-to-end delay and throughput [242]. On the
other hand, SMAC is used in WVSN as a performance
benchmark for MAC protocols to measure energy con-
sumption, throughput, and consumption [243]. Salim et al.
[198]; on the other hand, improved the original SMAC
protocol for WVSN. (ey created an improved SMAC to
reduce long queue delays of critical or high-priority data,
which slows down intrusion detection. As a result, priority
bits indicate the importance of data that must be processed
immediately after being queued. A priority bit of 0 indicated
critical data, while a priority bit of 1 indicated noncritical
data. (e proposed protocols eliminated queuing delays for
necessary data or frames for better surveillance and faster
detection and processing of intrusions.

6. Open Issues and Future Research Directions

We have discussed MAC protocols for WSNs, SMAC-based
WSN protocols, and improved SMAC protocols developed
by researchers in the preceding sections. Additionally, we
discussed SMAC’s shortcomings and improvements and the
various simulation tools, energy considerations, and per-
formance metrics. Although several authors have proposed
SMAC-basedWSNs protocols as a well-known synchronous
low duty cycle protocol that improves the 802.11 protocol,
areas still require additional research. While discussing
various MAC layer issues such as idle listening, packet
overhearing, packet control, overheads, and packet collision,
we focused on the potential benefits of using SMAC. (e

adoption of SMAC as an energy-efficient MAC protocol in
WSN for environmental monitoring continues to face sig-
nificant shortcomings.

(e challenges posed by border node adoption, such as
multiple schedules, fixed duty cycle, and increased end-to-
end delay or latency, are still being addressed. Other chal-
lenges relating to fixed contention window or ineffective
backoff algorithm, unnecessary idle listening, and high
control overheads, in particular, are also receiving attention.
Energy optimization, energy-efficient operation, robust
support for high traffic loads, dynamic network traffic, and
mobility are just a few challenges that require additional
research. Additionally, issues specific to the SMAC imple-
mentation process must be addressed due to monitoring the
environment’s applications. Due to the dynamic nature of
application environments, SMAC must optimize energy
consumption to prolong the network’s life. (is section will
discuss some of the open issues and future research direc-
tions that must be investigated to improve the performance
and reliability of SMAC-based WSN systems.

6.1. Energy Harvesting SMAC. Energy harvesting (EH) has
received considerable attention in recent research on
energy-efficient WSN techniques. (e energy harvested
from the environment is typically weak (i.e. vibration energy
harvesters, which produce low-power) and unstable (i.e.
solar energy, which does not operate at night or in bad
weather conditions), limiting them to coupling with low-
power devices despite EH’s exceptional effectiveness at
supplementing sensor devices’ limited battery power. Several
MAC protocols have been proposed for incorporation into
energy harvesting WSNs [244–248], but few of these works
focus on SMAC. Tadayon et al. [249] used an analytical
model to design and incorporate a solar energy harvesting
model into SMAC to determine its performance in max-
imizing the network lifetime of wireless sensor nodes and
developing an energy-efficient MAC protocol for energy
harvesting-based WSN. (e authors modelled solar energy
harvesting in a PV cell to ascertain SMAC’s higher
throughput resulting from more significant bursts in the
EH-based WSNs. Rao and Pillai [250] compared the energy
consumption of SMAC and solar energy harvested from the
sun. Several vital parameters such as duty cycle and data
rates were considered to determine the applicability of
SMAC in solar energy harvesting in WSN. (eir findings
indicate that the fixed duty cycle of SMAC makes energy
harvesting impractical. Hence, future research should focus
on designing adaptive duty cycle protocols suitable for
satisfying the dynamic characteristics of current WSN
monitoring applications. In addition, high-capacity devices
for WSN applications must be compatible with low-cost,
high-output EH equipment that is high in efficiency. Gra-
phene is a new energy-storing material that enhances the
performance of supercapacitors, Li-ion, Li-Si, and Na-ion
batteries. SMAC’s novel adaptive duty cycle protocols can be
implemented with energy harvesting to evaluate SMAC’s
adaptability to exploit further and investigate issues that may
arise in such implementations.
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6.2. Robust Support for Traffic Load. Robust traffic load
support is a critical design consideration for WSN MAC
protocols. While SMAC has been shown to decrease the
energy consumption of wireless sensor nodes, the fixed duty
cycle, and contention window are insufficient for traffic
adaptation. Issues that require urgent attention regarding
traffic load include transmission control mechanisms,
computation complexity, inadequate real-time application
of protocols, and increased transmission power of broadcast
messages. Because most protocols were limited to static
application environments, future consideration should be
given to mobile application environments. Additionally,
configurable transmission power that requires fewer com-
putations should be considered. While adaptive contention
window/backoff algorithms facilitate traffic adaptation in
SMAC, the complexity of traffic load prediction and max-
imum throughput continue to be open issues.

6.3. Energy-Efficient Operation and Optimization. SMAC is
an energy-efficient MAC protocol, so its variants are pri-
marily concerned with reducing sensor node energy con-
sumption. Most proposed SMAC variants reduced energy
consumption by addressing the border node problem,
excessive idle listening, high control overheads, the backoff
algorithm, and the fixed duty cycle. However, additional
sources of energy waste, such as routing protocols, clustered
networks, and data aggregation and acquisition, were
overlooked. Further research should be conducted on
SMAC’s energy-efficient operation and optimization. (e
focus should be on routing protocols, clustered networks,
network topological changes, data aggregation and acquis-
ition techniques, and multihop and multipath network
topologies that impact the network lifetime of WSN mon-
itoring applications.

6.4.HeterogeneousandMultihopNetworks. A heterogeneous
network is made up of different sensor nodes that have other
capabilities in terms of computation, energy, link, com-
munication, and sensing range. (e main advantages of
heterogeneous networks are reduced latency and extended
sensor node lifetime. Despite the growing interest in het-
erogeneous and multihop networks, most SMAC research
has ignored heterogeneity in the pursuit of homogeneity. As
a result, WSN for SMAC researchers should concentrate on
heterogeneous network topologies that represent real-world
applications involving heterogeneous sensor nodes. SMAC
protocol design should also be tailored to heterogeneous
networks, or it may become obsolete in current research.
SMAC implementation is inadequate for multihop net-
works, and this must be addressed in future and recent
studies.

6.5. New Network Topologies. Node deployment is a critical
WSN design issue because it affects energy consumption,
coverage, and connectivity. Depending on the network
topology (bus, ring, mesh, star, and grid), it is necessary to
critically examine the selected network topology and its

effects on network performance. Most research in this area
ignores the impact of network topology on energy con-
sumption. Topologies such as star and bus contribute to high
energy dissipation of sensor nodes, congestion, and packet
loss. SMAC research should consider its application in other
network topologies, such as grid and mesh, in the future.
Grid topologies are energy efficient due to their multipath
routing, which encourages clustering [251]. SMAC can thus
be evaluated in clustered networks using grid topology
simulation.

6.6. New Simulation Models. (e latest WSN simulators,
such as NS-3, OMNET++, and OPNET, have been updated,
and new features and modules have been added. To help
researchers perform simulations, SMAC should be imple-
mented in these new simulators. According to studies, 66%
of the work done to improve SMAC used NS-2 simulations.
Because of the NS-2’s obsolescence, the obtained results may
lack accuracy and applicability in real-world monitoring
applications; thus, researchers should consider updated
simulators with features that reflect real-world environ-
ments for accurate results and applicability.

6.7. Dynamic Network SMAC Protocol Design. Most existing
works have not considered the implementation of mobility
models in SMAC. Mobility models are driving forces in
current WSN research and applications. As a result, future
SMAC research should consider various mobility models for
mobile application environments to determine the applic-
ability of SMAC in existing WSN monitoring applications.

7. Conclusion

(is paper presents a survey of the current state of the art in
SMAC-based WSN protocols. We began by describing the
work done in SMAC to address the limitations of the tra-
ditional MAC protocol. Furthermore, we describe the low
duty cycle MAC protocol for WSNs, focussing on the
synchronous low duty cycle. While there have been many
improvements in SMAC-based WSN over the years, as
highlighted in this paper, some open issues require addi-
tional research to further use SMAC-basedWSN for efficient
adaptation in environmental monitoring applications. To
our knowledge, no energy harvesting SMAC mechanisms
have been discussed in this field. Energy harvesting is critical
in environmental monitoring applications, so incorporating
it into a SMAC-based WSN is critical.

Furthermore, energy harvesting techniques that can
assist the sensor network in remaining operational for more
prolonged periods should be investigated. Finally, SMAC
implementation in heterogeneous and multihop networks
should be designed to ensure extensibility, and SMAC in
clustered networks should be examined to achieve improved
energy efficiency. Addressing these difficulties would
improve the overall performance and effectiveness of
SMAC-based WSN applications, particularly in environ-
mental monitoring.
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