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Te 3rd generation partnership project (3GPP) standards organizations makes great eforts in order to reduce the latency of 5G
mobile networks to the least possible extent. Recently, these networks are associated with big bufers to maximize the network
utilization and minimize the wasted wireless resources. However, in existence of the TCP congestions, having bottlenecks are still
expected on radio access networks (RANs) data paths. Consequently, this infuences the network performance and reduces its
quality of services (QoSs). Apparently, studying and improving the behavior of bufers deployed at 5G mobile networks devices
can contribute to solving these problems (at least by reducing the queuing time at these bufers). In this paper, we study the bufer
behavior of base stations in a 5Gmobile network at steady state.We consider a cellular mobile network consisting of fnite number
of users (stations, terminals, and mobiles). At any time-slot, a station may be using the channel (busy) or not using the channel
(idle). Since system analysis of cellular mobile networks in general form is rather complex, solutions are always obtained in closed
forms or by numerical techniques. A two-dimensional trafc system for cellular mobile networks is presented, and the main
performance evaluations are derived. Moreover, diferent moments of the base station bufer occupancy are calculated. Te study
reveals that there is a correlation between the state of the mobile stations (busy or idle) and the expected bufers occupancy of the
base station. In addition, the results discussions demonstrate some important factors and parameters that afect the base station
bufers and the overall network performance. Tese factors can be further worked on and controlled to obtain the least possible
latency in next generation mobile networks.

1. Introduction

Bufer management is such an important network parameter
that afects the quality of service of data trafc. In the study
of [1], bufer sizing in wireless networks has been studied
addressing the unique challenges of wireless environments
such as time-varying channel capacity, variable packet in-
terservice time, and packet aggregation. Tey classifed the
current state-of-the-art solutions, discuss their limitations,
and provide directions for future research in the area.
Furthermore, wireless sensor network (WSN) has emerged
as the new technology that will have a profound efect in all
the felds being wireless in nature. Data packet delivery
process in WSN was discussed in [2] with the help of two
bufer policies. Because two diferent priorities (high priority
and low priority) are applied at each node. Te number of

packets to be transmitted by the nodes in the route is decided
with two bufer policies, which is single bufer policy and
dual bufer policy.

Cellular mobile networks have been afected signifcantly
by the concept of software-defned networking (SDN). Te
type and the capacity of output bufer, which stores packets
temporary, have infuenced mainly the average service time
of an OpenFlow switch. Reference [3] modeled the handover
delay due to the exchange of OpenFlow-related messages in
mobile SDN networks. Te total delay encountered by
a mobile node while in a handover process, to establish
a session from the switch in the source eNodeB to the switch
in the destination eNodeB, is called the handover delay.
Moreover, the study of [4] presented steady state analysis of
bufer occupancy for diferent forwarding strategies in
mobile opportunistic network (MON). Actually, depending
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on local information exchange to measure bufer occupancy
in bufer management in MON had brought overhead.
Consequently, to fnd the mean bufer occupancy, it is better
to study the aggregated bulk transfer size using real-life
contact traces and fnd that it follows a log-normal distri-
bution. However, results of this paper help in measuring
how fast a node bufer gets depleted when applying diferent
routing algorithms. Tus, helping in designing better bufer
management techniques and routing algorithms.

Recently, great attention has been paid to the mobile
services especially in cellular systems which has covered
urban areas. A lot of topics concerning these systems have
been studied, i.e., frequency assignment techniques, channel
access methods, transmission quality, standards for in-
terfering with the wired networks, and trafc analysis.
Considering the last topic, many performance measures of
voice systems have been evaluated with mathematical
modelling. Asynchronous time division multiplexing
(ATDM) scheme is used for transmitting packets coming
from many users on a single channel simultaneously. While
waiting for transmissions on the channel, the data packets
are stored in the ATDM bufers (statistical multiplexer). Te
aim of this study is investigating the bufer behavior of
random-multiple access base station and cellular mobile
networks. Tese systems are characterized by the fact that
a number of mobile stations exchange digital information by
using a distributed random access algorithm on a common
radio channel. Whenever a given station attempts trans-
mission of a packet to another station, the attempt may be
unsuccessful, in which case the packet should be retrans-
mitted. Unsuccessful transmission may occur due to the
channel noise, or because of the interfering from another
station trying to send a packet over the common channel at
the same time, or because the intended receiver is itself in
a mode of transmission. Data packets coming from diferent
stations can share a single communication channel through
asynchronous time division multiplexing (ATDM) system
(or statistical multiplexer [5]). All packets waiting for service
are temporarily stored at the bufer of the statistical
multiplexer.

Tis is the organization of the rest of this paper. Section 2
presents the used mathematical model and the main model
assumptions. Section 3 introduces the base station bufer
analysis at the steady state and the corresponding probability
generating function (PGF) is derived. In Section 4, mean
base station bufer occupancy at steady state is calculated.
Section 5 introduces discussion and comments on the re-
sults. Section 6 concludes the study.

2. Mathematical Model

We consider a cellular mobile network with k independent
and identical stations (sources, terminals, . . .). Data gen-
erated by diferent stations are divided to small fxed size
packets and saved in the base station bufer. Packets can be
transmitted from the bufer only at the beginning of each
slot. Each station alternates between two independent states
with arbitrary length: state of transmission (busy) and a state
of not transmitting (idle). So we have the following:

λ: probability that a busy station in a given slot will
remain busy in the next slot.
1 − λ: probability that a busy station in a given slot will
become idle in the next slot.
μ: probability that an idle station in a given slot will
remain idle in the next slot.
1 − μ: probability that an idle station in a given slot will
become busy in the next slot.
where λ + μ≠ 1. Actually, this helps to add a type of
correlation between diferent stations. During each slot,
a busy station generates a number of packets N with
PGF N(z), where this function is independent from
one busy station to another.N(z) can be proposed so as
to add diferent levels of the activity of the station.

Let the random variable (RV) cl represents the number
of busy stations during slot. It is obvious that both busy and
idle states of the k stations have geometric distributions. So
the value of cl+1 can be obtained from cl, as follows:

cl+1 � 􏽘

cl

j�1
Aj + 􏽘

k− cl

j�1
Bj, (1)

where 􏽐
cl

j�1Aj specifes how many stations are busy in slot l

will remain busy in slot l + 1, and 􏽐
k− cl

j�1 Bj specifes how
many idle stations in slot l will change to be busy in slot l + 1
i.e.,

cl+1 � A1 + A2 + · · · + Acl
+ B1 + B2 + · · · + Bk− cl

. (2)

Note that, Aj, Bj are all Bernoulli RVs, where

A1 � 1, if the frst busy station in slot l will remain busy
in slot l + 1.
A1 � 0, if the frst busy station in slot l will change to
idle in slot l + 1. Te same is applied to other busy
stations using RVs A2, A3, . . . , Acl

.
And,
B1 � 1, if the frst idle station in slot l will remain idle in
slot l + 1.
B1 � 0, if the frst idle station in slot l will change to
busy in slot l + 1. Te same is applied to other idle
stations using the RVs B2, B3, . . . , Bk− cl

.

cl+1 � (0 or 1)+(0 or 1)+···+(0 or 1)􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
cl   terms

+(0 or 1)+(0 or 1)+···+(0 or 1)􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
k− cl   terms

.
(3)

Terefore, the group of RVs Aj
′s and Bj

′s can be con-
sidered as a group of independent and identically distributed
Bernoulli RVs with common PGFs A(z), B(z), respectively.
Here,

A(z) � 1 − λ + λz, (4)

B(z) � μ +(1 − μ)z. (5)
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If the number of packets entering the bufer during slot l

is represented by the RV Dl, hence

Dl � N1l + N2l + · · · + Ncll

� 􏽘

cl

i�1
Nil,

(6)

where frst busy station generates N1l packets, second busy
station generates N2l packets, and so on. Tese RVs are
independent and identically distributed with common PGF
N(z). Now, let the number of packets stored in the base
station bufer at the beginning of slot l + 1 be denoted by the
RV wl, then we have

wl+1 � Dl+1 + wl − 1( 􏼁
+
, (7)

where

wl − 1( 􏼁
+

� max 0, wl − 1( 􏼁( 􏼁, (8)

and Dl+1 represents the number of packets entering the base
station bufer during slot l + 1.

3. Steady-State Buffer Analysis

It is obvious from equation (7) that the value of wl+1 is not
dependent only on wl, but rather on Dl+1 also. However,
since Dl+1 is dependent on cl+1 (from equation (6)), we
assume that after a long time (as l⟶∞) the distribution of
the system state in an arbitrary slot no longer varies with
time and we use a two-dimensional Markov chain that
describes the base station bufer in terms of the pair (cl, wl).
Let Sl(x, z) represents the joint PGF of cl, wl, so

S
l
(x, z) �

∆
E x

cl

z
wl

􏼔 􏼕, (9)

S
l+1

(x, z) �
∆

E x
cl+1

z
wl+1

􏼔 􏼕. (10)

Ten,

S(x, z) �
∆ lim

l⟶∞
E x

cl

z
wl

􏼔 􏼕. (11)

Using equation (7) in equation (9), then

S
l+1

(x, z) � E x
cl+1

z
Dl+1+ wl− 1( )

+

􏼔 􏼕. (12)

Using Dl+1 from equation (6) in equation (12), hence

S
l+1

(x, z) � E x
cl+1

.z􏽐
cl+1

i�1 Nl+1
i .z

wl − 1( )
+

􏼢 􏼣

� E x
cl+1

. 􏽙
cl+1

i�1z
Nl+1

i􏼒 􏼓.z
wl − 1( )

+

􏼔 􏼕,

(13)

which can be written in the form

S
l+1

(x, z) � Ecl+1 ,wl

× x
cl+1

. 􏽙
cl+1

i�1E z
Nl+1

i c
l+1

􏼌􏼌􏼌􏼌􏼌 , wl􏼔 􏼕N(z)􏼒 􏼓.z
wl− 1( )

+

􏼔 􏼕,

(14)

from which we can obtain

S
l+1

(x, z) � E x
cl+1

. 􏽙

cl+1

i�1
N(z)⎛⎝ ⎞⎠.z

wl− 1( )
+

⎡⎢⎢⎣ ⎤⎥⎥⎦

� E x
cl+1

.(N(z))
cl+1

.z
wl − 1( )

+

􏼔 􏼕

� E (xN(z))
cl+1

.z
wl − 1( )

+

􏼔 􏼕.

(15)

Using cl+1 from equation (1), yields

S
l+1

(x, z) � E (xN(z))
􏽐

cl

j�1 Aj+􏽘

k− cl

j�1

Bj

.z
wl − 1( )

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E 􏽙
cl

j�1
(xN(z))

Aj ⎞⎠ × 􏽙

j�k− cl

j�1
(xN(z))

Bj ⎞⎠.z
wl − 1( )

+

⎛⎝ ⎤⎥⎥⎥⎦,⎛⎝⎡⎢⎢⎢⎣

(16)

which can be manipulated to

S
l+1

(x, z) � E 􏽙

cl

j�1
E (xN(z))

Aj􏽨 􏽩⎡⎢⎢⎢⎣

× 􏽙
k− cl

j�1
E (xN(z))

Bj􏽨 􏽩.z
wl − 1( )

+

⎤⎥⎥⎦,

(17)

where Aj and Bj are all i.i.d RVs with common distribution,
where

E z
Aj􏽨 􏽩 � A(z), E z

Bj􏽨 􏽩 � B(z). (18)

Substituting in equation (17), hence
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S
l+1

(x, z) � E 􏽙
cl

j�1
A(xN(z)). 􏽙

k− cl

j�1
B(xN(z)).z

wl − 1( )
+

⎡⎢⎢⎣ ⎤⎥⎥⎦

� E A(xN(z))
cl

.
B(xN(z))

k

B(xN(z))
cl

.z
wl − 1( )

+

⎡⎣ ⎤⎦,

(19)

that can be written in the following form:

S
l+1

(x, z) � B(xN(z))
k
.E

A(xN(z))

B(xN(z))
􏼢 􏼣

cl

.z
wl − 1( )

+

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(20)

However, since a busy station generates at least one
packet that cannot leave the bufer before the next slot, the
last expression can be written in the following form:

S
l+1

(x, z) � [B[xN(z)]]
k

× E
A(xN(z)

B(xN(z)
􏼢 􏼣

cl

z
wl − 1( )

+

w
l

� 0
􏼌􏼌􏼌􏼌􏼌

⎡⎢⎢⎣ ⎤⎥⎥⎦Pr w
l

� 0􏽨 􏽩

+ E
A(xN(z)

B(xN(z)
􏼢 􏼣

cl

z
wl − 1( )

+

w
l > 0

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦Pr w

l > 0􏽨 􏽩

� [B[xN(z)]]
k
.E

A(xN(z)

B(xN(z)
􏼢 􏼣

0
⎡⎣ ⎤⎦Pr w

l
� 0􏽨 􏽩

+ E
A(xN(z)

B(xN(z)
􏼢 􏼣

cl

z
wl

z
w

l > 0
􏼌􏼌􏼌􏼌􏼌

⎡⎢⎢⎣ ⎤⎥⎥⎦Pr w
l > 0􏽨 􏽩,

(21)

S
l+1

(x, z) � [B[xN(z)]]
k
.E[1]Pr w

l
� 0􏽨 􏽩

+
1
z

E
A(xN(z)

B(xN(z)
􏼢 􏼣

cl

z
wl

w
l > 0

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦Pr w

l > 0􏽨 􏽩

� [B[xN(z)]]
k 1 −

1
z

􏼔 􏼕Pr w
l

� 0􏽨 􏽩 +
1
z

S
l A(xN(z)

B(xN(z)
, z􏼢 􏼣􏼨 􏼩

� [B[xN(z)]]
k z − 1

z
􏼔 􏼕Pr w

l
� 0􏽨 􏽩 +

1
z

S
l A(xN(z)

B(xN(z)
, z􏼢 􏼣􏼨 􏼩.

(22)

At the steady state, Sl(x, z) and Sl+1, which are the joint
PGFs of the number of busy stations and the number of
packets saved in the base station bufer, will converge
to S(x, z).

In view of (4) and (5), (22), gives

S(x, z) � [μ +(1 − μ)xN(z)]
k

×
z − 1

z
􏼔 􏼕Pr [w � 0] +

1
z

S
1 − λ + λxN(z)

μ +(1 − μ)xN(z)
, z􏼢 􏼣􏼨 􏼩,

(23)

which can be written in the following form:

zS(x, z) � [μ +(1 − μ)xN(z)]
k

× [z − 1]Pr [w � 0] + S
1 − λ + λxN(z)

μ +(1 − μ)xN(z)
, z􏼢 􏼣􏼨 􏼩.

(24)

If S0 is the probability of an empty bufer
(S0 � Pr [w � 0]), then S(x, z) should satisfy the following:

zS(x, z) � [μ +(1 − μ)xN(z)]
k (25)

× [z − 1]S0 + S
1 − λ + λxN(z)

μ +(1 − μ)xN(z)
, z􏼢 􏼣􏼨 􏼩. (26)
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Although no explicit formula for S(x, z) can be obtained,
we can derive many results from equation (25) considering
that

S(x, 1) � C(x), (27)

where C(x) is the PGF of the number of busy stations, and

S(1, z) � L(z), (28)

where L(z) is the PGF of the base station bufer occupancy at
the steady state. Substituting for z � 1 in equation (25) we
can get an expression for C(x)

S(x, 1) � [μ +(1 − μ)xN(1)]
k

× [1 − 1]S0 + S
1 − λ + λxN(1)

μ +(1 − μ)xN(1)
, 1􏼢 􏼣􏼨 􏼩,

(29)

C(x) � [μ +(1 − μ)x]
k
. C

1 − λ + λx

μ +(1 − μ)x
􏼢 􏼣􏼨 􏼩. (30)

However, an explicit formula for C(x) (which represents
the number of busy stations at steady state) can be obtained
equation (30) knowing that it is a polynomial of degree k, to
get

C(x) � c0 + c1x + c2x
2

+ c3x
3

+ · · · + ckx
k
. (31)

Substituting for C(x) from equation (31) in equation
(30), gives

c0 + c1x + c2x
2

+ c3x
3

+ · · · + ckx
k

� [μ +(1 − μ)x]
k

× D0 + D1
1 − λ + λx

μ +(1 − μ)x
􏼢 􏼣 + D2

1 − λ + λx

μ +(1 − μ)x
􏼢 􏼣

2

+ · · · + Dk

1 − λ + λx

μ +(1 − μ)x
􏼢 􏼣

k

⎛⎝ ⎞⎠,

(32)

which gives a system of (k + 1) equations in the (k + 1)

unknown c0, c1, . . . , ck. Now, let us focus on a specifc station
of the k stations where the average length of the busy period
of this station is 1/1 − λ and the average length of the idle
period is 1/1 − μ, then the probability that this station is busy
during any selected slot, is given by

1/1 − λ
1/1 − λ + 1/1 − μ

�
1/1 − λ

(1 − μ) +(1 − λ)/(1 − λ)(1 − μ)

�
(1 − λ)(1 − μ)1/1 − λ

2 − μ − λ

�
(1 − μ)

2 − μ − λ
.

(33)

Let

(1 − μ)

2 − μ − λ
� ω. (34)

Ten, a specifc station is busy with probabilityω and idle
with probability (1 − ω). Considering one station i, let vi be
Bernoulli RV represents the number of busy stations (0 or 1),
where

Pr vi � 1􏼂 􏼃 � ω, Pr vi � 0􏼂 􏼃 � 1 − ω

E x
vi􏼂 􏼃 � 􏽘

1

j�0
Pr vi � j􏼂 􏼃x

j

� Pr vi � 0􏼂 􏼃x
0

+ Pr vi � 1􏼂 􏼃x

� 1 − ω + ωx.

(35)

Previous relation is applied to all k stations. Since all
stations are identical and independent and so are the RVs vi.
Terefore, C(x) (the PGF of the total number of busy
stations) is given by

C(x) � E x􏽐
k

i�1 vi􏼔 􏼕

� 􏽙
k

i�1
E x

vi􏼂 􏼃

� (1 − ω + ωx)
k
.

(36)

But we have
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ω �
1 − μ

2 − λ − μ
,

1 − ω �
1 − λ

2 − λ − μ
.

(37)

So, C(x) can be written as

C(x) �
1 − λ

2 − λ − μ
+

(1 − μ)x

2 − λ − μ
􏼢 􏼣

k

�
1 − λ +(1 − μ)x

2 − λ − μ
􏼢 􏼣

k

.

(38)

Next, we turn the attention to the steady state distri-
bution of the bufer occupancy. Equation (25) can lead us to
the following relation

x �
1 − λ + λxN(z)

μ +(1 − μ)xN(z)
. (39)

Equation (39) is a quadratic equation which has two
roots for x in terms of z. One of these roots satisfes that
x � 1 for z � 1. Consider x � p(z) is that root of equation
(39). Substituting for this root in equation (39), yields

p(z)[μ +(1 − μ)p(z)N(z)] � 1 − λ + λp(z)N(z),

p(1) � 1.
(40)

When x � p(z) in equation (25), gives

zS(p(z), z) � [μ +(1 − μ)p(z)N(z)]
k

× [z − 1]S0 + S(p(z), z)􏼈 􏼉,
(41)

which can be written as

zS(p(z), z) − [μ +(1 − μ)p(z)N(z)]
k
S(p(z), z)

� [μ +(1 − μ)p(z)N(z)]
k
[z − 1]S0

× z − [μ +(1 − μ)p(z)N(z)]
k

􏽮 􏽯S(p(z), z)

� [μ +(1 − μ)p(z)N(z)]
k
[z − 1]S0.

(42)

Solving for S(p(z), z), hence

S(p(z), z) �
[μ +(1 − μ)p(z)N(z)]

k
[z − 1]S0

z − [μ +(1 − μ)p(z)N(z)]
k

. (43)

Equation (43) represents the generating function
S(p(z), z) in terms of the constant S0. Now, we proceed to
determine the value of S0 using the normalizing condition
S(1, 1) � 1. Let p(z) � 1, z � 1 in equation (43), then

S(1, 1) �
[μ +(1 − μ)(1)N(1)]

k
[1 − 1]S0

1 − [μ +(1 − μ)(1)N(1)]
k

�
[μ +(1 − μ)]

k
[0]S0

1 − [μ +(1 − μ)]
k

�
[0]S0

1 − 1
�
0
0

.

(44)

Before applying L’hospital rule, let

M(z) � [μ +(1 − μ)p(z)N(z)]
k
,

M(1) � [μ +(1 − μ)(1)N(1)]
k

� [μ +(1 − μ)]
k

� 1.

(45)

So equation (43) is written as

S(p(z), z) �
M(z)[z − 1]S0

z − M(z)
. (46)

Applying L’hospital rule on equation (46), then

S(p(z), z) �
M(z)S0 + M

′
(z)(z − 1)S0

1 − M
′
(z)

. (47)

Using normalizing condition, yields

S(1, 1) �
M(1)S0 + M

′
(1)(1 − 1)S0

1 − M
′
(1)

1 �
S0

1 − M
′
(1)

.

(48)

Hence, we get

S0 � 1 − M
′
(1). (49)

Substituting for the value of S0 in equation (46),
therefore

S(p(z), z) �
M(z)[z − 1] 1 − M

′
(1)􏼔 􏼕

z − M(z)
.

(50)

4. Mean Base Station Buffer Occupancy

Although equation (50) does not give an explicit formula for
the generating function of the base station bufer occupancy,
many steady-state features of the bufer can be derived from
it. Te base station mean bufer occupancy G at the steady

6 Journal of Computer Networks and Communications



state can be evaluated by fnding the frst derivative of
equation (50) at z � 1, where

S(x, 1) � C(x)

zS

zx
(1, 1) � C

′
(1),

S(1, z) � L(z)

zS

zz
(1, 1) � L

′
(1) � G.

(51)

Equation (50) leads us to

S(p(z), 1) � C(p(z))

zS

zp(z)
(p(z), 1) � C

′
(p(z))p

′
(z)

zS

zp(z)
(1, 1) � C

′
(1)p
′
(1).

(52)

From equation (38), we fnd that

C(p(z)) �
1 − λ +(1 − μ)p(z)

2 − λ − μ
􏼢 􏼣

k

B

Bp(z)
C(p(z)) � k(1 − μ)

1 − λ +(1 − μ)p(z)

2 − λ − μ
􏼢 􏼣

k− 1

� C
′
(p(z)).

(53)

When p(z) � 1, then

C
′
(1) � k(1 − μ)

1 − λ +(1 − μ)(1)

2 − λ − μ
􏼢 􏼣

k− 1

�
k(1 − μ)

[2 − λ − μ]
k
[2 − λ − μ]

k− 1

�
k(1 − μ)

[2 − λ − μ]
.

(54)

Substituting from equation (54) in equation (52), hence

zS

zp(z)
(1, 1) �

k(1 − μ)

[2 − λ − μ]
p
′
(1). (55)

Now, we proceed to get the mean bufer occupancy G of
the base station from the relation

zS

zp(z)
(p(z), z) +

zS

zz
(p(z), z) � S

′
(p(z), z)

zS

zp(z)
(1, 1) +

zS

zz
(1, 1) � S

′
(1, 1)

C
′
(1)p
′
(1) + G � S

′
(1, 1).

(56)

Since C′(1) has been specifed, we need also to specify
both S′(1, 1) and p′(1) to substitute in the previous relation,
and fnd G. Since equation (56) is the frst derivative of
equation (50) evaluated at z � 1, we can get S′(1, 1), from
equation (50), as follows:

lim
z⟶1

BS

Bz
(p(z), z) � lim

z⟶1

M(z)[z − 1] 1 − M
′
(1)􏼔 􏼕

z − M(z)
[z − M(z)]

1 − M
′
(1)􏼔 􏼕[z − 1]M

′
(z)

+ 1 − M
′
(1)􏼔 􏼕M(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� lim
z⟶1

− M(z)[z − 1] 1 − M
′
(1)􏼔 􏼕 1 − M

′
(z)􏼔 􏼕

[z − M(z)]
2 .

(57)

So
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zS

zz
(1, 1) �

c[1 − M(1)]

1 − M
′
(1)􏼔 􏼕[1 − 1]M

′
(1)

+ 1 − M
′
(1)􏼔 􏼕M(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− M(z)[1 − 1] 1 − M
′
(1)􏼔 􏼕 1 − M

′
(1)􏼔 􏼕

[1 − M(1)]
2

�
0
0

.

(58)

Before applying L’hospital rule on equation (50), let us
consider the following

u(z) � M(z)[z − 1] 1 − M
′
(1)􏼔 􏼕, v(z) � z − M(z).

(59)

So, S(p(z), z) is written as

S(p(z), z) �
u(z)

v(z)
, (60)

where

u
′
(z) � 1 − M

′
(1)􏼔 􏼕[z − 1]M

′
(z) + 1 − M

′
(1)􏼔 􏼕M(z)

u
″
(z) � 1 − M

′
(1)􏼔 􏼕 [z − 1]M

″
(z) + 2M

′
(z)􏼒 􏼓

v
′
(z) � 1 − M

′
(z)

v
″
(z) � − M

″
(z),

u(1) � 0v(1) � 0

u
′
(1) � 1 − M

′
(1)v
′
(1) � 1 − M

′
(1)

u
″
(1) � 2M

′
(1) 1 − M

′
(1)􏼔 􏼕v

″
(1) � − M

″
(1).

(61)

Now, the desired derivative becomes

lim
z⟶1

B

Bz
S(p(z), z) � lim

z⟶1

B

Bz

u(z)

v(z)

� lim
z⟶1

v(z)u
′
(z) − u(z)v

′
(z)

v
2
(z)

�
0
0

use L′hospital􏼒 􏼓

� lim
z⟶1

v(z)u
″
(z) − u(z)v

″
(z)

2vv
′
(z)

�
0
0

use L′hospital􏼒 􏼓

� lim
z⟶1

v(z)u
‴

(z) + v
′
(z)u
″
(z) − u

′
(z)v
″
(z) − u(z)v

‴
(z)

2v
′
(z)

2
+ 2vv
″
(z)

�
v
′
(1)u
″
(1) − u

′
(1)v
″
(1)

2v
′
(1)

2 .

(62)

Substituting for the values of u′(1), v′(1), u″(1), and
v″(1), we conclude
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lim
z⟶1

B

Bz
S(p(z), z) �

c 1 − M
′
(1)􏼔 􏼕2M

′
(1) 1 − M

′
(1)􏼔 􏼕

− 1 − M
′
(1)􏼔 􏼕 − M

″
(1)􏼔 􏼕

2 1 − M
′
(1)􏼔 􏼕

2

�

c2M
′
(1) 1 − M

′
(1)􏼔 􏼕

2

+M
″
(1) 1 − M

′
(1)􏼔 􏼕

2 1 − M
′
(1)􏼔 􏼕

2

� 2M
″
(1) +

M
″
(1)

2 1 − M
′
(1)􏼔 􏼕

.

(63)

Second, to fnd p′(1), from equation (40), we have

p(z) �
1 − λ + λp(z)N(z)

μ +(1 − μ)p(z)N(z)
. (64)

Taking the frst derivative with respect to z, then

p
′
(z) �

c[μ +(1 − μ)p(z)N(z)]

λp(z)N
′
(z)

+λp
′
(z)N(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1 − λ + λp(z)N(z)

(1 − μ)p(z)N
′
(z)

+(1 − μ)p
′
(z)N(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[μ +(1 − μ)p(z)N(z)]
2 .

(65)

Substituting for z � 1, we get

p
′
(1) �

c[μ +(1 − μ)p(1)N(1)]

λp(1)N
′
(1)

+λp
′
(1)N(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− [1 − λ + λp(1)N(1)]

(1 − μ)p(1)N
′
(1)

+(1 − μ)p
′
(1)N(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[μ +(1 − μ)p(1)N(1)]
2

� λN
′
(1) + λp

′
(1)􏼔 􏼕

− (1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼔 􏼕.

(66)

Te previous result has been approved using Mathe-
matica program [6] in calculating p′(1). Solving for p′(z),
therefore

p
′
(1) − λp

′
(1) +(1 − μ)p

′
(1) � λN

′
(1) − (1 − μ)N

′
(1)

p
′
(1)[2 − λ − μ] � [λ − 1 + μ]N

′
(1),

(67)

from which we fnd

p
′
(1) �

λ − 1 + μ
2 − λ − μ

N
′
(1). (68)

Using equations (63) and (54) in equation (56), we get

k(1 − μ)

[2 − λ − μ]
p
′
(1) + G � M

′
(1) +

M
″
(1)

2 1 − M
′
(1)􏼔 􏼕

. (69)

After using the value of p′(1) from equation (68) in
equation (69), then

k(1 − μ)(λ − 1 + μ)

[2 − λ − μ]
2 N

′
(1) + G � M

′
(1) +

M
″
(1)

2 1 − M
′
(1)􏼔 􏼕

. (70)

Solving for G, then

G � M
′
(1) +

M
″
(1)

2 1 − M
′
(1)􏼔 􏼕

+
k(1 − μ)(λ − 1 + μ)

[2 − λ − μ]
2 N

′
(1), (71)

where the values of M′(1) and M″(1) can be obtained from
equation (45) in terms of known parameters on one hand
and the derivatives of p(z) at z � 1 on the other hand. From
equation (45), we have

M
′
(z) � k[μ +(1 − μ)p(z)N(z)]

k− 1

× (1 − μ)p
′
(z)N(z) +(1 − μ)p(z)N

′
(z)􏼔 􏼕,

(72)

� k[μ +(1 − μ)]
k− 1

(1 − μ)p
′
(1) +(1 − μ)N

′
(1)􏼔 􏼕

� k (1 − μ)p
′
(1) +(1 − μ)N

′
(1)􏼔 􏼕,

(73)

which agrees with the result of Mathematica program when
used to calculate M′(1). Substituting for the value of p′(1)

from equation (68) in equation (73), we get

M
′
(1) � k (1 − μ)

λ − 1 + μ
2 − λ − μ

N
′
(1) +(1 − μ)N

′
(1)􏼢 􏼣

� k(1 − μ)
λ − 1 + μ + 2 − λ − μ

2 − λ − μ
􏼢 􏼣N

′
(1)

� k(1 − μ)
1

2 − λ − μ
􏼢 􏼣N

′
(1)

�
k(1 − μ)

2 − λ − μ
N
′
(1),

(74)

which has been approved with the result of Mathematica.
Now, to fnd M″(1), we proceed as follows:
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M
″
(z) � k(k − 1)[μ +(1 − μ)p(1)N(1)]

k− 2

× (1 − μ)p
′
(1)N(1) +(1 − μ)p(1)N

′
(1)􏼔 􏼕

× (1 − μ)p
′
(1)N(1) +(1 − μ)p(1)N

′
(1)􏼔 􏼕

+ k[μ +(1 − μ)p(1)N(1)]
k− 1

×
(1 − μ)p

′
(1)N
′
(1) +(1 − μ)p

″
(1)N(1)

+(1 − μ)p(1)N
″
(1) +(1 − μ)p

′
(1)N
′
(1)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(75)

which gives

M
″
(1) � k(k − 1) (1 − μ)p

′
(1) +(1 − μ)N

′
(1)􏼔 􏼕

× (1 − μ)p
′
(1) +(1 − μ)N

′
(1)􏼔 􏼕,

(76)

+ k
(1 − μ)p

′
(1)N
′
(1) +(1 − μ)p

″
(1)

+(1 − μ)N
″
(1) +(1 − μ)p

′
(1)N
′
(1)

⎡⎢⎣ ⎤⎥⎦

� k(k − 1) (1 − μ)p
′
(1) +(1 − μ)N

′
(1)􏼔 􏼕

2

+ k 2(1 − μ)p
′
(1)N
′
(1)􏼔

(77)

+(1 − μ)p
″
(1) +(1 − μ)N

″
(1)􏼕, (78)

(the last result was verifed again usingMathematica program).
Now, we need to fnd the value of p″(1), from equation (65),
and using Mathematica for simplicity, we will get

p
″
(z) � −

2 λp(z)N
′
(z) + λN(z)p

′
(z)􏼒 􏼓 ×

(1 − μ)p(z)N
′
(z) +(1 − μ)N(z)p

′
(z)􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(μ +(1 − μ)N(z)p(z))
2

+

2(1 − λ + λN(z)p(z))×

(1 − μ)p(z)N
′
(z) +(1 − μ)N(z)p

′
(z)􏼒 􏼓

2

(μ +(1 − μ)N(z)p(z))
3

+
2λN
′
(z)p
′
(z) + λp(z)N

″
(z) + λN(z)p

″
(z)

(μ +(1 − μ)N(z)p(z))

−

(1 − λ + λN(z)p(z))×

2(1 − μ)p
′
(z)N
′
(z) +(1 − μ)N(z)p

″
(z)

+(1 − μ)p(z)N
″
(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(μ +(1 − μ)N(z)p(z))
2 .

(79)

Substituting for z � 1, then

p
″
(1) � −

2 λp(1)N
′
(1) + λN(1)p

′
(1)􏼒 􏼓×

(1 − μ)p(1)N
′
(1) +(1 − μ)N(1)p

′
(1)􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(μ +(1 − μ)N(1)p(1))
2

+

c2(1 − λ + λN(1)p(1))

(1 − μ)p(1)N
′
(1) +(1 − μ)N(1)p

′
(1)􏼒 􏼓

2

(μ +(1 − μ)N(1)p(1))
3

+
2λN
′
(1)p
′
(1) + λp(1)N

″
(1) + λN(1)p

″
(1)

(μ +(1 − μ)N(1)p(1))

−

c(1 − λ + λN(1)p(1))×

2(1 − μ)p
′
(1)N
′
(1) +(1 − μ)N(1)p

″
(1)

+(1 − μ)p(1)N
″
(1)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

(μ +(1 − μ)N(1)p(1))
2 ,

(80)

which gives

p
″
(1) � −

2 λN
′
(1) + λp

′
(1)􏼒 􏼓×

(1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(μ +(1 − μ))
2

+
2(1 − λ + λ) (1 − μ)N

′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

2

(μ +(1 − μ))
3

+
2λN
′
(1)p
′
(1) + λN

″
(1) + λp

″
(1)

(μ +(1 − μ))

−

(1 − λ + λ)
2(1 − μ)p

′
(1)N
′
(1)

+(1 − μ)p
″
(1) +(1 − μ)N

″
(1)

⎛⎜⎝ ⎞⎟⎠

(μ +(1 − μ))
2

� −

2 λN
′
(1) + λp

′
(1)􏼒 􏼓×

(1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 2 (1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

2

+ 2λN
′
(1)p
′
(1) + λN

″
(1) + λp

″
(1)

−
2(1 − μ)p

′
(1)N
′
(1) +(1 − μ)p

″
(1)

+(1 − μ)N
″
(1)

⎛⎝ ⎞⎠.

(81)

Simplifcation of the last relation with Mathematica, we
get
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p
″
(1) � 2λN

′
(1)p
′
(1) − 2(1 − μ)p

′
(1)N
′
(1)

− 2 λN
′
(1) + λp

′
(1)􏼒 􏼓

× (1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

+ 2 (1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

2

+ λN
″
(1) − (1 − μ)N

″
(1) + λp

″
(1)

− (1 − μ)p
″
(1).

(82)

Using Mathematica to solve for p″(1), then

p
″
(1) �

1
2 − λ − μ

2λN
′
(1)p
′
(1) − 2(1 − μ)p

′
(1)N
′
(1)

− 2 λN
′
(1) + λp

′
(1)􏼒 􏼓 (1 − μ)N

′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

+ 2 (1 − μ)N
′
(1) +(1 − μ)p

′
(1)􏼒 􏼓

2
+ λN
″
(1) − (1 − μ)N

″
(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (83)

Simplifcation of the previous relation, gives

p
″
(1) �

1
2 − λ − μ

(− 1 + λ + μ) 2(− 1 + μ)N
′
(1)

2
+ 2(− 1 + 2μ)N

′
(1)p
′
(1) + 2(− 1 + μ)p

′
(1)

2
+ N
″
(1)􏼒 􏼓􏼚 􏼛. (84)

Substituting from equation (68) for the value of p′(1),
hence

p
″
(1) �

1
2 − λ − μ

(− 1 + λ + μ)

2(− 1 + μ)N
′
(1)

2
+
2(− 1 + μ)(− 1 + λ + μ)

2
N
′
(1)

2

(2 − λ − μ)
2

+
2(− 1 + λ + μ)(− 1 + 2μ)N

′
(1)

2

2 − λ − μ
+ N
″
(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (85)

After some manipulation, we get

p
″
(1) �

1
(− 2 + λ + μ)

3 (− 1 + λ + μ) ×

2 3 + λ2 − 4μ + μ2 + λ(− 3 + 2μ)􏼐 􏼑N
′
(1)

2

− (− 2 + λ + μ)
2
N
″
(1)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (86)

Now, we return to equation (78) to fnd the fnal formula
for M″(1). Substituting from equations (68) and (86) in
equation (78) for the values of p′(1) and p″(1), we get
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M
″
(1) � k(k − 1)

(1 − μ)N′(1)

+
(1 − μ)(− 1 + λ + μ)N′(1)

2 − λ − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

+ k
2(1 − μ)(− 1 + λ + μ)N

′
(1)

2

(2 − λ − μ)
+(1 − μ)N

″
(1) +

1
(− 2 + λ + μ)

3
⎛⎝

· (1 − μ)(− 1 + λ + μ) ×

2 3 + λ2 − 4μ + μ2 + λ(− 3 + 2μ)􏼐 􏼑N
′
(1)

2

− (− 2 + λ + μ)
2
N
″
(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠.

(87)

Using Mathematica to simplify the previous equation,
then

M
″
(1) �

1
(− 2 + λ + μ)

3 ck(− 1 + μ) ×

− 4 + 5λ − 2λ2 + 5μc − 3λμ − μ2 + k(− 1 + μ) ×(− 2 + λ + μ)􏼐 􏼑N
′
(1)

2

+(− 2 + λ + μ)
2
N
″
(1)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�
k(− 1 + μ)

(− 2 + λ + μ)
× N
″
(1) +

c − 4 + 5λ − 2λ2 + 5μ − 3λμ − μ2

+k(− 1 + μ)(− 2 + λ + μ)

(− 2 + λ + μ)
2 × N

′
(1)

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (88)

Higher moments of the bufer occupancy can also be
obtained, using the same way; however, this is going to lead
to complicated mathematical derivations.

5. Discussion of the Result

Te obtained results for the steady-state distribution of the
number of busy stations shows that it depends only on the
value of the parameter ω. Tis result may lead us to say that
the steady-state bufer behavior of the base station is de-
termined only from the value of ω. Tis section will be used
to discuss this point. We consider that each station is busy
with probability ω and is idle with probability 1 − ω, in-
dependently from slot to slot. So

Pr [number of  busy  slots � g] � (1 − ω)ωg− 1
,

mean number of  busy  slots �
1

(1 − ω)
.

Pr [number of   idle  slots � g] � ω(1 − ω)
g− 1

,

mean number of   idle  slots �
1
ω

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(89)

In such case, the average activity of the station will also
be ω if the mean numbers of busy and idle slots are both
multiplied by a same factor l, i.e., if λ and μ are selected, such
that

mean busy  slots 1
1 − λ

�
l

1 − ω
,

mean  idle  slots 1
1 − μ

�
l

ω
.

(90)

To demonstrate the importance of the parameter l, let us
use the following situation. Suppose that the busy stations,
every busy slot, generate one message per busy slot.
Terefore, the number of packets generated by the busy
stations equal to the message length (in packets). Assuming
a geometric distribution for the message length and as-
suming that the random variable N represents the number
of packets generated by a station in a given slot (message
length), we then get

Pr [N � g] � (1 − ψ)ψg− 1
, (91)

where ψ is the probability that the message not fnished and
(1 − ψ) is the probability that the message is fnished, then
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N(z) � 􏽘
∞

g�1
(1 − ψ)ψg− 1

z
g

� (1 − ψ)z 􏽘
∞

l�0
ψl

z
l

�
(1 − ψ)z

1 − ψz
,

N �
B

Bz
N(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1

�
B

Bz

(1 − ψ)z

1 − ψz
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
z�1

�
(1 − ψ)(1 − ψ) − (1 − ψ)(− ψ)

(1 − ψ)
2

�
(1 − ψ)

2
+ ψ(1 − ψ)

(1 − ψ)
2

�
1

(1 − ψ)
,

(92)

where N is the mean message length. In such case, the mean
bufer occupancy of the base station, at the steady state, can
be obtained in the form

G �
kω

2(1 − ψ)(1 − ψ − kω)

× [2(1 − ψ) − (3k − 1)ω + 2l(ψ +(k − 1)ω)].

(93)

6. Conclusion

Te study and analysis of base stations bufers behaviors in
5G and next generations mobile networks can contribute to
reducing the network latency and improving the network
performance and the QoS. In this paper, the bufer behavior
of base stations of 5G mobile networks at steady state is
investigated. Te network includes a base station and a fnite
number of mobile stations. Each mobile station alternates
between two independent states with arbitrary length: state
of transmission (busy) and a state of no transmission (idle).
A two-dimensional Markov chain has been used to derive
the probability generating function corresponding to bufer
occupancy at the steady state. Mean bufer occupancy of the
base station of the cellular mobile network at the steady state
is also calculated. Te results show a type of dependency
between the activity level of themobile stations (busy or idle)
and the expected bufer occupancy of the base station.
Moreover, expressions resulted from the analysis have listed
factors and parameters that afect the base stations bufer
behavior. Tese factors can be studied and analyzed to
further reduce the latency and improve the QoS of next
generation mobile networks.
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