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In the Internet of things, many data transfer protocols are used for various tasks. In this article, we consider the application layer
protocols that are the main ones for transmitting messages in the IoT. �e main problems are unpredictability, lack of stability of
data transmission delays, and non-determinism, which are also important for real-time systems. �e purpose of this study is to
determine the most appropriate middleware and data transfer protocol for systems with high data transfer requirements, in-
cluding real-time systems.�erefore, MQTT, RTPS, JMS, and AMQP protocols were analyzed in order to �nd out what tasks these
protocols should be used for and whether they can be used in robotic and autonomous systems where high data transmission
requirements are imposed. To evaluate the protocols, the standards were analyzed to determine the pros and cons, and the
software implementations of each of them were selected. To assess the characteristics of data transmission, we have developed our
own test scenarios that simulate complex situations. �e behavior of software solutions is analyzed and a comparative analysis is
made based on the obtained data. Together, the theoretical analysis of protocols and the study of software solutions allow us to
conclude on the applicability of a particular protocol in real-time systems. As a result of the study, we can conclude that RTPS is
the best solution for real-time systems with di�erent tra�c andMQTTperforms well when transmitting short messages. But none
of the protocols under consideration guarantees the determinism of data transmission, so it is better to use specialized link-layer
protocols to obtain guarantees.

1. Introduction

In modern systems, the volume of data processed, generated,
and transmitted is increasing. Many complex systems
consist of many modules or nodes that constantly com-
municate with each other.�esemodules can be located on a
single computer or distributed in a network. �e more
automated the system, the greater the requirements for data
transmission and real-time communication. In distributed
computing systems, transmission a�ects the performance of
the system, while in various robotic systems, constant
synchronization may be required and low data exchange

rates may lead to errors in the operation or breakage of
mechanisms. While in autonomous systems such as self-
driving vehicles, unpredictable and long delays can become a
threat to people’s lives. In this regard, the question arises
about the choice of data transmission protocols for reliable
and fast data transmission.

1.1. Motivation. Various network technologies are used
everywhere in everyday life. Systems are getting smarter and
there is always a problem of limited resources. Millions of
sensors continuously create and transmit data to manage
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real-world infrastructures that use complex Internet of
things (IoT) networks. For various spheres of human ac-
tivity, various technologies and protocols are being devel-
oped for the organization of the network and the efficient
operation of the infrastructure. ,e predominant areas of
development of such network technologies are smart en-
vironment, autonomous transport, and medicine.

1.1.1. Smart Environment. A smart environment includes
the automation of various processes of our everyday life. It
includes such technologies as smart home, smart city, smart
manufacturing, etc. In a smart environment, the question of
limited resources also arises, since smart devices and various
sensors are also used to create this environment. ,e re-
sources of IoT devices are very limited, and there is no
possibility to perform complex computing tasks locally. At
the same time, the bandwidth of data transmission channels
is also limited and it is impossible to use the entire resource
for the functioning of systems. To solve these problems,
various approaches to building infrastructure related to edge
computing are being created [1]. At the same time, the basic
data transfer technologies are the IoT protocols, and they
play a significant role in the operation of a particular smart
environment system.

1.1.2. Autonomous Transport. Autonomous transport in-
cludes a set of units like sensors, GPU, CPU actuators, etc.
,e operation of an onboard control system is based on the
transmission of information between subsystems.,erefore,
it is crucial to realize a reliable exchange of data. ,e main
parameters are a guarantee of data delivery, data integrity,
maximum possible latency of data transmitting, and cal-
culation cost. Furthermore, it is vital to balance require-
ments considering different kinds of data: vast streams of
information from sensors, short commands from CPUs, etc.
,erefore, the data transfer protocol has to provide the best
possible parameters for distributed and complicated au-
tonomous control systems.

1.1.3. Medicine. Modern healthcare involves many personal
wearable sensors that constantly monitor a person’s con-
dition. ,ere are different views on what the architecture of
next-generation medical platforms should be. Researchers
agree that the integration of personal sensors into a unified
health information system is inevitable.,is implies effective
ways to communicate in a heterogeneous environment. ,e
communication methods discussed in this article will be
useful to those who design medical systems.

2. Literature Overview

,is section will present the work done in the field of this
study as well as a description of each of the protocols under
consideration. After considering the theoretical part of the
protocols, the main questions that this study is trying to
answer are put forward.

2.1. RelatedWorks. A large number of studies and works have
been conducted on the problem of choosing a protocol for real-
time systems. Various IoT protocols are analyzed for perfor-
mance, security, and reliability. Since AMQP and MQTT pro-
tocols are popular in the IoT, it is important to understand the
security vulnerabilities associated with the each protocol. In
[2–5], an analysis of vulnerabilities and cyber threats for these
protocols was made. Also, in [6], an analysis of AMQP protocol
for industrial IoT was done. For MQTT in [7], a comparison
with CoAP on Ponte Eclipse Project implementation was
provided. Also, an analysis of MQTTperformance was done in
[8].,ere is a formal approach to model, analyze, and verify the
usage of MQTT in the case of communicating vehicles in [9].
,e dependence of delay and QoS level in MQTTwas analyzed
in [10]. An analysis and a comparison of AMQP,MQTT, CoAP,
and HTTP protocols without any implementation were done in
[11]. Since AMQP uses queues, a detailed analysis of message
queuemethods and a comparison of RabbitMQ, ActiveMQ, and
Kafka implementations were made in [12]. Also, RabbitMQ,
which is an implementation ofAMQP,was analyzed asmessage-
oriented middleware (MOM) and compared to NATS and
Kafka in [13]. An analysis of OPC UA, DDS, and MQTT
protocols for Industry 4.0 was done in [14]. More details about
DDS and data-centric communication were given in [15]. ,e
DDS standard was designed for real-time systems on mission-
critical infrastructures. So, security is necessary to avoid disaster
and loss of life. Security issues for DDSwere analyzed in [16, 17].
Touching on our previous research, we have analyzed the
existing data transmission standards in the IoT [18] and the
performance of DDS services [19].

2.2. Protocol Overview. In this section, we will briefly con-
sider the main concepts of the protocols and highlight the
basic features that are stated in the specifications. Each
protocol was created to solve a certain range of tasks, so it is
worth getting acquainted with each of them to understand
the relevance of using the protocol in the modern IoT.

In IoT, the most relevant protocols are MQTT, AMQP,
JMS, XMPP, CoAP, and RTPS (DDSI-RTPS). XMPP does
not support any delivery guarantees, but only allows to
request information from the client about the delivery of
data [20], so this protocol is not considered in this article,
because the real-time system requires these delivery guar-
antees to work with up-to-date data. Also, the CoAP pro-
tocol is not discussed in this article; although the addition of
the publish-subscribe model to this protocol is interesting
for real-time systems, the standard client-server model is not
suitable for real-time data transmissionbecause this model
requires sending requests to receive new data. ,ese pro-
tocols solve the problem of data exchange in any format,
queue processing, and data distribution. Each of the con-
sidered protocols provides different guarantees, so it is
necessary to understand for which target systems a particular
protocol may be suitable or for which data.

2.2.1. Message Queuing Telemetry Transport (MQTT).
MQTT (Message Queuing Telemetry Transport) is a light-
weight transport protocol that releases a publish-subscribe
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model. ,e protocol is an open OASIS standard and an ISO
recommended.

MQTTwas invented by Dr Andy Stanford-Clark of IBM,
and Arlen Nipper of Arcom (now Eurotech), in 1999. ,ere
was a problem with communication between monitoring
devices and remote servers in the oil and gas industry. In
many cases, it was difficult or impossible to use a landline,
wired connection, or radio transmission connection. During
that time, satellite communication was the only solution to
this problem. But it was very expensive, and it was necessary
to pay according to the volume of data transmitted. So,
thousands of sensors required a form of communication that
could provide reliable data transmission with minimal
bandwidth use.

Two developers specified the features of the tool to solve
this problem:

(i) Simple implementation
(ii) Lightweight and bandwidth efficient
(iii) Quality of service
(iv) Data agnostic
(v) Continuous session awareness

IBM used protocol after it was created for internal
purposes for about 10 years.,en IBM releasedMQTT 3.1 as
a free version in 2010. From that time on, everyone was able
to use the protocol. In 2014, MQTT became an officially
approved OASIS standard.

In 2019, OASIS ratified the new MQTT 5 specification.
,e new version specified features that are required in the
IoT industry, such as more reliability and error handling.

It works on top of any ordered, lossless, bidirectional
network protocol, for example TCP or SSL. In MQTT, there
are two entities: the server (broker) and the clients. All
messages from senders who are called publishers are passed
by the broker to receivers who are called subscribers. All data
are divided into topics—the label attached to the message.
,e server matches the topic with subscription and forwards
messages if they match. ,is is how clients behave:

(i) Connect to the broker
(ii) Subscribe to a topic and wait for incoming messages

or send messages to the topic(s)
(iii) Close the connection

MQTT provides topics with wildcard, shared subscrip-
tions and quality of service.

,ere is also a variation of the protocol—MQTT-SN
(MQTT for sensor networks). It is designed especially for
sensor networks. MQTT-SN can work on top of non-TCP/
IP network protocols such as UDP. Header size has also been
reduced, and the UTF-8 topic string has been replaced by an
integer topic id.

Quality of services defines the delivery guarantee. ,ere
are three levels:

(i) QoS 0: At-most-once delivery. Message is sent only
one time. ,e receiver sends no response and the
sender performs no retry.

(ii) QoS 1: At least once delivery. Message is sent until it
arrives at the subscriber at least once.,e subscriber
sends an acknowledgment to the publisher after
getting the message. ,e publisher performs a retry
until an acknowledgment is received.,e subscriber
processes any copy of the message as a new unique
message.

(iii) QoS 2: Exactly one delivery. ,e subscriber receives
only one copy of the message by a two-step ac-
knowledgment process. Like in QoS 1, the sub-
scriber sends the acknowledgment, but the
publisher sends a second acknowledgment back,
and after getting it, the subscriber sends back a final
acknowledgment that completes message trans-
mission. During the acknowledgment exchange, the
receiver drops any message that has the same packet
identifier as the current message.

As described earlier, the topic is a label attached to the
message. Topic names can form a hierarchical topic tree by
separating each level with a forward slash. Subscribers use a
topic filter to let the broker know which topics are of interest
to them. Wildcards can be used in the topic filter. ,e
number sign is a multilevel wildcard that matches any
number of topic levels, including zero topics.,e plus sign is
a single-level wildcard that matches to only one topic level,
including zero topics.

MQTT defines two types of subscriptions: shared and
non-shared. ,e main difference is the number of copies of
the message. With the non-shared subscription, all receivers
who subscribe to the same topic get their own copy of the
message. With the shared subscription, only one copy of the
message is sent to the one shared group. ,at way, a load-
balanced network architecture can be created. Shared sub-
scriptions are also useful for parallel processing of publi-
cations by multiple clients.

2.2.2. Real-Time Publish-Subscribe Protocol (RTPS). ,e
RTPS data exchange protocol, also known as DDSI-RTPS, is
developed by the Object Management Group (OMG), as
part of the DDS standard, responsible for data transfer and
ensuring compatibility between different vendors as well as
ensuring platform independence of the DDS service. ,e
first version of the DDS specification was released in 2004
and the RTPS protocol specification version in 2009.

DDSI-RTPS protocol is developed for reliable and high-
speed transmission via unreliable data transfer protocols, for
example via UDP.

DDSI-RTPS is based on the concept described in the
DDS standard. ,e model describes entities such as:

(i) Domain
(ii) Topic
(iii) Publisher who sends data to the topic via the

DataWriter
(iv) Subscriber who gets data from the DataReader

,e publisher and subscriber are the end nodes who
sends and receives data, respectively, and the subject is an
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entity that describes the channel to which data are sent,
which subscribers can track. A domain is an entity that
divides topics, publishers, and subscribers into different
name domains. ,erefore, the topic, publisher, and sub-
scriber belong to a specific domain and cannot interact with
nodes from another domain. At the same time, subscribers
and publishers do not know anything about each other, but
are connected only by the topic through which the data are
transmitted.

,e RTPS protocol is based on four main modules:

(i) A structural module that describes the structure of
entities;

(ii) A message module that describes the structure of
transmitted messages;

(iii) A behavior module that describes the sequence of
message transmission and the time constraints
imposed on the transmission of each message;

(iv) A discovery module that describes how nodes find
each other to interact with.

To ensure reliable data delivery, the protocol describes an
entity such as CacheChanges. Each node (DataReader or
DataWriter) has such an entity. When sending and receiving
data, each nodemakes a note about this in the Cache Changes.

,e protocol has three message types: DATA,
HEARTBEAT, and ACKNACK. DATA is a message with
data, HEARTBEAT is a message with changes in Cache-
Changes of DataWriter, and ACKNACK is a message with
changes in CacheChanges of DataReader. With the help of
HEARTBEAT and ACKNACK, it is possible to determine
what data were sent but not delivered, which will allow
resending these data. But since the DataWriter only knows
about data loss when it receives changes from the Data-
Reader, which in turn are sent only when the message is
received, the packet loss will only be known when the
DataReader receives the next message, which generally vi-
olates the sequence of receiving messages. To ensure that the
sequence is correct, the protocol makes messages unavailable
until all the necessary data are received.

,e discovery module contains two protocols that im-
plement the search for nodes in the network. ,e first
protocol is the Participant Discovery Protocol (PDP), which
describes the algorithm for searching for nodes in a network
belonging to a specific domain, and the second protocol is
the Endpoint Discovery Protocol (EDP), which describes the
search for specific DataReader and DataWriter in a domain.

,us, we can distinguish the following qualities of this
protocol:

(i) Providing automatic search by nodes of each other;
(ii) Providing data transmission with various QoS that

the DDS standard describes;
(iii) High data transfer rate due to the UDP protocol,

instead of TCP.

2.2.3. Java Message Service (JMS). A new programming
language Java was introduced in 1995. As there was not a
mechanism that provided communication between a few

programs, JMS (JavaMessage Service) was created in 1998 to
solve this problem. ,e last version (2.0a) of the JMS
standard was updated in 2015.

JMS is similar to other middleware. It has two types of
communication: point to point and publish and subscribe.
In both communication styles, there is a JMS provider that is
used to manage connections, queues, and resources.
Opening the first connection creates a provider outside Java
virtual machine.

Point-to-point messaging means that there are two pro-
cesses communicating with each other. ,is communication
type uses message queues. Each process has a message queue as
a “mailbox.” Queues accept all types of messages and are not
individual for every message sender, so there is no need in
having more than one queue on each side. Each queue can be
used by a few clients, but they will not receive all messages in
case after delivery every message becomes consumed and
cannot be retrieved by any client. In JMS, there are two types of
queues: temporary and static. Temporary queues can be used
only in one connection, because they exist only during the
lifetime of the connection. Static queues are most commonly
used.,ey can be used in a few connections and also they may
still exist after the client program’s end, so while restarting, the
client can retrieve messages from this queue.

Publish and subscribe messaging is a common publish-
subscribe model, where few processes communicate through
a topic. Reliability depends on the subscriber’s durability and
publishing persistence. Nonpersistent publishing results in
at-most-once reliability, while persistent publishing results
in once-and-only-once reliability. Nondurable subscribers
can miss messages if they are inactive, while durable sub-
scribers cannot miss messages. Persistent publishing is
mostly implemented by static queues. ,ere is no descrip-
tion of how redelivery must be implemented.

As additional functionalities, there is a message selector.
It allows users to filter messages by processing their header
fields. It uses SQL syntax to do that. Also, some providers
allow the use of topic hierarchy, which helps to send a
message to a few topics immediately.

2.2.4. Advanced Message Queuing Protocol (AMQP).
AMQP was developed by John O’Hara in 2003. One of the
first implementations of this protocol was Apache Qpid. Red
Hat started developing it in 2005. In 2007, Rabbit Tech-
nologies released their implementation of AMQP called
RabbitMQ.

AMQP defines three types of nodes: producers, con-
sumers, and queues. Producers and consumers are parts of
the application that generate and proceed messages. Each
node is attached to a container which can be a client or
broker. ,e difference between clients and brokers is only in
expected capabilities.

In AMQP to start communication firstly required to
create a connection between containers. ,en the session can
be started. Every connection may contain multiple sessions.
,ereafter, a link can be established between two nodes. All
links are unidirectional. On each side of the link, there is a
terminus that controls message flow through the link.
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Messages can be transmitted only through a link. In
relation to nodes, messages can be divided into a few types,
namely originate from, terminate at, or relay by nodes.
Queues are used to store messages and make them available
to few consumers. So, the main purpose of brokers is to
manage queues to receive messages from producers, store
them, and transmit messages to consumers.

Every message delivery has a settlement state, which
controls if a message has been delivered, and delivery state.
To set settlement, nodes send frames. When the receiver
sends a settlement frame of delivery, the sender removes
delivery from its unsettled map. It can be used to implement
different reliability policies. If the sender sets the settlement
of delivery after message sending, then the message will be
delivered “at most once.” If the receiver sends a settlement of
delivery and the sender waits for settlement, then it im-
plements the “at least once” guarantee. To perform “exactly
once,” the delivery sender has to set settlement only after the
receiver sets the terminal delivery state, and the receiver has
to set settlements after the sender. But in this case, a few
frames should be sent: at least one for termination and one
for settlement. ,ere is no other way to implement reliable
transfer without duplications in AMQP.

Additionally, AMQP provides security protocol support,
such as TLS and SASL. Also, it has a transactional messaging
model. Transactional works consist of three operations:
posting, acquiring, and retiring. Target performs posting and
makes amessage unavailable at the destination until it will be
fully discharged. Source performs retirement to associate an
outcome of delivery with the transactionSource acquires
transaction message to perform operation.

2.3. Conclusion of theOverview. A lot of work has been done
in the field of IoT protocol research. Different studies in-
vestigate different characteristics of data transmission and
use different methodologies. Each protocol has many
implementations that can be better or worse relative to each
other, and the research done can also use various protocol
implementations for analysis. In addition, it is necessary to
consider all protocols under the same conditions in order to
achieve objective comparison results. Depending on the
methodology, selected software implementations, and the
range of protocols under consideration, the results of the
study may vary.

All these factors complicate the choice of a solution and
protocol for a specific task. ,is article examines the best
software implementations based on the work done and
creates the same conditions for evaluating middleware.

3. Materials and Methods

To analyze and compare the protocols selected for consid-
eration, it is necessary to formulate criteria that will show
their characteristics, select software implementations that
use the protocols in data transmission, and develop a testing
methodology that would allow studying these technologies
from different angles.

In this section, we will consider the methods developed
in our work for studying software solutions for data
transmission that emit various conditions. Such conditions
can occur in different systems, so it is necessary to evaluate
not only the maximum capabilities of these software tools,
but also their behavior in critical situations that can be
created by developers during the development of the system.
We will also define the criteria for selecting specific data
transfer libraries for each protocol.

3.1. Description of ComparisonMethods and TestingMethods.
Every protocol has its own reason for creation, which lies in
its feature. It has both pros and cons. It is difficult to predict
the performance of protocol based on analysis only. ,e
performance also depends not least on the implementation
of the protocol. In addition, machines have different power,
which also affects performance. It is necessary to know data
transmission characteristics for objective evaluation and
comparison. Comparison of different protocols can be
difficult because they work differently and are designed for
different purposes. ,erefore, it is good to have a universal
value characteristic that shows the practical side of protocols.
,is makes it possible to compare and select implementa-
tions without knowing their internal structure.

Test scenarios have been developed to evaluate different
implementations. ,ese tests simulate situations with dif-
ferent environments: message interval, number of subscribers
or exchanging pairs, frequency, and message size. ,e limits
in the tests can be viewed as hard real-time situations. All this
gives an insight into the limitations and problems of the
protocol and/or the implementation. ,is helps to decide if
the protocol is a good solution for a certain problem.

For each selected implementation, corresponding pro-
grams were written that have identical logic. ,e difference
between the programs is only in the functions of sending and
receiving data, which use the API of the selected middleware
directly. ,e general logic of the tests has the following three
types of interaction:

(i) One-way data transfer, when the program performs
the role of either only the sender or only the receiver
with a specified frequency and with a specified
payload size;

(ii) Two-way data transfer, where one node sends
messages only when it receives a response from the
other, thus measuring RTT and jitter;

(iii) Two-way data transfer, when one node does not
wait for a response, but sends messages at a certain
interval, while it is possible to artificially limit the
queue by indexing received and sent messages.

To obtain objective results of data processing by the
selected technologies, programs are assigned to a separate
core with exclusive use of its resources, which guarantees
that the programs work in the same conditions.

,e characteristics of the system that was tested are
shown in Table 1. All tests were performed locally on a single
computer. ,e test scenarios used in the study will be de-
scribed below.
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3.1.1. Evaluating Queue Processing Performance. ,e test is
aimed at investigating message queue processing. In the test,
the first node sends messages to the other node without any
interval. ,us, the queue accumulates.

,e test is performed with message sizes of 50 and 60,000
bytes. ,e process priority is set to the highest in Linux–99.
Both the nodes are bound to the CPU cores. So, each process
is separate and works without interruptions during queue
processing, such conditions help to get the most accurate
data about the studied characteristic.

3.1.2. Evaluating the Impact of the Number of Nodes on
Performance. ,e test is aimed at investigating the depen-
dence of the total latency on the number of subscribers. In
the test, one node (publisher) sends messages to other
nodes—subscribers. ,e message size with sending fre-
quency takes up 1.25MB per second of bandwidth.

,e test is performed with the number of subscribers
varying from 1 to 20. As in test 1, all processes have the
highest priority in Linux–99. No node is bound to the CPU
core. A separate test is run for each number of subscribers.

3.1.3. Evaluating the Impact of Message Size on Latency.
,e test is aimed at investigating the total latency in de-
pendence on message size. In the test, the first node sends
messages to the other node at a given interval. ,e message
size increases during the test.

,e test is performed on different frequencies which in
combination with the message sizes take from 2.5 kB to 2GB
per second of bandwidth. As in previous tests, all processes
have the highest priority in Linux–99. ,e nodes are not
bound to CPU cores.

3.1.4. Estimation of the Jitter Value and Minimum Delays.
,e test is aimed at investigating the total latency, jitter, and
RTT (round trip time) of each message of the minimum size.
,e test also shows the number of copies between the user
space and the kernel space. In this scenario, the ping-pong
model is used: one node sends a message to the other, and
then both exchange messages only after receiving a message
from the other node. ,e test stops when the set number of
transmitted messages is reached. ,e size of each message is
10 bytes. Nodes are not bound to CPU cores and process
priorities are not set.

3.1.5. Evaluation of the Effect of the Number of Interacting
Processes in Different Conditions on Delays. ,e test is aimed
at investigating the dependence of the total latency on the
message size at different message sending frequencies and on
the number of process pairs. In this scenario, the ping-pong
model is used, but the node that sends the first message, also

called the first node, does not wait to receive a message from
the other node, as in the previous scenario, and sends new
messages on a given frequency. ,e other node works as in
the previous test. ,e test stops when the set number of
transmitted messages is reached.

,e test consists of two types of subtests: (1) one pair
exchanges messages on a given frequency; (2) at a fixed
frequency, several pairs exchange messages. ,e message
size increases during the test in both subtests. In the first
subtest, messages take up a bandwidth in the range of
5 kB–4GB per second for both the nodes. In the second
subtest, messages take up a bandwidth in the range of
100 kB–1.5GB per second for each pair.,e number of pairs
in the second subtest is 1, 2, and 3. Nodes are not bound to
CPU cores and process priorities are not set.

3.1.6. Investigation of Delays in Artificially Fixing theMessage
Queue. ,e test is aimed at investigating the total latency of
processing a limited queue. ,is scenario uses the limited
queue ping-pong model from test 5. If the first node has a
difference between the number of the sent message and the
last received one greater than the watermark value of 50, no
message will be sent. It means that messages in the queue are
not more than the value of the watermark. Due to the limited
queue, the latency will be constant or does not exceed some
constant value. ,e size of each message is 10 bytes. Nodes
are not bound to CPU cores and process priorities are not
set.

3.2. Description of the Framework Selection. ,e main
criteria for framework selection are open source and C/C++/
Java programming language for clients.

,e JMS is very abstract, so this research could have been
any Java client with or without any server. But in this article,
there is an idea of comparing with Java realization, so the
JMQ has been selected. ,e server is called GlassFish, and it
was developed by Sun Microsystems and later passed under
the wing of the Eclipse Foundation. ,e auto-acknowledge
of message property is used for testing. ,e nonpersistent
property is also set. If the persistent property is set, the
message is copied to the hardware to avoid losing it.

,ere are many implementations of the DDS standard:
OpenDDS, OpenSplice, FastRTPS, and Cyclone DDS. ,ere
are evaluations of FastRTPS on the eProsima website [21].We
also have another close research comparing all these four
DDS frameworks. In it, FastRTPS was the winner. For ex-
ample, in Figure 1, there is a delay graph for messages with
increasing size (we use “Evaluating the impact of message size
on latency” test scenario). ,e results of OpenSplice (the
public version of this solution) were not added to the image,
as this solution showed a terrible result with delays in seconds
after 200 messages, where the size was 512 kB. As pictured,
FastRTPS shows the best result.,erefore, FastRTPS has been
selected for this research. For guarantee delivery, the fol-
lowing message properties are set: to achieve a delivery
guarantee, parameters are set for storing all messages that
have not yet been received by subscribers and a QoS-reliable
policy is selected, which guarantees data delivery.

Table 1: System configuration.

OS Linux-5.4.54-rt with Ubuntu 18.04 bionic
CPU Intel Core i5, 3.0GHz
RAM 8GB
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�ere are not many implementations of AMQP. �ree
popular servers are RabbitMQ, ActiveMQ, and Apache
Qpid. A comparison of the �rst two was made in [22], where
RabbitMQ showed better results. In [23], a comparison was
made between RabbitMQ and Kafka, where the former
showed good results.�e Apache Qpid has been tested in the
�rst three tests. In Figure 2, there are results of RabbitMQ
and Qpid for the test “Evaluating the impact of message size
on latency.” As pictured, Qpid is worse. In other tests, the
Qpid result is close to or worse than RabbitMQ. �erefore,
RabbitMQ has been selected for this research.

�ere are many MQTT servers since the IoT becomes
more and more a part of our life. Evaluation, analysis, and
comparison of MQTT brokers have been done in [24, 25]. In
these researches, the best result was shown by the Mosquitto
broker. �erefore, this broker is used in this research.
PahoMQTT has been selected for the client side. It is de-
veloped by Eclipse Foundation. For the tests, the QoS level is
set to 1–at least once delivery.

4. Results and Discussion

�e analysis of protocols should be divided into two sec-
tions—theoretical and performance evaluation—since the
analysis of speci�cations will not give information about the
performance of data transmission, but only helps to un-
derstand the principles of operation and guarantees pro-
vided by the protocol. At the same time, protocol
implementations from di�erent vendors may show di�erent
characteristics, so a practical assessment of the performance
of a particular solution does not give an accurate assessment
of the protocol.

Later in the article, we will try to analyze what these
protocols provide and consider the characteristics obtained
as a result of testing.

4.1. Analysis of the Operation of the Protocols (Speci�cation-
Based Analysis). To analyze the protocols, we studied the
speci�cations of these protocols, which are in the public
domain. In this part of the study, the advantages and dis-
advantages of the algorithm of the protocols and the
technologies used were identi�ed.

4.1.1. MQTT. MQTTpackets are lightweight. Each packet is
divided into three sections: a �xed header, a variable header,
and a payload. �e �xed header consists of the packet type,
£ags, and remaining length. Summary of the �rst two gives 1
byte. �e variable header consists of a 2-byte packet iden-
ti�er and properties which have a variable length. Some
packets have speci�c required properties. �e payload is a
user’s message sent. Packets do not take up much space.
Also, many properties are used in the packet for opening
connection. Only one required property in publish packet
can take up a lot of space—the topic name. �e topic is a
UTF-8 string. If needed, the topic can be replaced by, for
example, the topic ID, like in MQTT-SN. But that would
cause problems with wildcards in topics. �erefore, if they
are not used, it is possible to reduce packet size by replacing
the topic with something else.

As said before there is no queue inMQTT. So, it becomes
a problem that the application may not be able to process a
message. �is is not unusual on the network with several
thousand clients and thousand messages per second. QoS
was created for solving this problem. But it also has other
problems. With QoS 1, the subscriber spends time pro-
cessing every message as a new one. With QoS 2, there are
three acknowledgment messages where each size is about 6
bytes. So, every second, each of a thousand subscribers sends
a thousand acknowledgments. It reduces the bandwidth by
at least 6MB. MQTT is good for real time when it is required
to get actual data, but for data transfer with a delivery
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guarantee, MQTTmay be worse than other solutions based
on message queues.

In addition, MQTTis centralized. So, it has a single point
of failure which is the broker. ,is can be a problem in some
cases.

,e quality of service that defines guarantee delivery is
described in the MQTT. Is a lossless network protocol like
TCP required? TCP takes a lot of bandwidth. If the message
is dropped by the server, for example, due to performance
limitation, the message will be sent again, which will take up
much bandwidth again. It may be better to use UDP or other
UDP-based protocols, because they do not take much
bandwidth. QoS levels 1 and 2 guarantee delivery, so the
excess requirement of lossless to the network protocol is not
necessary.

Advantages:

(i) Lightweight packets;
(ii) QoS levels;
(iii) Ability to filter messages.

Disadvantages:

(i) MQTT uses TCP/IP;
(ii) Centralized model;
(iii) No queues.

4.1.2. RTPS. ,e RTPS protocol has many advantages over
other protocols. As described in the review, the protocol is
positioned as a reliable data transfer protocol, using unre-
liable transport layer protocols-UDP/UDPM. Using these
protocols, the highest channel throughput and data transfer
rate are provided.

With the help of the Simple Participant Discovery
Protocol, the DDS standard provides the ability to dy-
namically connect to the network without having to know
the addresses of senders/recipients. ,is provides a plug and
play connection, in which the nodes find each other by
themselves. But the protocol does not guarantee compati-
bility between different implementations from different
vendors.

,e protocol supports QoS levels for the best effort or
reliable connection. A reliable connection is achieved by
resending data if the packet has not been delivered, but
information about the delivery of the packet will not be
received using special messages, as in TCP, but only when
the next packet with data is received. ,is algorithm blocks
the receipt of the packet until all the lost packets are de-
livered. ,is can increase delivery delays quite significantly
in some situations.

Additional data that help in ensuring the reliability of the
connection (guarantees of data delivery) can also set limits
on the data storage time of this message, limits on the time of
message delivery, and other parameters that may be nec-
essary for real-time data transmission.

,e protocol implies a modular system that guarantees
the absence of a single point of failure, allows for expansion
without loss of compatibility, and uses separately from the
DDS standard.

As a result, the following advantages of the protocol can
be distinguished:

(i) Availability of QoS and flexible configuration of
delivery and data storage parameters for each
message;

(ii) Plug and play connection;
(iii) Using UDP for fast data transfer;
(iv) No single point of failure.

,e disadvantages are as follows:

(i) Increased latency in the case of packet loss;
(ii) Possible incompatibility between vendors.

4.1.3. JMS. JMS is a good solution for systems where reli-
ability can be implemented as static queues. But the usage in
real-time systems can be failing in case of using static queues
in persistent storage.

Advantages:

(i) It is easy to use. It does not use additional
structures, such as for identifying messages that
were received. ,ere are no special messages de-
fined for some purposes, such as preventing
message duplications;

(ii) It does not require a broker to manage message
flow. It uses queues without a special manager that
exists in another process, which makes it fault-
tolerant;

(iii) May store messages after client failure. In the case
of using a static queue, messages can be stored as
long as it is required. So, after all, every node can
receive all messages sent to them.

Disadvantages:

(i) Standard is too uncertain in many details. It can be
interpreted in different ways. So, implementations
may have very different characteristics;

(ii) It does not pretend to deliver messages quickly.
Other standards may say that they were developed
for quick messaging. But JMS was created to allow
communication in Java, and it does not say about
delivery speed.

4.1.4. AMQP. AMQP cares about message transportation
on every transition. ,is can be used in distributed systems
where nodes are grouped in difficult architecture. Also,
systems using transactions can be interested in this protocol.

Advantages:

(i) Strong control of message flow on every system
node. It uses maps of settled messages and addi-
tional frames that allow to ensure that every
message has been delivered to each transition node;

(ii) It has a transactional model. It allows the control of
full completion of operations. In case of failure or
canceling operation, operations will not be
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completed. It is possible because messages can be
processed only after the completion of a transaction.

Disadvantages:

(i) It does not have a Pub-Sub model that results in
using the same way to send messages from pub-
lishers to subscribers and to send messages from
point to point;

(ii) It has increased frame £ow. It uses frames to settle
messages, terminate deliveries, etc. So, it can cause
a decrease in the latency of common messages
because of frame transmission and processing.

4.2. Evaluating the Performance of Protocol Implementations

4.2.1. Evaluating Queue Processing Performance. �ere are
two ascending lines, namely RabbitMQ and PahoMQTT
withMosquitto broker (see Figure 3). As shown in the graph,
the delay for these frameworks grows during the whole test.
�e growth starts at the begging of the test.�e peak of delay
at the end of the test is several seconds. �is is not a good
result. Messages are sent more quickly than they can be
delivered. �e queue is constantly accumulating and the
time to receive each packet is delayed. �ere is a horizontal
line. It is FastRTPS. �is framework demonstrates a very
stable data transmission for this message size. It is the best
result. �e last one left is GlassFish. Its graph is very similar
to FastRTPS, but has delayed growth in the middle of the
test. But the delay decreases in the second half of the test. It
decreases because messages stop being sent and the queue
stops being replenished, messages start being processed until
they run out. GlassFish also has a higher delay than
FastRTPS but less than 1 second. So, this is a good result.

In Figure 4, there is a graph of delays for a message size of
60000 bytes. �ere are three rising lines. Two of them are
RabbitMQ and PahoMQTTwith Mosquitto broker. �ey do
not change their behavior unlike FastRTPS. �is is a third
ascending line. �e situation is more deplorable than with
the other two. FastRTPS has the highest delay, which grows
through the tests.�is may be because FastRTPS (Fast-DDS)
uses UDP for data transmission, which imposes a limit on
the packet size and the message must be transmitted in
several parts if it is larger than 65 kB, which greatly increases
the data transfer delay of 1 message. GlassFish does not
change its behavior. Its delay grows until the middle of the
test and then decreases. �e delay is also under 1 second,
which is the best result. �us, according to the results of the
two subtests, GlassFish shows the best stable and fastest
queue processing performance.

4.2.2. Evaluating the Impact of the Number of Nodes on
Performance. In Figures 5–8, minimum and maximum
delay and its mean and interquartile range for a di�erent
number of subscribers can be seen. Also, mean and maxi-
mum delays are presented for each �fth number of sub-
scribers in Table 2.

GlassFish has no delay dependence on the number of
subscribers.�emaximum delay varies and is more than 100

milliseconds but without dependence. �e mean and the
mid-spread are less than 25 milliseconds. But the IQR
(interquartile range) is large, and its size is about a few
milliseconds.

FastRTPS also has no delay dependence on the number
of subscribers. �e minimum and maximum are the same
during the test. �e delay ranges from 1 second or less to
10–12 milliseconds. �e mean and mid-spread have no
dependence and are in range the from 1 to 4 milliseconds.
�e IQR is less than 1 millisecond.

PahoMQTT has abnormal jumps of up to 60 and 100
milliseconds on 15 and 18 subscribers. �e mean and mid-
spread are less than 5 milliseconds. �ere is no delay de-
pendence on the number of subscribers. RabbitMQ has
similar results.�ere is one jump up to 50milliseconds on 18
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Figure 3: Delay of messages with the size of 50 bytes.
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subscribers and jumps up to 20 milliseconds on several
numbers of subscribers. �ere is also no delay dependence.

According to the results, no framework has a depen-
dency on the number of subscribers. �is means that the
software processing of the queues of these implementations
takes quite a short time and does not a�ect the data transfer
delay under these conditions. It is a good result because data
transfer time does not change with the number of sub-
scribers. In addition, GlassFish shows the worst results, with
a mean value of about 10 milliseconds, while the maximum
delays reach a few hundred milliseconds. �e other three
have similar means and mid-spreads, but FastRTPS results
are better. However, the maximum delay of FastRTPS is
worse than RabbitMQ and PahoMQTT, but the last two
have abnormal unknown delay jumps.

4.2.3. Evaluating the Impact of Message Size on Latency.
In this test, message size changes every 100 messages. Fig-
ure 9 shows delays for all frameworks at a frequency of 100

messages per second. �e means and maximums of delays
for several message sizes for the frameworks are presented in
Table 3.

�ere is no di�erence betweenmessages on the GlassFish
graph. It is as if messages are sent with a static size instead of
increasing ones. �e delay and its maximum increase and
decrease during the test. �e maximum delay reaches 100
milliseconds. �e mean grows while the message size is less
than 1MB. After means are similar, they are about 18
milliseconds. �us, GlassFish delay is not dependent on
message size so much.

FastRTPS graph shows that the frequency of delay jumps
increases with message size. �ese jumps are repeated when
the test is repeated, which indicates that they are caused by
the testing logic. But for other implementations, there are no
such jumps, which can be regarded as unstable operation of
FastRTPS in these conditions. Also, the mean andmaximum
delay increase with message size. �e mean reaches 14.5
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Figure 5: GlassFish’s delay boxes with di�erent subscriber counts.
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Figure 6: FastRTPS’s delay boxes with di�erent subscriber counts.
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Figure 7: Paho +Mosquitto MQTT’s delay boxes with di�erent
subscriber counts.
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milliseconds and the maximum reaches 65.5 milliseconds at
the maximal message size. At a message size of 1.5MB, there
is an abnormal spike. �e maximum delay is 160 millisec-
onds. �us, FastRTPS delay depends on message size. It
increases with size, but it is a linear dependence.

�e PahoMQTT and RabbitMQ graphs look like stairs.
Each step represents the moment of increase in message size.
So, the delay of these two frameworks depends on the
message size.�e steps are clear while the size is under 1MB.
�ereafter, the delay becomes more chaotic. �ere is an
interesting feature: PahoMQTT shows a better result until
the message size reaches 1MB. If the message size is greater
than 1MB, the mean of RabbitMQ delay is less than the
PahoMQTT delay. It can be seen in Figure 9 that the
RabbitMQ graph is under the PahoMQTT graph. But the
maximum values of these frameworks are quite close. �e
di�erence is a few milliseconds.

According to the results, all frameworks have a signi�cant
delay dependence on message size, except GlassFish. But the
last one has a very high delay. �e means are the same as
maximums, for example RabbitMQ. As described earlier, if
the message size is less than 1MB, PahoMQTT is better than
RabbitMQ, otherwise vice versa. FastRTPS delay is similar to
PahoMQTT delay, but has more scatter. �e maximums of
the former are several times larger than the latter. �ereby,
RabbitMQ shows the best results. GlassFish shows message
size-independent results, but with high delays.

4.2.4. Estimation of the Jitter Value and Minimum Delays.
In Figures 10 and 11, a graph of the delay of the minimum
message size is shown. �at delay corresponds to the
minimal one because there is no or minimal user data. In
Table 4, the latency, jitter, and RTT for all frameworks are
shown. As can be seen from the graph and table, GlassFish
has the highest delay of about 2.5 milliseconds with jumps
over 20 milliseconds. Jitter is also high, at about half a
millisecond.�is looks like a bold line on the graph.�is is a
bad result, because there are no other messages or any large
data transmission. So, only one message containing protocol
information is processed, and it takes a fewmilliseconds. It is
also very unstable, because the delay scatter is about 1
millisecond. RTT is also high, over 5 milliseconds on amean.
�at means that the receiver has to wait about 5 milliseconds
to get a reply from another client. Hence, it is also a poor
result. FastRTPS has the lowest delay of 300 microseconds
and jitter of 30 microseconds, which is the best result. But
there are jumps over 2 milliseconds.�is is not good and can
be critical in some cases. RTT is about 2.5 milliseconds on a
mean. But the maximum of RTT is below the GlassFish RTT
mean, so this again indicates that the GlassFish results are
poor. PahoMQTT+Mosquitto graph is similar to the
FastRTPS graph. Both of them are thin lines in the graph.
But PahoMQTT has twice the delay on the mean. �e jitter
maximum of PahoMQTT is also higher. �e RTT mean of
PahoMQTT is lower than the mean of FastRTPS, but the
maximum of the former is higher than the latter. �e
RabbitMQ graph shows frequent jumps over 2 milliseconds
while the mean is about 1 millisecond. �is is bad because
the real mean ranges up to 2 milliseconds which is similar to
GlassFish. �ere are also abnormal jumps of up to 16
milliseconds. RabbitMQ RTT is about 3 milliseconds which
is neither good nor bad. But the maximum of RTT is up to 20
milliseconds, which is also a problem.

According to the results, FastRTPS shows the best
minimal delays that are less than 0.5 milliseconds. It also has
the best jitter value of a few tens of microseconds.
PahoMQTT with Mosquitto broker also shows good min-
imal delays and jitter values that are very close to those of
FastRTPS. GlassFish has worse minimal delay and jitter
values. RabbitMQ has better results than the previous one,
but it has a large scatter, which can be seen on the graph.

4.2.5. Evaluation of the E�ect of the Number of Interacting
Processes in Di�erent Conditions on Delays. In this test, �rst
of all, we will consider the e�ect of the frequency of sending
messages on delays. Figure 12 shows the result for FastRTPS,
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Figure 9: Delay of messages with 100 msgs/sec frequency.

Table 2: Mean and maximum delay with di�erent subscriber counts.

N GlassFish (JMS) FastRTPS PahoMQTT client +Mosquitto broker (MQTT) RabbitMQ (AMQP)
1 13.78/207.6 1.7/9.4 2.13/4.39 1.38/2.62
5 9.5/128.86 1.18/8.85 1.6/3.32 1.26/4.55
10 8.13/186.0 0.96/9.22 1.39/2.62 1.75/3.7
15 12.2/192.4 1.49/10.11 2.0/112.94 1.25/2.7
20 14.7/202.8 1.86/10.2 2.54/4.83 1.38/2.82
Each column contains the mean/max value in ms.
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RabbitMQ, and GlassFish. �e results are quite di�erent
since FastRTPS and RabbitMQ handle such a data £ow and
do not accumulate a queue at any message size. And in the
case of GlassFish, the queue appears at the smallest message
size and varies throughout the test in the range from 0 to 14
messages. �e queue appears already at 400 messages per
second. �at is, problems with GlassFish already appear
when transmitting about 1.2MB per second.

In the case of Mosquitto and PahoMQTT, the results are
very ambiguous, because, at a frequency of more than 400
messages per second, the delay increases to seconds, as can
be replaced in Figure13. �is is due to the long execution of
the message receiving function consume_message (see Fig-
ure 14). Figure 15 shows a graph of the execution time of the
read function provided by the PahoMQTT library API.

Due to the execution of the message receiving function,
the receiving time is set later, since our system examines the
time when the message is transmitted from the user’s
sending point to the receiving point by another user, and not
the time when the message is received by the operating
system or the broker, or when the message appears in the
queue at the destination point. �e time at the beginning of
the test is about 1ms, which in the context of a large density
of received messages greatly increases the queue and reduces
the data transfer rate.�e testing system does not a�ect these
delays in any way, but only created conditions under which
this implementation shows a terrible result.

We can calculate the amount of data transmitted at a
frequency of 1000 messages per second on the last 300
messages, where the payload size reaches the maximum (see
equation (1)).

Bandwidth � 1.8MB · 1000msgs
sec

�
1.8GB
sec

. (1)

FastRTPS and RabbitMQ cope with this load, although
the delays vary, and in the case of FastRTPS, it is no more
than 8ms, and in the case of RabbitMQ, it is no more than
30ms.�e rest of the implementations cannot withstand this
load and do not have time to process the queue, although all
implementations run in a loop with an interval of 1ms. �at
is, checking for new data with an interval of 1ms, which in
the worst case will give an additional delay of 1ms. �is can
happen if the message is located in the recipient exactly after
the end of the check for the presence of the message. �is
interval was chosen to reduce the load on the CPU.

GlassFish simply does not have time to transmit and
process such a data stream, and in the case of MQTT, the
reasons for the long wait to receive data have not been
investigated, but may be related to the load on the broker or
the long processing of data on the client. It is worth noting
that these results may not apply to any situation where
messages are transmitted with a given frequency and a given
message size, but rather to this particular test scenario in
which complex conditions are recreated.
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Table 3: Mean and maximum delay with di�erent message sizes.

Implementation 128 B 524 kB 1MB 1.5MB 1.8MB
GlassFish (JMS) 9.40/47.8 14.45/90.16 18.86/88.22 17.14/44.67 17.70/69.96
FastRTPS 0.57/25.54 6.49/29.03 10.18/31.37 29.66/161.97 14.57/65.64
PahoMQTT client +Mosquitto broker (MQTT) 0.64/5.49 5.83/13.74 11.35/17.77 11.34/21.57 14.53/23.07
RabbitMQ (AMQP) 1.40/6.85 7.09/13.30 8.09/15.63 11.65/18.89 8.25/21.48
Mean/max latency values are in ms for messages of di�erent sizes.
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Next, the dependence of RTT on the number of pairs of
interacting processes is considered. All pairs are identical
and do not have any priority of data transmission in
comparison with each other. From the test, we want to

consider the behavior of di�erent pairs of processes and the
e�ect of the number of pairs on delays. �e frequency of
sending messages is 400 messages per second, which gives a
fairly large data stream, but this does not create conditions to
accumulate a huge queue for each of the considered
implementations.

Figure 16 shows the RTTgraph for FastRTPS with three
pairs of interacting processes. �e jumps on the charts are
particularly noticeable in the area of every 300 messages,
since it is with this frequency that the message size increases.
Jumps are associated with the reallocation of memory for the
bu�er, which creates additional delays.�e RTTtime for any
message size does not exceed 6ms, with the greatest delays
being achieved in the middle of the test with a message size
of 0.7MB. By the end of sending data of a certain size, the
delays are reduced. �is phenomenon can be explained by
the fact that when the message size changes, a small queue of
several messages appears, which adds a signi�cant part of the
RTT, and by the end of sending the next 300 messages, the
queue goes away and the delays fall to their real values. At the
end of the test, the delay is less than in themiddle, since there

Table 4: Latency, jitter, and RTT of minimum message size.

Implementation Latency Jitter RTT
GlassFish (JMS) 2.62/37.26 0.57/34.64 5.25/73.49
FastRTPS 0.30/2.60 0.03/2.30 2.67/5.15
PahoMQTT client +Mosquitto broker (MQTT) 0.63/3.11 0.039/2.48 2.45/8.42
RabbitMQ (AMQP) 0.96/15.79 0.10/14.83 3.11/19.41
Mean/max latency, jitter, and RTT values are in ms.

Delay time

175

150

125

100

75

50

25

0

0 500 1000 1500 2000 2500
message number

tim
e (

m
se

c)

RabbitMQ
FastRTPS

jmq_glassfish

Figure 12: FastRTPS’s, RabbitMQ’s, GlassFish’s latency with a
frequency of 1000 messages per second and di�erent message sizes.
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Figure 13: PahoMQTT’s latency with a frequency of 1000messages
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auto

auto
unsigned long

start_timestamp = duration_cast<nanoseconds>
(high_resolution_clock : : now ( ) . time_since_epoch ( ) ) . count ( ) ;

(high_resolution_clock : : now ( ) . time_since_epoch ( ) ) . count ( ) - start_timestamp ;

msg = _client_sub . consume_message ( ) ;
proc_time = duration_cast<nanoseconds>

Figure 14: Measuring the execution time of the PahoMQTT library
read function.

tim
e (

m
se

c)

Reading time

25

20

15

10

5

0
0 500 1000 1500 2000 2500

message number

Figure 15: PahoMQTT’s data processing time.
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is no queue and new messages stop being sent, which re-
duces RTT.

When studying the in£uence of the number of pairs,
there is no obvious dependence, but with a large number of
interacting processes, the maximum RTT value in some
cases increases. �ese maximum values are not repeated
from test to test and are random, with a random message
size. As shown for three pairs, the RTT graphs overlap each
other, which shows the uniform distribution of library re-
sources between processes. �is is a good indicator, as it is a
sign of the predictability of delays, which is very important

for real-time systems. It is very important to evenly dis-
tribute resources between equal priority data transmission
channels because there is no need to think about the fact that
any node in the network will take part of the resources for
data transmission. �ere will be no need to reduce the
amount of data transmitted over one channel in favor of
another. �e only exception to think about is limited
bandwidth.

Analyzing the results of GlassFish, a direct relationship
between the number of pairs and RTT is seen, since the
delays when two pairs of processes work simultaneously
increase by about two times, and when adding another pair
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Figure 16: FastRTPS’s RTT with three communicating process
pairs.
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Figure 17: GlassFish’s RTT with three communicating process
pairs.
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Figure 18: PahoMQTT+Mosquitto broker RTT with three
communicating process pairs.
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of RTT increases to the order of seconds (see Figure 17). In
this case, the behavior of the pairs is very similar, although
the RTT value of each pair is not as close as in the case of
FastRTPS. �is software solution cannot cope with the load
of one pair of interacting processes, and as the number of
processes increases, the load increases many times and the
queue quickly accumulates.

�e results of PahoMQTT with Mosquitto are similar,
with an increase in the number of pairs, this solution does
not cope, and already with two pairs of interacting processes,
RTT reaches the order of seconds. Figure 18 shows a graph
for three pairs, where with a large message size, RTTreaches
hundreds of seconds.

�e behavior of these two implementations does not
meet the requirements of real-time systems.

RabbitMQ, in turn, showed similar FastRTPS results
with random outliers and the same behavior of process pairs,
but a noticeable increase in latency from one case to three,
which can also be seen in Figure 19.

4.2.6. Investigation of Delays in Arti�cially Fixing theMessage
Queue. Consider the case of sending messages of 10 bytes
without an interval with the maximum possible frequency,
but we limit the queue to 50 messages. First, the state of the
queue during the test was considered. As a result, FastRTPS
kept the queue state at the level of 50 messages almost
throughout the entire test, but there were rare single jumps
when the queue was empty and abruptly accumulated back.
�e state of the GlassFish queue turned out to be quite
unstable and constantly £uctuated from a few messages to
50, similar to RabbitMQ, but in the range from 0 to 30
messages. �is situation is explained by the fact that the
queue is calculated based on the di�erence between the
number of messages sent and the number of messages re-
ceived, and it takes time to transmit a response message. In
addition, the check for new messages occurs at intervals of
1ms, which also gives time to process the queue.

In the case of PahoMQTTwith Mosquitto, the queue did
not rise more than six messages and did not have time to
accumulate, because one node did not have time to send data
with su�cient frequency. �is is also because this imple-
mentation waits for the message delivery information to be
received before sending a new one. �erefore, this solution
does not make sense to compare with the others, since it is in
di�erent conditions. But when testing the case without
waiting for this information, the queue jumps in the range
from 0 to 35 messages and the delay does not exceed 2ms,
and the mean delay value was 0.5ms. �is result is the best
among all the studied implementations.

Figure 20 shows the delays of each implementation, as
the result of FastRTPS showed the best result with a delay of
about 6ms, GlassFish showed a huge spread of values, and if
we consider the peak delay and the state of the queue of 50
messages, it turns out that it took 120ms to deliver 50 small
messages, which is a terrible indicator. RabbitMQ turned out
to be worse and not as stable as FastRTPS; on average, the
delay of this implementation was less than 10ms with a
queue state of less than 30 messages. With a smaller queue,
the delays were greater than those of FastRTPS.

4.3.ResultComparison. A lot of papers have pointed out that
DDS is the best solution for real-time data transmission.�e
authors of [26] compared popular protocols based on the-
oretical information. �ey concluded that the problem of
transferring data many to many in real-time DDS is the best
solution.

�e authors of [14] showed that DDS is one of the leaders
in delivery performance.�eir result for DDS at payload size
2 B coincides with our result obtained in the fourth scenario
(Section 4.2.4). �ere is a di�erence of 2 milliseconds be-
cause in our experimental setup each node performs an
incoming message check only once every 1 millisecond.
�erefore, the additional delay is up to 2 milliseconds for
RTT.

A comparison of protocols using the Anglova scenario
was conducted in [27]. �e results show that the DDS
implemented with OpenDDS has a lower latency and jitter
compared to RabbitMQ and ZeroMQ.

A comparison of FastRTPS and ROS-MQTT was made
in [28]. �e results show that the average FastRTPS latency
for an empty message is 620 microseconds. �is is close to
our result in the third scenario (Section 4.2.3), where
FastRTPS has an average latency of 570 microseconds for a
128 B message size. But the other results do not match
because the authors are experimenting on a more complex
architecture with networked data transmission, while our
scenarios are run on a single machine.�is is also true for the
MQTT results. But overall, results show that FastRTPS has
an advantage over MQTT which is coincident with our
results.

�e authors of [29] compared the popular protocols in
terms of performance in eHealth solutions. �ey considered
protocols from a di�erent angle, but the results coincide with
ours: DDS is the best solution.�e graph where the sampling
rate is 1000 coincides with the results obtained in the �fth
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Figure 20: �e delay time in the case of a limited queue.
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scenario (Section 4.2.5). ,ere are many differences in the
specific values, because the experimental setups are very
different. But, in general, the results are the same: DDS
showed the best latency, followed by AMQP, then JMS, and
finally MQTT, which showed a very poor latency. ,e au-
thors have summarized their results in a comparative table
with the strengths and weaknesses of each protocol. But in
this table, JMS has strong points such as “low latency” and
“suitable for real-time applications.” ,is looks very strange,
because DDS does not have “low latency” in the strengths,
but has lower latency in the results, and AMQP has “not
suitable for real-time applications” in the weaknesses, but
the results show that AMQP is the same or better than JMS.

An analysis ofMQTT, CoAP, and XMPPwas performed in
[30]. In this study, real data, such as temperature, humidity,
and light, were sent 100 times for each protocol. ,e results
show that the average delay of MQTT is about 589 micro-
seconds. ,is is better than the average delay of CoAP (821
microseconds) and XMPP (41 milliseconds). Since the tem-
perature, humidity, and light data are lightweight and the
transmission was in one direction, theMQTTresult is the same
as the results obtained in the third scenario (Section 4.2.3): 640
microseconds for MQTT with a message size of 128B.

,eMQTTresult in the third scenario is also the same as
the result from [31], where MQTT has a latency of 1 to 1.5
milliseconds. ,e difference of two times may be caused by
the packet transmission time over the network, in contrast to
our experimental setup where all components (publisher,
broker, and subscriber) are placed on the same machine.

,ere are a lot of comparisons between AMQP and
MQTT. In [32], the authors compared the RTT of AMQP
and MQTT. ,e results show that MQTT is slightly better
than AMQP: the RTT of AMQP is about 700 microseconds
and the RTT of MQTT is about 500 microseconds. ,is
coincides with the RTT results from the fourth scenario
(Section 4.2.4). ,e difference of a few milliseconds is
explained by the fact that in our experimental setup all
receiving nodes work in a 1-millisecond wait cycle, which
causes an additional delay of up to 2 milliseconds in this
scenario. Other small time differences may be caused by the
operating system or different versions of the frameworks.

In [33], the authors also compare the RTT for AMQP
and MQTT and show that AMQP is better in most cases.
Most measured values for AMQP and MQTT range from 2
milliseconds to 6 milliseconds. ,ese results are matched by
our results for the fourth scenario (Section 4.2.4). But in our
results, MQTT is slightly better than AMQP, in contrast to
the conclusion in [33]. ,e cause for this may be that the
authors used the Python programming language, the
Raspberry PI, or the pika library for the AMQP broker.

In [34], the authors show that AMQP and MQTT have
the same delay (MQTT is slightly better). Since the authors
did not provide a detailed description of the test scenario, it
is difficult to compare with our results, but it is similar to the
results of the third scenario (Section 4.2.3), where AMQP
andMQTT have similar delays for message sizes up to 1MB.

In [35], AMQP and MQTT delays were compared for
different scenarios: sending data from weather sensors and
sending data from city cameras. ,e results show that for

scenarios with sensors, MQTT has a lower delay (less than 1
millisecond) than AMQP. Since sensor data are lightweight,
this is coincident with the results obtained in the third
scenario (Section 4.2.3) with a message size of 128 B, where
MQTT has an average delay of 640microseconds. But for the
scenario with cameras, the result is reversed, with AMQP
having a lower delay (less than 13 milliseconds). ,is is also
coincident with the results obtained in the third scenario
(Section 4.2.3): as the message size increases, MQTT shows
higher latency compared to AMQP.

,e authors of [36] also concluded that MQTT is better
suited for small message sizes.,eir results show thatMQTT
has lower latency (from 400 microseconds to 500 micro-
seconds) than AMQP (from 800 microseconds to 1100
microseconds) for message sizes up to 4096 B. ,is is
matched by our results obtained in the third scenario
(Section 4.2.3) with a message size of 128 B. ,e latency in
our results is higher because the network speed is less than
1GB/s and the broker has lower system characteristics. ,e
authors also experimented a 5000-message sending rate and
message size of 64 B. ,is is very close to the first scenario,
where messages are sent without intervals. ,e results are
matched: latency increases throughout the scenario.

5. Conclusions

Described protocols are different in initial purposes. JMS is a
simple standard for messaging in Java programs, that does
not specify messaging mechanics. MQTT and AMQP are
protocols for messaging using queues that differ in some
details. RTPS has a purpose to make real-time messaging
available to its users by having more strict rules. For real-
time systems, the best protocols are MQTT and RTPS.
MQTTis good at transmitting small messages, while RTPS is
a more versatile and flexible protocol with more options for
changing the QoS.

,e article presents a methodology that allows to in-
vestigate the software delays of solutions in various con-
ditions, but the conditions of the study have limitations:

(i) ,e interval for checking new messages is 1ms,
which in the worst case can give an error of 1ms;

(ii) Testing was carried out on a single machine using
network data transfer protocols, but minimizing the
impact of network delays. ,us, it is assumed that
the network is stable, although the instability of the
network can greatly affect the result [37];

(iii) ,e test from Section 3.1.2 uses a fairly small
number of simultaneously running subscribers;

(iv) All tests are aimed at investigating the delays in-
troduced by the middleware;

(v) In the developed methodology, nonstandard be-
havior of nodes was stimulated, for example in-
creasing the size of transmitted data during one test,
which is not typical.

Considering the results, GlassFish is the best solution for
message sending without intervals. It can be used in systems
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with a lot of messages, where other solutions will be too slow.
But in all other cases, it has the worst results and cannot
compete with other solutions.

Paho is very good at transferring messages of minimum
size. It could be a good solution for systems with very small
messages, such as commands that can be presented as few
bytes.

RabbitMQ is one of the fastest solutions. It shows itself
good in all cases, except in sending messages without an
interval. RabbitMQ is the best at sending messages with a big
size and with multiple subscribers.

FastRTPS is almost the best solution. ,ere is only one
problem—message processing without an interval between
sending messages. FastRTPS has the most stable delays
which makes it predictable. It is very important in real-time
systems.

In IoT systems almost all investigated cases are pre-
sented. RabbitMQ and FastRTPS are good in most cases and
should be considered firstly. RabbitMQ should be used in
systems with big messages and a lot of consumers of the
same data. FastRTPS should be used in real-time systems,
where delays have low jitter and are bounded by a constant
value.,e usage of GlassFish and Paho is more limited.,ey
should be used only in special cases, such as too frequent
message sending and low-size data transferring.

When building a system with various data, which in-
cludes both small command messages and large amounts of
data from sensors, cameras, etc., the RTPS protocol shows
itself in the best way. But none of the software solutions
considered by us provides guarantees of delivery in iso-
chronous mode, and in all cases, in certain situations, there
are unpredictable jumps and the accompanying growth of
themessage queue. To provide real guarantees, it is necessary
to use link-layer protocols that provide appropriate capa-
bilities and guarantees, since the application layer is highly
dependent on external factors.
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