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�is paper tries to investigate the complex characteristics of the communication market where Internet service providers (ISP)
lease network access services and compete to serve a large pool of subscribers. For this purpose, we analyze the dynamics of a
mixed duopoly game with two decision parameters: price and quality of service (QoS). We calculate and discuss the stability of
each equilibrium solution by using the nonlinear system. A numerical simulation is used to show the �ip bifurcation to chaos by
the decisions of ISPs with di�erent statuses. We discovered that the Nash equilibrium loses stability when the speed of adjustment
and transmission fee increase.We show that the system parameter changes the stability of the communicationmarket. In addition,
we use a control method to keep the communication market in a stable state.

1. Introduction

Oligopoly is a market mechanism, with a few players
producing homogeneous products. �ese players consider
the market demand and the decisions of their opponents.
�e Cournot model [1] is a duopoly game between two
players, where the player uses naı̈ve expectations. Bertrand
in Reference [2] presented the Bertrand model with two
players, in which the players’ decisions compete with price
competition.

In recent years, many works studied the dynamics of
games and tremendous e�orts have been devoted to in-
vestigating the complex nonlinear dynamic systems with
bounded rationality behaviors. Several expectations have
been proposed such as näıve expectation, adaptive expec-
tation, and bounded rationality. In Reference [3], the au-
thors studied a repeated Bertrand duopoly model with
bounded rational players.�e authors in reference [4] used a
bounded rationality mechanism to study a dynamic game
with a dynamical map. In Reference [5], the authors con-
sidered the Cournot model of consumer surplus with
bounded rationality. �ey show that the system goes into
chaos throughout �ip bifurcation. �e authors in Reference

[6] studied the complex behavior of a duopoly game with
two parameters: price and quantity. �e authors considered
that each player maximizes its expected pro�t with bounded
rationality and adaptive expectation. In Reference [7], the
authors investigated the dynamic game of agricultural
product supply chain with bounded rationality. �e authors
in Reference [8] used nonlinear dynamics and game theory
to investigate the dynamical behavior of airline bidding
games with bounded rationality. In Reference [9], the au-
thors established a dynamic model of a supply chain. �e
authors used nonlinear dynamic theory to investigate the
stability of dynamic models. In addition, the authors con-
trolled the dynamic game process based on an adaptive
control method.

In the communication market, many ISPs aim to in-
crease their pro�t by providing many services for the sub-
scribers (X SMS, Y min Voice, Z Mo Data,. . .). �e authors
in Reference [10] analyzed the interaction between the ISPs
in the communication market, where each ISP chooses price
and QoS.

�e authors in Reference [11] analyzed the e�ect of
content sponsoring on the price and QoS of ISPs in the
communication market. �e authors in Reference [12]
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investigated ISPs’ best strategies in terms of quality offered to
a big CP in a competitive context. In Reference [13], the
authors used S-modular theory to investigate the price and
power control competition in wireless networks. )e authors
in Reference [14] investigated the impact caching in Infor-
mation Centric Network by building an analytical framework
withmultiple ISPs for the distribution of popular content.)e
authors used game theory to study the interaction between
ISPs. In Reference [15], the authors investigated a non-neutral
communication market where ISPs charge content providers
(CP) for content distribution. )e authors study the com-
petition among ISP in two cases: (1) competitive case, where
the ISP charge CP; (2) cooperative case, where CP cooperates
with ISP to optimize their strategies.

)e authors in Reference [16, 17] investigated the in-
teractions in price and beaconing duration between the
UAV in the communication market. In Reference [18], the
authors studied profit-sharing contracts between CP and
ISPs in the communication market.

In the literature on the communication market, most
papers focused on games between ISPs adopted naive ex-
pectations to update their policies. However, we can hardly
find a few papers that investigate the Bertrand game with two
heterogeneous ISPs in the communication market. )e
present paper studies the interaction among heterogeneous
ISPs in the communicationmarket, where one ISP is rational
and the second ISP is adaptative.

In this paper, we investigate a communication market
competition and focus on this more realistic problem. )e
ISPs compete to serve subscribers in terms of QoS and
pricing. Based on maximizing the profits, the bounded ra-
tionality expectation rule, and adaptative expectation, this
paper builds a dynamic game. In addition, we calculate and
investigate the stability of the Nash equilibrium points by
mathematical analysis. )rough numerical results, we ex-
plore the effects of system parameters on the stability of the
Nash equilibrium point. At last, we use a control method to
control the chaos.

)e paper is organized as follows: in Section 2, we de-
scribe dynamic model. In Section 3, we have presented the
analysis and numerical result of the price game with
bounded rationality. In Section 4, we have presented the
analysis and numerical result of the joint QoS price game. In
Section 5, we have presented the conclusion.

2. System Model

We consider a communication market with several sub-
scribers and two ISPs using adaptative expectation and
bounded rationality expectation. Each ISPf chooses a net-
work access price pf and the QoS qf. Subscribers’ behavior
is a function of ISPs’ strategies, see (1). )e parameters used
in this paper are presented in Table 1.

We assume all subscribers need the same type of service,
and they achieve their demand by subscribing to one of
the ISPs. )e number of subscribers in service of ISPf is
affected by both network access price and QoS. We model
the number of subscribers served by ISPf as in References
[19, 20]:

Df � df − σf

fpf + ςf

fqf + 􏽘
2

g�1,f≠g

σg

fpg − ςg

fqg􏼒 􏼓, (1)

df is the potential demand of subscribers. σg

f and ςg

f are the
responsiveness to price pg and QoS qg of ISPg. For ISPf, the
number of subscribers Df increases in QoS qsf

and decreases
in qsg

. In addition, Df is decreasing in network access price
pf and increasing in pg.

Assumption 1. )e sensitivity ς verifies:

σf

f ≥ ς
g

f, ∀f≠g ∈ 1, 2{ }. (2)

)e utility function of ISPf is written as follows:

Πf � pfDf + ptf
Df − υfBf, (3)

where pfDf is the income from network access. ptf
Df is the

transmission revenue. υf is the unit cost of bandwidth. Bf is
the backhaul bandwidth of ISPf which is expressed as
follows [21]:

Bf � Df + q
2
f. (4)

)en, the utility function is given by

Πf � pf + ptf
􏼒 􏼓Df − υf Df + q

2
f􏼐 􏼑. (5)

3. Price Game

In the communication market, for the sake of becoming
entirely rational and having complete knowledge about the
communication market, the ISPs need to invest a significant
cost, whereas most ISPs are not willing to do this activity.
Hence, in this situation, we consider that some ISPs have
incomplete knowledge about the market. In other words, the
ISPs are boundedly rational. But in the communication
market, a few ISPs willing to invest to grasp the market
knowledge. We assume that ISPs will adopt expective ex-
pectations. In this paper, we study an asymmetric scenario
with two ISPs, one ISP adopts expective expectations while

Table 1: Summary of notation.

Notation Description
pf Network access price of ISPf.
qf Quality of service of ISPf.
υf Backhaul bandwidth cost.
ptf

Transmission fee of ISPf.
σg

f Sensitivity to price pg.
ςg

f Sensitivity to QoS qg.
df )e total potential demand of subscribers.
Df Demand ISPf.
Bf Backhaul bandwidth.
αf Speed of adjustment of the price pf.
βf Speed of adjustment of the QoS qf.
ε Speed of adjustment of the price of the adaptive player.
τ Speed of adjustment of the QoS of the adaptive player.
κ )e controlling parameter
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the other is boundedly rational. )e first-order condition for
ISPf is as follows:

zΠf

zpf

� df − 2σf

fpf + ςf

fqf + σg

fpg − ςg

fqg − σf

fptf
+ υfσ

f

f,

(6)

we assume cf � df + ςf

fqf − ςg

fqg − σf

fptf
+ υfσ

f

f, then (6)
becomes:

zΠf

zpf

� cf − 2σf

fpf + σg

fpg, (7)

from (7), we obtain the following reaction function for
ISPf:

pf �
cf + σg

fpg

2σf

f

. (8)

We consider that the ISP1 uses bounded rationality
expectation; hence, he builds its decision based on the ex-
pected marginal payoff zΠ1/zp1. )en, the dynamical
equation of ISP1 is as follows:

p1(t + 1) � p1(t) + α1p1(t)
zΠ p1, p2( 􏼁

zp1
, (9)

where α1 is the speed of adjustment.
)e dynamical equation of the adaptative player ISP2 is

as follows:

p2(t + 1) � (1 − ε)p2(t) + εr2 p1(t)( 􏼁, (10)

where ε ∈ [0, 1] is a speed of adjustment. r2(p1) � c2+

σ12p1/2σ22 is the response function.
)en, the dynamical game with heterogeneous ISPs has

the following form:

p1(t + 1) � p1(t) + α1p1(t)
zΠ p1, p2( 􏼁

zp1
,

p2(t + 1) � (1 − ε)p2(t) + εr2 p1(t)( 􏼁.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

)en (11) becomes

p1(t + 1) � p1(t) + αp1(t) c1 − 2σ11p1(t) + σ21p2(t)􏼐 􏼑,

p2(t + 1) � (1 − ε)p2(t) +
ε

2σ22
c2 + σ12p1(t)􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where c1 � d1 + ς11q1 − ς21q2 − σ11pt1
+ υ1σ11, c2 � d2 + ς22q2−

ς12q1 − σ22pt2
+ υ2σ22

Setting p1(t + 1) � p1(t) in (12), we obtain the
following:

p1(t) c1 − 2σ11p1(t) + σ21p2(t)􏼐 􏼑 � 0,

− 2σ22p2(t) + c2 + σ12p1(t) � 0.

⎧⎪⎨

⎪⎩
(13)

Solving system (12), we get two equilibrium points as
follows:

E0 � 0,
c2

2σ22
􏼠 􏼡

E∗ �
2c1σ

2
2 + c2σ

2
1

4σ11σ
2
2 − σ21σ

1
2
,

c1σ
1
2 + 2c2σ

2
2

4σ11σ
2
2 − σ21σ

1
2

􏼠 􏼡,

(14)

where E0 is a fixed point while E1 is a Nash equilibrium
point. For economic significance, the equilibrium points E0
and E1 should be positive. According to Assumption 1, we
have 4σ11σ

2
2 − σ21σ

1
2 > 0, so, the equilibrium points E0 and E∗

have economic meaning if c1 > 0 and c2 > 0.
)e Jacobianmatrix of the dynamic system is as follows (12):

J p1, p2( 􏼁 �

1 + α c1 − 4σ11p1 + σ21p2􏼐 􏼑 ασ21p1

(1 − ε)
εσ12
2σ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Theorem 1. -e boundary equilibrium point E0 is unstable.
-e Jacobian matrix (15) at E0 is as follows:

J E0( 􏼁 �

1 + α c1 +
σ21c2
2σ22

􏼠 􏼡 0

(1 − ε)
εσ12
2σ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

whose eigenvalues are μ1 � 1 + α(c1 + σ21c2/2σ
2
2) and

μ2 � εσ12/2σ
2
2. We have |μ1|> 1 and |μ2|< 1. -erefore, the

fixed point E0 is unstable.

Theorem 2. -e Nash equilibrium point E1 is locally as-
ymptotically stable.

-e Jacobian at E1 is as follows:

J E1( 􏼁 �

1 + α c1 − 4σ11p
∗
1 + σ21p

∗
2􏼐 􏼑 ασ21p

∗
1

(1 − ε)
εσ12
2σ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

The Nash equilibrium point E1 is asymptotically stable if
and only if all the roots of the characteristic equation

P(μ) � μ2 − aμ + b � 0, (18)

have magnitudes of eigenvalues less than one, in which

(i) a � 1 + α(c1 − 4σ11p∗1 + σ21p∗2 ) + εσ12/2σ22.
(ii) b � (εσ12/2σ

2
2) + (αεσ12/2σ

2
2)(c1 + σ21p

∗
2 ) − (αp∗1 /2σ

2
2)

(4αεσ11σ12 + 2α(1 − ε)σ21σ22).

According to [22], the necessary and sufficient condition for
the local stability of the Nash equilibrium point E1 is as follows:

(1) 1 − a + b> 0,
(2) 1 + a + b> 0,
(3) 1 − b> 0.
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3.1.Numerical Result. Now, we make numerical simulations
to show the dynamic behavior of the communication market
by taking the parameter values in Table 2.

Figures 1 and 2 describe the bifurcation diagram
of price p1 and p2 with the change of the speed adjust-
ment α. When α is small, the Nash equilibrium E1 is
locally stable. As α increased, the Nash equilibrium be-
came unstable.

So now we can make a short conclusion that the system
or we can say the communication market can be in a stable

Nash equilibrium, but as the adjustment speed increases, the
system will go into chaos, and the price of two ISPs will be
unstable, and the market will be in chaos. )e ISP1 may not
push adjustment speed too fast to keep the market in a stable
situation.

Figures 3 and 4 show the bifurcation diagram of prices p1
and p2 as a function of the transmission fee pt. When the
transmission fee is small, the market is stable. With the
increase in the transmission fee, the market becomes
unstable.

)e flip bifurcation describes the communication
market from a stable state to chaos. According to the
previous results, the transmission fee plays an essential
role. )e communication market is more stable when pt is
less. If the ISPs increase the transmission fee without

Table 2: Setting used for numerical simulations.

σ11 � ς22 σg

f � ςg

f, f≠g d1 d2
0.9 0.1 20 20
υ1 � υ2 pt1

� pt2
q1 � q2 ε
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Figure 1: Bifurcation diagrams of p1 with respect to α.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
α

25

20

15

10

5

0

IS
P 1

 p
ric

e

Figure 2: Bifurcation diagrams of p2 with respect to α.
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Figure 3: Bifurcation diagrams of p1 with respect to pt.
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Figure 4: Bifurcation diagrams of p2 with respect to pt.
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limit, the stability of the communication market will be
destroyed.

3.2. Chaos Control. )e numerical results demonstrate that
when the adjustment of speed and the transmission fee
increases, a chaotic behavior occurs. In this section, we use a
control method [23, 24] to control the chaos of system (12).
By introducing a control parameter κ, we get the controlled
system as follows:

p1(t + 1) � p1(t) +
αp1(t)

κ
c1 − 2σ11p1(t) + σ21p2(t)􏼐 􏼑,

p2(t + 1) � (1 − ε)p2(t) +
ε

2σ22
c2 + σ12p1(t)􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Figures 5 and 6 show the bifurcation diagram of p1 and
p2 as a function of κ. )e dynamical system is in a chaotic
state when κ< 0.2. When κ> 0.45, system (12) is controlled
in a stable state.

4. Joint QoS Price Game

As in the previous section, we consider that the ISP1 uses
bounded rationality expectation; hence, the dynamical
equation of ISP1 is as follows:

p1(t + 1) � p1(t) + αp1(t)
zΠ p1, p2( 􏼁

zp1

q1(t + 1) � q1(t) + βq1(t)
zΠ p1, p2, q1, q2( 􏼁

zq1
,

(20)

where α and β are the speeds of adjustment.
)e ISP2 uses adaptative expectation; hence, the price

and the QoS of ISP1 are given as follows:

p2(t + 1) � (1 − ε)p2(t) + εr3 p1(t), q1(t), q2(t)( 􏼁

q2(t + 1) � (1 − τ)q2(t) + τr4 p1(t), p2(t), q1(t)( 􏼁,
(21)

where ε and τ are the speeds of adjustment of ISP2.

)en, the dynamical price QoS game has the following
form:

p1(t + 1) � p1(t) + αp1(t)
zΠ p1, p2, q1, q2( 􏼁

zp1
,

p2(t + 1) � (1 − ε)p2(t) + εr3 p1(t), q1(t), q2(t)( 􏼁,

q1(t + 1) � q1(t) + βq1(t)
zΠ p1, p2, q1, q2( 􏼁

zq1
,

q2(t + 1) � (1 − τ)q2(t) + τr4 p1(t), p2(t), q1(t)( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where r3(p1(t), q1(t), q2(t)) � (n2 + σ12p1(t) + ς22q2(t)−

ς12q1(t)/2σ22) and r4(p1(t), p2(t), q1(t)) � (m2 + σ22p2(t)/
2υ2).

)us, the dynamical game price QoS game becomes as
follows:

p1(t + 1) � p1(t) + αp1(t) n1 − 2σ11p1(t) + σ21p2(t)􏼐 􏼑 + ς11q1(t) − ς21q2(t),

p2(t + 1) � (1 − ε)p2(t) +
ε

2σ22
c2 + σ12p1(t)􏼐 􏼑 + ς22q2(t) − ς12q1(t),

q1(t + 1) � q1(t) + βq1(t) m1 + σ11p1(t) − 2υ1q1(t)􏼐 􏼑,

q2(t + 1) � (1 − τ)q2(t) +
τ
2υ2

m2 + σ22p2(t)􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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Figure 5: Bifurcation diagrams of p1 with respect to κ.
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where n1 � d1 − σ11pt1
+ υ1σ11, n2 � d2 − σ22pt2

+ υ2σ22, m1 �

ς11pt1
− ς11υ1 and m2 � ς22pt2

− ς22υ2.
)ere exist four fixed points of (23).

E2 � 0,
n2ς

2
2

2σ22
,0,

n2 +2m2 + ς22
4υ2

􏼠 􏼡

E3 � 0,
2n2υ1υ2 − m1υ2ς

1
2 + m2υ1ς

2
2

υ1σ
2
2 4υ2 − ς22􏼐 􏼑

,
m1

2υ1
,
2n2υ1 − m1ς

1
2 + 4m2υ1

2υ1 4υ2 − ς22􏼐 􏼑
⎛⎝ ⎞⎠

E4 �
4n1υ2σ

2
2 − n1σ

2
2ς

2
2 +2n2υ2σ

2
1 − n2σ

2
2ς

2
1 + m2σ

2
1ς

2
2 − 2m2σ

2
2ς

2
1

8υ2σ
1
1σ

2
2 − 2υ2σ

2
1σ

1
2 − 2σ11σ

2
2ς

2
2 + σ12σ

2
2ς

2
1

,
2n1υ2σ

1
2 + 4n2υ2σ

1
1 +2m2σ

1
1ς

2
2 − m2σ

1
2ς

2
1

8υ2σ
1
1σ

2
2 − 2υ2σ

2
1σ

1
2 − 2σ11σ

2
2ς

2
2 + σ12σ

2
2ς

2
1

,0,􏼠

n1σ
1
2σ

2
2 + 2n2σ

1
1σ

2
2 + 4m2σ

1
1σ

2
2 − m2σ

2
1ς

1
2

8υ2σ
1
1σ

2
2 − 2υ2σ

2
1σ

1
2 − 2σ11σ

2
2ς

2
2 + σ12σ

2
2ς

2
1
􏼡

E5 �
− 4m2υ1σ

2
2ς

1
1 − 2n2υ1σ

2
2ς

2
1 − 2n1σ

2
2υ1ς

2
2 +8n1σ

2
2υ1υ2 + 4n2υ1υ2σ

2
1 +2m2σ

2
1υ1ς

2
2 − m1σ

2
2ς

1
1ς

2
2 + 4m1σ

2
2υ2ς

1
1 + m1σ

2
2ς

2
1ς

1
2 − 2m1υ2σ

2
1ς

1
2

σ11σ
2
2ς

1
1ς

2
2 − 4υ2σ

1
1σ

2
2ς

1
1 − 4υ1σ

1
1σ

2
2ς

2
2 + 16υ1υ2σ

1
1σ

2
2 − σ11σ

2
2ς

2
1ς

1
2 + 2υ2σ

1
1σ

2
1ς

1
2 + 2υ1σ

1
2σ

2
2ς

2
1 − 4υ1υ2σ

2
1σ

1
2

,􏼠

2m1υ2σ
1
2ς

1
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􏼡,

(24)

where E2, E3, and E4 are fixed points, while E5 is a Nash
equilibrium point.

)e Jacobian matrix of system (23) has the following
form:
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Figure 6: Bifurcation diagrams of p2 with respect to κ.
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J p1, p2, q1, q2( 􏼁 �

1 + α n1 − 4σ11p1 + σ21p2 + ς11q1 − ς21q2􏼐 􏼑 ασ21p1 ας11p1 − ας21p1

εσ12
2σ22

(1 − ε) −
ες12
2σ22

ες22
2σ22

βσ11q1 0 1 + β m1 − 4υ1q1 + σ11p1􏼐 􏼑 0

0
τσ22
2υ2

0 (1 − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Theorem 3. -e fixed point E2 is unstable.
-e Jacobian matrix (25) at E2 is as follows:

J E2( 􏼁 �

1 + α n1 + σ21p2 − ς21q2􏼐 􏼑 0 0 0

εσ12
2σ22

(1 − ε) −
ες12
2σ22

ες22
2σ22

0 0 1 + βm1 0

0
τσ22
2υ2

0 (1 − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

whose eigenvalues are μ1 � 1 + α(n1 + σ21p2 − ς21q2),
μ2 � 1 − ε, μ3 � 1 + βm1, and μ4 � 1 − τ. We have |μ1|> 1,
|μ2|< 1, |μ3|> 1 and |μ4|< 1. -erefore, the fixed point E2 is
unstable.

Theorem 4. -e fixed point E3 is unstable.
-e Jacobian matrix (25) at E3 is as follows:

hskip!}substring − after(preceding − sibling :: comment()[starts − with(.,′ hskip′)],′ hskip′)}pt > J E3( 􏼁 �

1 + α n1 + σ21p2 + ς11q1 − ς21q2􏼐 􏼑 0 0 0

εσ12
2σ22

(1 − ε) −
ες12
2σ22

ες22
2σ22

βσ11q1 0 1 + β m1 − 4υ1q1( 􏼁 0

0
τσ22
2υ2

0 (1 − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(27)

whose eigenvalues are μ1 � 1 + α(n1 + σ21p2 + ς11q1 − ς21q2),
μ2 � 1 − ε, μ3 � 1 + β(m1 − 4υ1q1), and μ4 � 1 − τ. We have
|μ1|> 1, |μ2|< 1, |μ3|< 1, and |μ4|< 1. -erefore, the fixed
point E3 is unstable.

Theorem 5. -e fixed point E4 is unstable.
-e Jacobian matrix (25) at E4 is as follows:
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J E4( 􏼁 �

1 + α n1 − 4σ11p1 + σ21p2 − ς21q2􏼐 􏼑 ασ21p1 ας11p1 − ας21p1

εσ12
2σ22

(1 − ε) −
ες12
2σ22

ες22
2σ22

0 0 1 + β m1 + σ11p1􏼐 􏼑 0

0
τσ22
2υ2

0 (1 − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

whose eigenvalues are μ1 � 1 + α(n1 − 4σ11p1 + σ21p2 − ς21q2),
μ2 � 1 − ε, μ3 � 1 + β(m1 + σ11p1), and μ4 � 1 − τ. We have
|μ1|> 1, |μ2|< 1, |μ3|> 1, and |μ4|< 1. -erefore, the fixed
point E4 is unstable.

Theorem 6. -e Nash equilibrium point E5 is locally as-
ymptotically stable.

-e Jacobian matrix (25) at E5 is as follows:

J E5( 􏼁 �

1 + α n1 − 4σ11p
∗
1 + σ21p

∗
2 + ς11q

∗
1 − ς21q

∗
2􏼐 􏼑 ασ21p

∗
1 ας11p

∗
1 − ας21p

∗
1

εσ12
2σ22

(1 − ε) −
ες12
2σ22

ες22
2σ22

βσ11q
∗
1 0 1 + β m1 − 4υ1q

∗
1 + σ11p

∗
1􏼐 􏼑 0

0
τσ22
2υ2

0 (1 − τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

-e characteristic polynomial of Jacobian matrix (29) is as
follows:

P(μ) � μ4 − aμ3 + bμ2 − cμ + d � 0, (30)

where

(i) a � 4 + αn1 − 4ασ11p∗1 + ασ21p∗2+ ας11q∗1 − ας21q∗2 − ε+

βm1 − 4βυ1q∗1 + βσ11p∗1 − τ,
(ii) b � 2 + (1 − ε)(2 + αn1 + βm1) + βm1 + αn1 + αβn1

m1 + (2 + αn1 − ε + βm1)(1 − τ) − (τες22σ22/4υ2σ22)−
4α(1 − ε)σ11p∗1 − (εασ12σ21/2σ22)p∗1 + βσ11p∗1 − 4ασ11
p∗1 + αβn1σ11p∗1 − 4αβm1σ11p∗1 + 16αβυ1σ21q∗1p∗1 − 4α
β(σ11)

2(p∗1 )2 + αβσ11σ21p∗2p∗1 + αβς11σ11q∗1p∗1 − 4α(1 −

τ)σ11p∗1 + β(1 − ε)σ11p∗1 + β(1 − τ)σ11p∗1 − αβς21σ11q∗2
p∗1 + α(1 − ε)σ21p

∗
2 + ασ21p

∗
2 + αβm1σ21p

∗
2 − 4αβυ1

σ21q
∗
1p∗2 + α(1 − τ)σ21p

∗
2 + α(1 − ε)ς11q

∗
1 − 4βυ1q∗1 +

ασ11q
∗
1 − 4αβn1υ1q∗1 + αβσ11m1q

∗
1 − 4αβυ1σ11q

∗
1 + 4α

βυ1σ21q
∗
2q∗1 + α(1 − τ)σ11q

∗
1 − 4β(1 − ε)υ1q∗1 − 4αβσ11

(q∗1 )2 − α(1 − ε)ς21q
∗
2 − ασ21q

∗
2 − m1αβσ21q

∗
2 − α(1 −

τ)σ21q
∗
2 ,

(iii) c � (1 + α(n1 − 4σ11p
∗
1 + σ21p

∗
2 + ς11q

∗
1 − ς21q

∗
2 ))(1 −

ε)(1 + β(m1 − 4υ1q∗1 + σ11p
∗
1 )) − (εασ21σ

1
2p
∗
1 /2σ

2
2)(1 + β

(m1 − 4υ1q∗1 + σ11p
∗
1 )) − βσ11q

∗
1(εας12σ

2
1p
∗
1 + α2σ22ς

1
1p
∗
1

(1 − ε)/2σ22) + (1 + α(n1 − 4σ11p
∗
1 + σ21p

∗
2 + ς11q

∗
1 − ς21q

∗
2 ))

(1 − τ)(1 + β(m1 − 4υ1q∗1 + σ11p
∗
1 )) − βας11σ

1
1(1 − τ)q∗1

p∗1 + (1 − τ)(1 − ε)(1 + β(m1 − 4υ1q∗1 + σ11p∗1 )) − (τεσ22
ς22/4υ2σ22)(1 + β(m1 − 4υ1q∗1 + σ11p∗1 ))

(iv) d � (1 + α(n1 − 4σ11p
∗
1 + σ21p

∗
2 + ς11q

∗
1 − ς21q

∗
2 ))((1 −

τ)(1 − ε)(1 + β(m1 − 4υ1q∗1 + σ11p
∗
1 ))) − (τεσ22ς

2
2/4υ2σ

2
2)

(1 + β(m1 − 4υ1q∗1 + σ11p
∗
1 )) − (εσ12/2σ

2
2)(ασ

2
1p
∗
1(1 − τ)

(1 + β(m1 − 4υ1q∗1 + σ11p∗1 ))) + (τασ22ς21p∗1 /2υ2)(1 + β
(m1 − 4υ1q∗1 + σ11p∗1 )) + βσ11q∗1(− ασ21p∗1(1 − τ)(ες12/2σ22)
− ας11p∗1(1 − ε)(1 − τ) + (ταε/4υ2)(ς11ς22 − ς12ς21)p∗1 ).

According to [22], the Nash equilibrium point E5 is local
stability if

(1) 1 + a + b + c + d> 0,
(2) 1 − a + b − c + d> 0,
(3) (1 − d)(1 − d4) − b(1 − d)2 + (a − c)(c − a d)> 0,
(4) 3 + 3 d> b,
(5) |d|< 1.

4.1. Numerical Result. We present in this section some
various numerical investigations of dynamic systems (22).
We just focus on the Nash equilibrium E5 which is more
importantly endowed with economic implications.

Figures 7-10 show the bifurcation diagram with the α
and β. In all these figures, the Nash equilibrium points E5
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are locally stable for small values of the α and β. When the
α and β increase, a 2-cycle, 4-cycle, and chaotic behaviors
occur.

Figures 11 and 12 show the bifurcation diagrams of price
with respect to the transmission fee pt. In Figures 11 and 12,
the Nash equilibrium E5 is locally stable only when pt > 8.5.
)e dynamic system is (23) in bifurcation or chaos if the
transmission fee is small.

Figure 13 illustrates the bifurcation diagram of QoS as a
function of the transmission fee pt. Figure 13 shows that the
ISP QoS are locally stable for pt ≤ 3. Within pt> 3, a chaotic
phenomenon occurs.

4.2. Chaos Control. We introduce control parameters Υ and
Φ in the dynamic system (22), then we have the following:
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Figure 7: Bifurcation diagrams of p1 with respect to α.
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Figure 8: Bifurcation diagrams of p2 with respect to α.
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Figure 9: Bifurcation diagrams of q2 with respect to α.
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Figure 10: Bifurcation diagrams of q1 with respect to β.
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Figure 11: Bifurcation diagrams of p1 with respect to pt.
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p1(t + 1) � p1(t) +
αp1(t)

Υ
n1 − 2σ11p1(t) + σ21p2(t)􏼐 􏼑 + ς11q1(t) − ς21q2(t),

p2(t + 1) � (1 − ε)p2(t) +
ε

2σ22
c2 + σ12p1(t) + ς22q2(t) − ς12q1(t)􏼐 􏼑,

q1(t + 1) � q1(t) +
βq1(t)

Φ
m1 + σ11p1(t) − 2υ1q1(t)􏼐 􏼑,

q2(t + 1) � (1 − τ)q2(t) +
τ
2υ2

m2 + σ22p2(t)􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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Figure 12: Bifurcation diagrams of p2 with respect to pt.
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Figure 14: Bifurcation diagrams of p1 with respect to Υ.
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Figure 13: Bifurcation diagrams of q1 with respect to pt.
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Figures 14-17 illustrate the bifurcation diagram of price
as a function of control parameters. When the control pa-
rameters increase, the controlled systems (31) are controlled
from the chaotic state to a stable state.

So now we can make a short conclusion that the
communication market can be in a stable Nash equilibrium,
but with the changing of the value system parameters, the
system will go into chaos, the policies of the ISPs will be
unstable, and the communication market will be in chaos.
)e ISPs need to choose a low value of system parameters or
apply a control method to stabilize the chaotic behaviors to
keep the communication market in a stable situation.

5. Conclusion

In this paper, a communication market that consists of two
ISPs is studied. We analyzed the dynamics of a Bertrand

duopoly game. Each ISP maximizes its utility by using
bounded rationality expectation and adaptative expectation.
)e existence and the stability of the equilibrium point of
this dynamic Bertrand duopoly game are investigated. We
showed numerically that the model gives chaotic and un-
predictable trajectories. )e main result is that a high value
of transmission fee and a high value of the speed of ad-
justment may destabilize the communicationmarket. But we
also showed that for lower values of transmission fee and
speed of adjustment, the communication market is stable. In
addition, a control method is used to control the system.)is
paper presents guidance for ISPs to choose their policies.
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