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Currently, the widespread of real-time applications such as VoIP and videos-based applications require more data rates and
reduced latency to ensure better quality of service (QoS). A well-designed trafc classifcation mechanism plays a major role for
good QoS provision and network security verifcation. Port-based approaches and deep packet inspection (DPI) techniques have
been used to classify and analyze network trafc fows. However, none of thesemethods can cope with the rapid growth of network
trafc due to the increasing number of Internet users and the growth of real-time applications. As a result, these methods lead to
network congestion, resulting in packet loss, delay, and inadequate QoS delivery. Recently, a deep learning approach has been
explored to address the time-consumption and impracticality gaps of the abovementioned methods and maintain existing and
future trafcs of real-time applications. Te aim of this research is then to design a dynamic trafc classifer that can detect
elephant fows to prevent network congestion. Tus, we are motivated to provide efcient bandwidth and fast transmission
requirements tomany Internet users using SDN capability and the potential of deep learning. Specifcally, DNN, CNN, LSTM, and
Deep autoencoder are used to build elephant detection models that achieve an average accuracy of 99.12%, 98.17%, and 98.78%,
respectively. Deep autoencoder is also one of the promising algorithms that do not require human class labeler. It achieves an
accuracy of 97.95% with a loss of 0.13. Since the loss value is closer to zero, the performance of the model is good. Terefore, the
study has a great importance to Internet service providers, Internet subscribers, as well as for future researchers in this area.

1. Introduction

Nowadays, Internet technology is turning to real-time ap-
plications that require high bit rates and strict delay for
better quality of service (QoS) provision [1]. Real-time
applications such as Voice over Internet Protocol (VoIP),
video conferencing, online gaming [2, 3], online transactions
[4], and virtual online classroom [5] become hot research
areas for real-time applications due to the rapid growth of
user interest in audio and video and the availability of in-
tegrated systems that can deliver multimedia data at a lower
cost [6, 7]. Tese benefts have been achieved through the
establishment of many multimedia institutions such as

Google, Akamai, Level 3, Limelight, and Kankan [6, 8].
However, real-time applications demand a reliable and high-
speed data (high startup and playback speed), characterized
as large streams (elephant fows) or small streams (mouse
fows), with stringent QoS and QoE requirements.

Elephant fows are less in number (10%) and exhibit
long-lived fows that potentially fll network bufers end-
to-end [9]. Elephant fows cause node congestion, delays,
and packet loss if it is not managed appropriately [10]. To
minimize or avoid this gap, our work aims to develop
a dynamic trafc model to achieve a more predictable
network and QoS in Software-Defned Networks (SDN) by
using deep learning approach. Te proposed model aims to
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detect elephant fows to minimize network constraints such
as latency, packet loss, and controller congestion. Several
mechanisms have already been proposed to detect elephant
fows [9]. However, these mechanisms do not provide
a general and standardized method for elephant detection.
Various fxed-sized thresholds have been explored to classify
fows in open switches and controllers, which can lead to
a high rate of false positives and false negatives [11]. Tus,
there is a need to fnd standardized, dynamic, and optimal
thresholds that can consider fow size, duration, packet size,
and application type as heuristics, i.e., if these parameters are
used as heuristics, the network is extensible and satisfes
various QoS requirements. As IP networks combine the text,
voice, and video data, dynamic fow classifcation is required
to categorize trafc of diferent and future applications and
provide the required services [6].

Trafc classifcation can be based on protocol types (e.g.,
UDP, TCP, FTP, or HTTP), application types (e.g., Skype,
Chat, or Torrent), and trafc types (e.g., browsing, down-
loading, or video chat) [12, 13]. However, classifying trafc
at application level becomes difcult because there are more
than thousands of applications and new application are
always being developed. Terefore, it is better to track the
trafc fows at network layer by classifying as elephants and
mice to achieve efcient QoS resource allocation. Terefore,
developing a good classifer is one of the prerequisites for
providing appropriate and adequate QoS and QoE in ad-
vanced trafc management of real-time applications [14].
Te trafc classifer can be defned according to the clas-
sifcation objective, i.e., typical objective of this work is to
provide efcient QoS and QoE provisioning [15].

Trafc classifcation is a key task for any Internet Service
Providers (ISPs) or network administrators’ QoS provision
[16]. For this reason, it has been experimented using deep
packet inception (DPI) [17, 18] and machine learning ap-
proaches [19]. To provide better Internet services according
to application requirements, machine learning approaches
are more recognized than DPI and of architectures’
implementation [20]. Deep learning is the state of the art
machine learning approach [21] that inspired us to develop
our proposed stream classifcation model [21, 22]. Specif-
cally, we developed an elephant fow detection model for
SDN using deep neural network (DNN), convolutional
neural network (CNN), long short-term memory (LSTM),
and autoencoder algorithms. Tese algorithms have
a dropout function to remove unnecessary information [23].
Moreover, they overcome the problem of overftting and
underftting during model training by weight regularization
(Adam), optimal epoch, and batch normalization
techniques [24].

DNN is a multilayer perceptron (MLP) type of neural
network that has input layer, hidden layer, and output layer
in one forward direction without going backward trans-
mission [25]. Te enhanced NN and DNN are required to
manage complex trafc from voice to video services. Te
quality of multimedia services on the Internet depends of
congestions, failures, and other anomalies in the network.
Terefore, we need a more advanced way to prevent these
problems. DNN is a state-of-the-art neural network

algorithm to develop a trafc management model that can
guarantee resources for good QoS provision [18]. QoS
measuring and resource prediction is possible with the DNN
for distributed multimedia applications. Te DNN can
forecast future trafc variations as accurately as possible to
predict the user network behavior.

Te CNN is a feature extractor used to flter and pre-
process data by defning local correlation between network
neurons of neighboring layers to provide abstract repre-
sentations of the input features. Te loss function renders
feedback signal for the learning purpose, and the optimizer is
used to determine how learning proceeds [21, 26].

LSTM is an extension of the RNN that provides the
capability of “long-term memory” in addition to short-term
memory. It stores a list of all of the previous information in
its memory andmakes it available for training current neural
network neuron [27, 28].

Deep autoencoder uses an input layer, bottleneck, and an
output layer. It extracts features during training, and it
usually works with the CNN. CNN-based autoencoder uses
the CNN to flter content bearing words, numbers, or images
values from the given input instance (record) [26].

Te proposed classifer classifes trafcs into elephant
and mouse fows as the current trafc fow management is
time-consuming and impractical to update the list of
existing and future applications to transmit their heavy
loaded trafc. Once we identify elephant fows, it is possible
to implement a clustering model in SDN controller for route
assignment of elephant fows based on elephant size to avoid
overloading of links in a network.

In this work, research questions are prepared to answer
the existing network QoS constraints. Te questions include
“By how much DNN, CNN, LSTM, and autoencoder detect
elephant fows from mice fows for good QoS?.” Te per-
formance of these algorithms is also seen in terms of ac-
curacy and execution time over diferent QoS-based
datasets. Optimal epoch iteration was experimented to
overcome underft and overft challenges. Te efect of batch
size was also investigated during fow classifcation model
development at constant and optimal epoch.

After presenting the introduction in Section 1, related
work is discussed in Section 2. We presented our proposed
trafc model architecture and modeling concepts in Section
3. In Section 4, experimentation results are discussed and
evaluated. Finally, we presented the conclusion and future
works in Section 5.

2. Related Work

Te ever-growing number of applications with their huge
and heterogeneous trafc needs more advanced trafc
management mechanisms to achieve good end-to-end
quality on the Internet [29]. In particular, real-time online
applications (audio/video) require dynamic trafc man-
agement to prevent the negative efect of elephant fows in
the network at runtime [3, 30].

Multimedia streaming, real-time interactive applica-
tions, and parallel processing in data centers are some of the
examples of applications that require QoS guarantees for an
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enhanced quality of experience (QoE) to users [2]. Te need
of good trafc management in real-time applications and
QoS requirements has motivatedmany research works in the
network feld. Te eforts resulted in several proposals with
a number of research approaches. Research approaches that
have been proposed for real-time trafc management in-
clude architecture-based [2, 31, 32], port-based [13, 33],
payload-based [34], machine learning-based [10–12, 22, 30],
and deep learning-based [21, 24, 35–39] approaches.
However, the port-based and payload-based options are not
efcient in detecting signatures from payloads after en-
cryption [40]. Terefore, QoS cannot be achieved with these
approaches. To achieve good QoS, authors such as Oliveira
[2] focused on architecture-based solutions.

Oliveira [2] proposed an SDN-based architecture that
provides QoS on distributed applications. Te SDN con-
stitutes an emerging paradigm that facilitates the creation
and introduction of new abstractions in the network, sim-
plifying management and facilitating trafc fows.

Te SDN decouples network devices (switches and
routers) as data plane and control planes. Te control planes
contain network intelligence (controller) to manage signal
messages and data forwarding devices. SDN architecture
provides a global view and an increased level of network
programmability to create fexible capabilities and provide
efective QoS provisioning mechanisms. Te QoS provision
architecture leverages SDN’s class of service capabilities. It
enables QoS requests and negotiations between applications
and the SDN controller.

However, the solution negotiates small, medium, and
large trafcs with subscribers and service providers; trafc
classifcation is not supported by the current dynamic trafc
management mechanism.

In contrast to the architecture-based approach, machine-
learning algorithms have recently gained more recognition
due to their high performance in achieving good QoS re-
quirements [41]. Machine-learning algorithms such as
random forest, Näıve Bayes, neural network, and decision
tree showed better performance in classifying trafc in data
centers for deploying IOT and fog platforms for processing
bills and other similar transactions [13, 30]. As the goal of
machine learning is to identify sample data and build
a learning model, it classifes the testing samples through the
constructed classifer.

Many neural network algorithms such as recurrent neural
networks of diferent types are used for classifying network
trafc, focusing on feature selection, and extraction [30, 40].
Since feature and algorithm selections are very important for
improving the classifer performance, SDN-based features
such as actions, fow size, open fow protocol, duration, and
application type are very important in addition to the usual
fve-tuple parameters such as source address, destination
address, source port, destination port, and protocol.

Other authors also tried to mix machine learning and
neural network algorithms to solve trafc identifcation
problems. In this regard, Dong and Li [42] proposed a novel
application identifcationmethodwithmultiple neural network
layers to improve the efciency and fexibility of application
identifcation. A single application is treated in a single neural

network module. Näıve Bayes algorithm was integrated within
a single neural network module to classify trafc further from
a single application.

Niloofar and Liu Bayat [43] identify the trafc fows of
applications and services. Trafc classifcation involves
extracting high level features from network packet data and
then training with the CNN based on packet payload and
interpacket arrival time parameters.Te CNNwas applied to
online ML services, ofine ML services to achieves users’
QoS guarantee, and high system utilization. Based on
a prediction model, a QoS-guided scheduling strategy can be
proposed to identify the best placements for trafc.

Hamdan et al. [11] also conducted a study on trafc fow
management in SDNs. An elephant detection technique was
used to create two classifers for SDN switches. In their work,
most mouse fows in the switches can be fltered based on
sketches statistics. Terefore, mouse fows cannot send re-
quests and signaling messages to the controller to minimize
the load on the controller.

Terefore, elephant fow detection becomes more in-
teresting and dynamic when modeled with deep learning
algorithms [35]. Deep learning is a branch of machine
learning of neural networks [44], which has better learning
ability for highly complex tasks than machine learning [36].

Ali [37] used deep learning algorithms including deep
neural network in the SDN. In their paper, network trafc
identifcation is an essential function for fne-grained trafc
management task, although application classifcation based on
application type cannot always detect elephant fows. Teir
study did not consider the detection of trafc from future
fabricable applications, although the performance of the existing
application classifer reaches 96% in terms of accuracy. Te
classifer was integrated with the controller, which overloads the
controller. Instead, the fow classifer module can be integrated
in OpenSwiches to share responsibility of the controller. Only
elephant fows should be better reported to the controller for
further elephant fow clusters. Moreover, the task of optimal
route selection and assignment can be done by the controller as
usual. Tus, the classifcation in the OpenSwitches and the
clustering in the controller can work together to optimize QoS
in the SDN. Te classifer that improves QoS needs to be more
dynamic and use deep learning algorithms.Te state of the art is
a deep learning algorithm such as deep neural network
[37],CNN [43], LSTM [45], and deep autoencoder [39], which
have been tested for trafc classifcation.

Lopez-Martin et al. [46] presented the potential of the
CNN algorithm for classifcation tasks, as we intend to
implement it for our elephant fow detection. Te CNN is
a classifcation algorithm that can initially be used auto-
matically for representative fltering of trafc. By concate-
nating multiple CNNs, including dropout layer,
maxpooling, and batch normalization layers, complex fea-
tures can be extracted automatically. Te dropout layer
provides regularization (a generalization of results for un-
seen data) by omitting (setting to zero) a certain percentage
of the output from the previous layer. Tis allows the
network to not rely too heavily on a particular input, pre-
venting overftting and improving generalization. Te max-
pooling layer selects the maximum value of the trafc value
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to reduce the number of features and the computational
complexity of the network. Te result is a representative
output with less sampling. Batch normalization speeds up
training and can improve performance results.

According to Ren-Hung [45], LSTM is used for classi-
fying trafc from many modern software systems and ap-
plications for heterogeneous services in the data centers
(clouds). Te large growth in the number of these services
has led to a critical criterion of QoS, which includes factors
such as response time, location, and cost. As the value of
dynamic QoS attributes vary with time, there is a need of
advanced algorithms such as LSTM to accurately forecast
future QoS values to identify routes or know a service may be
about to fail in advance. Terefore, the LSTM-based neural
network is very important to forecast future QoS values.

According to Franco et al. [47], an autoencoder can be
classifed into four types depending on the structure of the deep
learning layer and regularization. Tese are vanilla autoen-
coder, denoising autoencoder, sparse autoencoder, and vari-
ational autoencoder. Te one we are concerned about is the
variational autoencoder (VAE). VAE is a deep generative
model that can simultaneously learn a decoder and an encoder
from data. An attractive feature of the VAE is that it estimates
an implicit density model for a given dataset via the decoder.
While learning a generative model for data, the decoder is the
key object of interest.Te encoder extracts useful features from
dataset and learning a good representation. Learning good data
representations before building the models is very important.
Tis is the reason that deep learning, in particular VAE, solves
the fundamental problems of machine learning algorithms to
transfer to new training tasks.

Te loss function of the autoencoder compares these
predictions with the targets and produces a loss value during
compression at the autoencoder bottleneck [16]. Te result of
the comparison is the loss value, which is a measure of howwell
the network’s predictionsmatch the expectations.Te optimizer
uses this loss value to update the weights of the network [26].

Convolutional neural networks (CNN) with variable
autoencoders have shown remarkable classifcation perfor-
mance. However, the CNNmodel is susceptible to noise and
redundant information encapsulated in the high-
dimensional raw input data, resulting in unstable and un-
reliable predictions. Tis problem can be solved by using
autoencoders, which are unsupervised dimensionality re-
duction techniques that flter out noise and redundant in-
formation to produce robust and stable feature
representations [48]. Te experimental result showed that
autoencoder-based binary classifcation enables to score an
average precision of 97.49% after 10-fold cross-validation of
elephant and mice fows [48].Terefore, CNN-based AE can
be one of the promising elephant fows detection algorithms
in addition to pure supervised algorithms including DNN,
CNN, LSTM, and other deep learning algorithms for the
sake of QoS optimization.

A summary of previous works is presented in Table 1. Te
frst group used deep learning (DL) techniques in line of trafc
classifcation (TC), QoS-based datasets, real-time applications,

and its state of the art deep learning algorithms. Te second
group used machine learning (ML).Te third taxonomy used
architecture-based solutions which employed network archi-
tecture for network management optimization such as
software-defned network (SDN) architecture. Te black circle
in the last column indicates the focus of the work and the last
row concerns our work in this paper.

3. Motivation

Accurate trafc classifcation is the basis for various network
activities, including network trafc management and net-
work security auditing [38]. Network trafc classifcation
and analysis has been performed using port-based, DPI, and
machine learning techniques. However, in recent years, the
rapid increase in the number of Internet users and Internet
trafc has led to network congestion. As a result, both the
port-based and DPI approaches are becoming inefcient due
to the exponential growth of Internet applications that incur
high computational costs. Te machine learning approach,
especially the deep learning approach, has shown potential
to detect trafc anomalies aligned with SDN trafc control
capability. Terefore, we are motivated to develop a deep
learning model for software-defned networks that can ac-
curately distinguish elephant fows from mouse fows. Te
SDN and deep learning technologies are the state of the art
trafcmanagement techniques that we use to detect elephant
fows for QoS optimization. Tis dynamic QoS optimization
allows network administrators or ISP operators to dy-
namically predict trafc to prevent resource underutilization
and network congestion due to resource overutilization
[45, 51]. Given the current massive volume of trafc, ISPs
need to predict the application type of a fow through the
Internet in order to secure, monitor, and sufciently allocate
the QoS requirements of Internet users in advance [20].

(1) Intuitively, there are several reasons why network
trafc classifcation can beneft Internet users, net-
work administrators, and ISP operators.

(2) Developing a dynamic model in he SDN can min-
imize or avoid congestion problems, i.e., the Internet
is constrained or unavailable due to infexible trafc
handling. Tis makes the network more fexible and
programmable for network operators. It also ensures
better QoS performance [34].

Integrating deep learning models into the SDN mini-
mizes human intervention, i.e., it increases automation, and
network administrators or operators can customize the
network in terms of topology, confguration, and additional
module integration in OpenSwitches and controllers. Tus,
it opens doors for network administrators to manage the
network in their context.

Te abovementioned intuitions motivate us to explore
network trafc classifcation using deep learning models in
the SDN. Te proposed elephant detection model encour-
ages Internet subscribers to negotiate with service providers
according to their QoS requirements.
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4. Materials and Methods

Tis section presents dataset preparation and model de-
velopment methods, and trafc classifcation model de-
scription and model evaluation techniques.

4.1. Dataset and Prepossessing. Te training dataset is pre-
pared from existing VoIP data, video streaming, and audio
data transmission. Te VoIP data comes from HTTP and
GTalk applications from Network InformationManagement
and Security Group (NIMS) dataset [52], which contains
about 303,549 trafc fow records. We also used Unicauca-

dataset, a network trafc dataset with 15,001 instances and
75 features. To evaluate the QoS provision in the SDN, the
SDN dataset is used and tested by the selected deep learning
algorithms.

Te three datasets are modifed assuming QoS and
stored in a CSV fle. Te datasets are used to improve the
QoS requirements of applications with elephant and mouse
fow classes [53]. Classifcation was based on packet size,
duration, fow size, byte count, and application type as
heuristics. We added a class parameter that included ele-
phant fow (1) and mouse fow (0) classes as the last column.
Specifc heuristics we used in categorizing mouse and

Table 1: Summary of previous works.

Paper Networking
problem Approach

Method/
classifer
technique

Application
type Dataset used Experimental

result SDN ML/
DL Elephant Data

center

Aceto
et al. [30] Encrypted TC Deep learning SAE, CNN, and

LSTM HTTP trafc 300 k Mobile
datasets activity

SAE outperforms
in TC ⁰ • ⁰ ⁰

Nascita
et al. [35] Deep learning 1D-CNN WeChat MIRAGE 2019

dataset
Global model
interpretation r ⁰ • ⁰ ⁰

Ali[37] Intelligence
TC Deep learning Deep neural

network

HTTP, mail,
and

multimedia
Moore dataset

Better accuracy,
precision, recall,
and FScore results

⁰ • ⁰ ⁰

Dong and
Xia [39]

Deep learning
application Deep learning SC-CNN Image

segmentation MNIST dataset

Deep learning
create more
powerful

optimization
methods

⁰ • ⁰ ⁰

Dong
et al. [38]

Abnormal
trafc

detection
Deep learning

Kmean, AE,
and

reinforcement

Abnormal
trafc

NSL-KDD and
AWID datasets

Achieved good
result in time
complexity

⁰ • ⁰ ⁰

Dong
et al. [36] Tc Deep learning CNN and GAN FTP, Gmail,

and Skype
USTC-TFC2016

dataset

Yields better
application trafc
classifcation and
detection result

⁰ • ⁰ •

Bovenzi
et al. [29]

Model
parallelism TC

Machine
learning

RF, DT, and
Bayes

IoT and fog
platform

Anon17 NIMS
dataset

Reducing training
time ⁰ • ⁰ •

Chang
[40] Encrypted TC Machine

learning RNN-AE
Github,

Gmail, and
Icloud

Real-world dataset
18 applications

Achieves 99.14%
performance ⁰ • ⁰ ⁰

Ibrahim
[49] Online game Machine

learning-mixed Fixed Java code http, FTP, and
Skype LOL game dataset Produces 91%

accuracy ⁰ • ⁰ ⁰

Dong [20] Multiclass TC Machine
learning SVM http, imap,

and dns
MOORE and NOC

datasets

Improve
classifcation
accuracy

⁰ • ⁰ ⁰

Shi et al.
[50]

Machine
learning

Application

Machine
learning

Netfow
extended
machine
learning

FCBF
algorithm

Machine learning
Application
optimization

Algorithm called
FCBF yields better

performance
⁰ • ⁰ ⁰

Dong and
Li [42]

Trafc
identifcation

Machine
learning

Neural network
and Naı̈ve
Bayes

TCP and UDP
fows

MOORE and
NOCSET

Achieves 95%
identifcation
accuracy

⁰ • ⁰ ⁰

Shi [13] Online
encrypted

Machine
learning Näıve Bayes Online Skype Skype-SET

Reduces false
positives and false

negatives
⁰ • ⁰ ⁰

Dong
et al. [16]

Trafc
identifcation

Algorithm based
on architecture

High
identifcation
accuracy

Routing
application

NOC_SET,
CAIDA, and
LBNL_SET

High accuracy ⁰ • ⁰ ⁰

Oliveira
[2] QoS Architecture Fixed Python

program
Distributed
applications

Small text and
video dataset Low overhead • ⁰ • •

Hamdan
et al. [11]

Load
balancing Architecture Fixed Python

program
d/t

applications
Sketch-based flter

elephants

Good running
time and

performance
• ⁰ • •

Tis paper Elephant fow
detector Deep learning DNN, CNN,

LSTM, and AE Real-time apps NIMS and SDN
datasets 98.78% accuracy • • • •
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elephant fows are duration, packet size or fow size, and
number of bytes in a fow. Mouse fows take at least
10 seconds on average [54]. Each short fow requires less
than approximately 15 packets [55] and each packet contains
500 bytes [15].Te data preprocessing is accomplished based
on parameterization of real-time and non-real-time appli-
cations. During and after data processing, packet sampling
issue has been widely done [39]. Accordingly, we used
stratifed 10-fold cross-validation [12] to evaluate the per-
formance of the models with new unseen trafc predictions.
Te 10-fold cross-validation method is used commonly for
precision with the premise that a trafc dataset is divided
into 10 parts, 9 of which constitute the training data with 1
representing the test data [13].

4.1.1. Feature Selection and Extraction. It is important to
take into account the impact of trafc features and appli-
cation categories for the development of classifcation
models. Packet payload information becomes a big obstacle
to identify QoS-based trafc fows. Instead, we have to see
network trafc in line of fows by correlating many features
and application categories. When feature correlation is 0, it
represents that two variables are independent, if feature
correlation is 1, it shows two variables have a strictly
functional relationship [50]. Combining two or more feature
characteristics such as packet size, trafc duration, and types
of applications can yield better fow classifcation accuracy.

Network trafc is represented by fow-based features.
We used the feature prepared for NIMS dataset as an ex-
ample [52] and added an additional column for elephant and
mouse fow classes. We used the packet size threshold used
by Cisco systems in data centers to determine dynamic
thresholds [55]. Cisco referred to as an elephant fow if the
fow contains more than 15 packet sizes, i.e., short fow is less
than 15 packets. We also consider byte size to refer to the
fow as elephant or mice. Packet sizes are typically greater or
equal to 500 bytes per packet [55]. Mouse fows have a size of
10KB in OpenSwitches of datacenters [15, 54] and an av-
erage duration of 10 s [54].

As can be seen in Table 2, the last row describes elephant
and mice categories. Network fow is described by a set of
statistical features which can be calculated from one or more
packets of fows and compute feature values [52].

4.2. Deep Learning Techniques. Deep learning techniques
became popular due to the explosive growth and availability
of data (big data) and the increase of high-performance
computing hardware such as graphics processing unit
(GPU) to train large amounts of data [56]. It takes longer
training time to yield higher accuracy due to its ability to
process a large number of features [57].

Deep learning algorithm passes the data through several
training batches and layers to yield complex correlation
(models) between features [57].

Deep learning models have been recently studied for
network trafc classifcation learnings. At present, the deep
learning techniques include deep neural network (DNN),
convolution neural network (CNN), long short-term

memory (LSTM), deep autoencoder, deep Boltzmann ma-
chine, generative adversarial networks, and so on [21].

4.3. Proposed Trafc Classifcation Models Description.
Network trafc classifcation is a key component for network
management and QoS management. Terefore, employing
deep learning methods can distinguish network trafcs from
distributed and multimedia applications [58]. Te proposed
trafc classifcation models enable us to obtain better
classifcation results and reduce the classifcation time
through overall optimization without excessive manual
intervention, especially in the deep autoencoder model [59].

Te proposed trafc classifcation models are developed
with deep learning algorithms. Deep learning algorithms,
including DNN, CNN, LSTM, and autoencoder, use loss
function and optimizer components to build and evaluate
the elephant detection model. Te elephant detection model
training continues until the fnal classifer is built as per
epoch (upto 50) and batch size settings (128). Te fnal
classifer is obtained after many updates of weights.

Te selected algorithms usually yield better classifcation
performance than other general machine learning algo-
rithms [52]. Terefore, we used these deep learning algo-
rithms to categorize trafc fows into elephant and mouse
fows based on tangible attributes including fow size, fow
size, total packet size, protocol type, application type, and
fow duration as heuristics information for QoS provision.
Elephant fows are fows that take long time and have large
packet size, whereas mouse fows are those with relatively
low sizes transmitting for a short duration [15]. Deep
learning categorizes not only elephant fows and mouse
fows but also helps to further cluster elephant fows for
more manageable trafc fows. Proper deployment of
a trafc load analysis provides valuable insights, including
how busy a link is, the average delays, and the average packet
size for wise use of path resources. Tus, deep learning based
trafc classifcation model have advantages in minimizing
time complexity and achieved good results on top of QoS
datasets [38]. Te selected deep learning algorithms for
building the proposed trafc classifcation model are dis-
cussed. In particular, the deep Autoencoder is more de-
scribed and demonstrated diagrammatically since it is one of
the cost-efective methods due to its automatic training
capability in unsupervised manner without human
intervention.

4.3.1. DNN. TeDNN is typically feed forward network type
of multilayer perceptron (MLP) in which data fow from the
input layer to the output layer in one forward direction
without going backward [25]. Training a neural network
comprises sequence of layers, which are combined into
a network having the input data (trafc fow) and corre-
sponding expected targets (elephant or mice). Some for-
mulated neural network models used to identify real-time
application layer protocol, and the work yields lower time
and space complexity [42].

Tese DNN components create chains and map the
input data to predictions.Te layers layer 1, layer 2, and layer
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n are fundamental data structure which is the building
blocks of deep learning model formulation. Models are
networks of layers that can be a formula or algorithm [26].
Layers can be input, hidden (dense), and output. Each layer
can have diferent number of neurons and it can be cal-
culated using parameters, input (i), weight (w) and bias (b),
and output (y) as it is formulated in the following equation:

y � iw + b. (1)

Activation function enables the DL model to learn
complex patterns. Te most frequently used activation
function is ReLU which we use it for our trafc classifcation
model [60].

Te gap between the actual output (y) and expected
output (y′) is recorded as loss. Te loss function compares
the prediction values to the target values to produce a loss
value. Te model is the classifer (elephant fow detector)
which predicts the unseen fow to their target category as per
the assignment of class by data expert manually (true target).

Te loss value shows us how well the network’s pre-
dictions match what was expected. If the loss value is high,
the optimizer updates the weights to minimize the loss value.
Te loss function sets feedback signal for learning purpose.
We measure not only the loss incurred during training, but
also the performance of the model in terms of accuracy.

Te optimizer is used to determine how learning pro-
ceeds by letting weight update.

4.3.2. CNN. Te feed forward neural network enables end-
to-end training from input to out layer by exploiting existing
deep learning technology [61]. Te CNN requires an input
fltering function and data preprocessing mechanism by
defning local correlation between network neurons of
neighboring layers to deliver abstract representations of the
input features [26]. It is one of the deep learning algorithms
which have 1D, 2D, and 3D maxpooling flters to reduce the
network scale and further reduce the computation load on
the pooling flter. We used 1D trafc data, and local features

are combined to form the global features; then, the pooling
flter is used to remove the unnecessary information to
obtain abstract data of reduced size [23].

So, we can drive that the CNN is a special MLP which we
employee for elephant fow detection. A normal CNNmodel
consists of diferent types of layers which allow the model to
learn and extract features relevant to classes [62].

(1) Convolution Layer. Tis is the layer where n number of
flters is applied to extract features based on the given size of
the kernel.

Batch Normalization. Batch normalization is used to nor-
malize the output of one convolution going as an input to
another convolution. Tis results in efcient training and
helps in reducing overftting [63].

(2) Max Pooling. Max pooling layer is used to reduce the
dimensionality of the feature map by selecting the maximum
value of a particular region based on the kernel size.

(3) Dropout Layer. Tis layer is used to reduce overftting by
dropping the specifed percentage of features from the
model. If dropout (noise) is being applied at training time,
random changes in the model can happen at training time
and are working to prevent overftting during training. If this
is not being applied at validation time, then validation ac-
curacy could be higher than training accuracy [63].

(4) Fully Connected Layer. Tis is the fnal dense layer that is
mostly used at the end of the network for classifcation.
Unlike pooling and convolution, it has a global operation
capability. It takes input from feature extraction stages,
globally analyses the output of all the preceding layers and
classifes the trafc data as elephant (1) or mice (0) [25].

4.3.3. LSTM. Te recurrent neural network (RNN) provides
the capability of “short-term memory” which allowed the
use of the previous information at a certain point only to be

Table 2: Attributes of NIMS dataset.

Attributes Duration and size of
the fow

Min forward interarrival time Min backward interarrival time
Std. deviation of forward interarrival time Std. deviation of backward interarrival time
Mean forward interarrival time Mean backward interarrival time
Max forward interarrival time Max backward interarrival time
Min forward packet length Min backward packet length
Max forward packet length Max backward packet length
Std. deviation of forward packet length Std. deviation of backward packet length
Mean backward packet length Mean forward packet length
Duration Te time taken for arrival of packets
Protocol Application layer protocol (HTTP and GTalk)
Total_fpackets Total number of bytes in forward direction
Total_fvolume Total volume of bytes in forward direction
Total_bpackets Total number of bytes in backward direction

Total_bvolume Total number of bytes in forward direction
Total volume of bytes backward direction

Class Elephant and mice labels
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used for the present training task. Te LSTM is an extension
of the RNN which provides the capability of “long-term
memory” where a list of all of the previous information is
available for training the current neural network neuron
[27]. LSTM’smain components are thememory cells and the
input, forgets, and output gates.Tese components allow the
LSTM network to have connections from previous time
steps and layers, where every output is infuenced by the
input as well as the historical inputs [28].

Te LSTM uses feedback loops which lets weight update
for correct class assignment during model training [27]. So,
in this work, we also employ LSTM for the trafc classif-
cation task. Elephant fows can be detected using multiple
LSTM layers, where each layer comprises many LSTM units,
and each unit comprises input, forget, and output gates. To
prevent overftting problem, we used weight regularization
(Adam), dropout, optimal epoch, and appropriate batch
normalization techniques [24].

4.3.4. Autoencoder (AE). AE is categorized under un-
supervised learning algorithm. It is a type of neural network
that does not require the human labeling of data.

It reconstructs the input to an output of fewer di-
mensions [64]. Te AE is trained to reconstruct its input
through a bottleneck layer with fewer dimensions than the
data space. Te input (training data) and network maps
together have diferent layers including input, encoders,
bottleneck, decoders, and output. Te AE frst encodes the
input to a hidden representation (code) of lower dimensions
and then decodes it back into a reconstruction.

Even though AE is a clustering algorithm, it can be used
for trafc classifcation by learning dynamic threshold value.
Te threshold value is obtained dynamically from the model
learning process. Te threshold value identifcation is the frst
task of AE during classifer formulation. So, class labels are
not necessary for elephant and mice classifcation, rather class
labels are dropped from the datasets unlike the training way of
DNN, CNN, and LSTM. Only threshold criterion is used to
detect elephant fows to optimize QoS provision [65, 66].

Elephant fow detection is accomplished if the trafc size
and duration is greater than the threshold value. For ex-
ample, if the threshold value is greater than 0.5, the trafc
fow will be assigned in the elephant fow category unless
otherwise it is a mice fow.

As AE is depicted in Figure 1, it takes network trafc data
then flters the representative neurons from each instances
then, autoencoder continues compressing the fltered data to
fnd the threshold value.

Trafc inputs (T) are given to the autoencoder network,
then it encodes to a coded form with minimal features at the
bottleneck layer. Te coded feature is decoded to yield the
output layer (O). Treshold value is calculated during re-
construction of the network. We use the coded value
(threshold) for elephant and mice fow classifcation task. In
Figure 1, Unicauca-dataset is used to design the autoencoder
structure. Unicauca-dataset has 87 attributes and we add one
additional class column. Total, there are 88 parameters used
as input starting from T1 to T88.

As visualized in Figure 1, we can take an unlabeled
dataset and give to autoencoder for learning task. Let us take
the original input Tas (T1, T2, T3, T4, T5, . . ., T88), and the
output, O as (O1, O2, O3, O4, O5, . . ., O88), is a re-
construction of the output. Autoencoder can be trained by
minimizing the reconstruction error, e (T, O), which
measures the diferences between our original input and the
consequent reconstruction. Tis construction loss yields
a threshold value for classifcation task.

Tus, an autoencoder approximates an identity of the
trafc whether the trafc instance is elephant or mice based
on the threshold value, i.e., the hidden layer has two outlets,
one for elephant fow and the other is for mice fows [37].

Te trafc classifcation model workfow is also presented
in Figure 2 having input trafc data (elephant and mice).

Firstly, elephant andmice trafc fows are inputted to the
workfow. Te AE model is then formulated to provide
a threshold value which is used as the boundary during
elephant fow detection, i.e., the AE model yields the
threshhold value which is a formula to identify elephants in
a nonlinear hyperplane manner.

Once the formula (hyperplane boundary) is found,
trafc prediction is performed based on the threshold value.
If the trafc input-weight size is greater than this threshold
boundary, the fow is detected as elephant as it depicted in
Figure 2. Unless otherwise; it is categorized under the mice
class. So, the network setting does not change because the
trafc does not lead to network congestion.

5. Experimentation and Evaluation

Te Internet trafc measurement and analysis minimizes or
avoids trafc congestion challenges [49], but prior to data
transmission, the performance of the classifer must be
verifed with various metrics. We present the results of the
four deep learning models on three dataset that we have
adapted. We also compare the performances of the models.
To design a robust evaluation framework, we run every
model over 20 to 50 epochs. Te average performance of
each algorithm is considered as the promising potential of
the elephant detection model. We use accuracy and loss
metrics for model evaluation. We also checked the efects of
overftting and underftting of models by conducting ex-
periments on epoch repetitions and training data batch sizes.

O1T1

Input Encode Bottleneck Output

O2T2
O3T3
O4T4
O5T5

T88 O88

Decode

Figure 1: Autoencoder for network trafc data.
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5.1.Dataset. Te goal of this study is to develop a model that
is best suited to detect elephant fows. To achieve this goal,
we selected an inelastic and an elastic application-based
dataset. Tus, we used features from the NIMS dataset
and took a non-real-time HTTP application as an example
and Gtalk as a real-time application to formulate the model
[52]. We then changed the class column as elephant fow (1)
and mouse fow (0). We also used two other SDN-based
datasets to test the performance of the proposed model in
OpenSwiches. Te datasets were divided into training,
validation, and testing sets with 10-fold stratifed cross-
validation.

Te training parameters, epochs, batch size, learning
rate, and optimizers used in this model are listed in Table 3.

5.2. Experimental Setups and Tools Used. We installed An-
aconda version 3 on an Intel (R) Core (TM) i7-4500U CPU
@ 1.80GHz 2.40GHz laptop computer. We also installed
components to help us perform the deep learning experi-
ments. Some of the components are Jumpy, Pandas, and
Matplotlib to process a variety of data and graph the ex-
perimental results. To control trafc and support QoS, we
group incoming trafc into elephant and mouse fows.

Te time required to complete one round of execution of
each model is recorded in seconds. Te models are built
using the Python version 3.9 programming language and the
Tensor Flow 2.3.0 and Keras 2.4.5 frameworks.

In deep learning, the input data are trained by auto-
matically learning structured feature representations using
the Keras framework [37]. Keras is a powerful and easy-
to-use Python library for developing and evaluating deep
learning models based on Tensorfow. Tenssorfow enables
the defnition and training of network models as a multi-
dimensional array or list [26, 67]. Keras and Tensorfow
modules were installed on Anaconda to obtain deep learning
based autoencoder libraries. We implement DNN, CNN,
LSTM, and autoencoder algorithms on SDN datasets. We
run CNN and LSTM deep learning codes on Googlecolab to
obtain fast computing performance.

5.3. Model Evaluation. Te proposed model is evaluated
using 10-fold stratifed cross-validation on a test set. A
classifcation result has four cases: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN).
For our purpose, we used the same input form, the same
training set, the same learning rate, and the same optimizer.

For cross-validation, we stratifed the SDN dataset into
10-fold. Te SDN dataset consists of a large number of
instances.Te dataset is automatically split into a training set
and a test set.Te training and test datasets are partitioned in
a stratifed manner, starting with fold 1 and ending with fold
10, as shown in Table 4.

To measure the performance, the metrics used is ac-
curacy which is defned as follows:

Accuracy �
TP + TN

(TP + FP + TN + FN)
. (2)

5.4. Discussion of Experimental Results. In this experimen-
tation, we use DNN, CNN, LSTM, and autoencoder algo-
rithms for our trafc classifcation. Te experiment results
are presented for each research; deep learning algorithms
used are discussed. We used experimental results of the
training history to measure performance of the models in
terms of accuracy and loss for each employed algorithms.

Experiment 1. To what extent do DNN, CNN, LSTM, and
autoencoder neural network algorithms detect elephant
fows from mouse fows for good QoS?

5.4.1. Experimenting Elephant Flow Detection Using DNN.
Network’s elephant detection model classifes elephants and
mouse categories to the target outputs. When we see the
performance of the model in terms of accuracy using Adam
optimization, training accuracy increases and training ac-
curacy reaches 99.99% under epoch 50 on the NIMS dataset.
Te validation accuracy reaches 100% under the same epoch
within 3 s and 5ms.

Te model training history of the model and perfor-
mance accuracy of the DNN algorithm are shown in
Figure 3(a). It shows the training accuracy and validation
accuracy of the model. Te fnal trafc classifer model is
then verifed with the best (i.e., highest) validation
accuracy [68].

Figure 3(b) shows the training loss and validation loss of
the model. Te fnal model is the checkpoint with the lowest
validation loss, 0.0037 which is closer to zero [68].

>=threshold <threshold

Elephant flow

Input: Elephant or mice flows

AE Model Building 

Prediction 

Threshold Value 

Mice Flow 

Figure 2: Model prediction using threshold.

Table 3: Training parameters.

Model Epoch Batch Rate Optimizer
DNN

20/50 128/512 0.01 AdamCNN
SAE
LSTM
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Te training loss diminishes starting from 0.0793 to
0.0022 as it is seen in (b) above. Te test validation of the
model using 10-fold stratifed cross-validation is presented
in the confusion matrix from Figure 4.

False positive and false negative errors are reduced to
zero by the judicious use of heuristics that take into account
the duration of data fow, the size of data fow, the type of
application, and the size of the packets.

We also verifed the performance of trafc fow classifer
with a labeled application dataset, Unicauca-dataset. Te
total dataset has 15, 001 instances and 87 parameters. We
modifed the dataset considering the QoS requirements of
applications and stored in a CSV fle. We add the 88th
column as class column that holds elephant fow (1) and
mouse fow (0) classes. Te duration of the mouse fow
requires at least 10 seconds. Each fow has at least 15 packets,
and each packet contains 500 bytes as it is stated in our
methods. Having this heuristic information, we create
a learning model that can detect elephant fows. Te model
performs 97.36% training accuracy within 7ms and 97.24%
testing accuracy using the deep neural network on
Unicauca-dataset [69] as it is seen in Figure 5(a). Te val-
idation accuracy was constant while the training accuracy
increases radically starting from 70.03% to 96.52%.

Te loss that occurred during training on Unicauca-
dataset showed radical reduction starting from 0.6443 to
0.1199, as shown in Figure 5(b). As training loss is presented,
the training loss scored approaches to zero as the fnal model
is the checkpoint with the lowest validation loss.

Te validation of the model is demonstrated by he
confusion matrix in Figure 6.

Te main objective of this work is trafc classifcation on
the SDN dataset using state of the art DNN, CNN, LSTM,
and autoencoder algorithms.Te dataset was generated from
RYU controller. It has 104,346 instances with 23 features.
We modifed the last column and substituted by elephant (1)
and mice (0) classes after identifying duration, packet size,
byte size, fow size, and application protocols parameter as
heuristics.

Te DNN experimental result obtained within 50 epochs
is 99.97% training accuracy and validation accuracy is 100%
in 1 s and 5ms as it is seen in Figure 7(a).

We checked the performance of the classifer by per-
forming 10-fold stratifed cross-validation with the test set
during evaluation. We achieved a test accuracy of 100%,
which is promising model performance [70], interpreted to
mean that test accuracy should not be higher than training

accuracy. When the model is not overftted, the training
model classify’s new samples as the training model is op-
timized for the testing samples latter [63].

Te training loss decreases from 0.2587 to 0.0014 which
is generally close to zero, as shown in Figure 7(b). 0.0014
noise is a normal occurrence, as we do not expect 100%
perfection from machines, as humans have natural limita-
tion to perform 100% autonomously. Humans detect during
the day and night with accuracy of 80% average. Te overall
accuracy is usually expressed as a percent, with 100% ac-
curacy is being a perfect model; achieving 100% recognition
is a very difcult task for machines [71].

Let us explain our model performance using the con-
fusion matrix. Te prediction classes of the models are
predicted values and actual values along with the total
number of predictions [20]. Predicted values are those
values, which are predicted by the model, and actual values
are the true values for the given observations labeled by us, as
shown in Figure 8.

True negative: 192 records were assigned to mouse
streams as we annotated them as mouse fow.
True positive: We predicted elephant fows were pos-
itive (1) and 10187 records are actually truly mapped to
elephant fows in data centers.
False negative: Te model predicted elephant and
mouse fow without any error.
False positive: Te model has predicted 4 mouse re-
cords as elephants mistakenly. Tus, the error is only
0.04%.

(1) Discussion on Performance Result of DNN Algorithm.
Model accuracy and explanations are relevant for many
practical applications of deep neural networks, such as our
trafc classifcation task. Accordingly, we found elephant
classifcation model to be 97.36%, 99.99%, and 99.97% on
NIMS, Unicauca, and SDN datasets, respectively. When
we calculate the training accuracy, the average perfor-
mance of the DNN is 99.12% for the elephant detection
model. Te model performance implies that our elephant
detecting model can lead to better generalization per-
formance under the DNN [72]. Te DNN optimizes
classifcation tasks with respect to training data in a het-
erogeneous manner as we tested on heterogeneous trafc
including datasets generated from legacy and SDN net-
works. With sufcient parametric fexibility, these types of
models can ft generalizable features and memorize
nongeneralizable features concurrently during training
[73]. Te built model meets the general standard of deep
learning models, i.e., the validation and test accuracies are
greater than 96% and all validation and test accuracies
were less than the training accuracy [63].

We can infer from the graphs Figures 3(b), 5(b), and
7(b), both training and validation loss are decreasing further,
which is generally near to zero. Little noise is a normal
occurrence since we do not expect 100% perfection from
machines as human beings cannot perform 100%
autonomously [71].

Table 4: Stratifed 10-fold on SDN dataset for cross-validation.

Fold: 1, training set: 93455, test set: 10384
Fold: 2, training set: 93455, test set: 10384
Fold: 3, training set: 93455, test set: 10384
Fold: 4, training set: 93455, test set: 10384
Fold: 5, training set: 93455, test set: 10384
Fold: 6, trainng set: 93455, test set: 10384
Fold: 7, training set: 93455, test set: 10384
Fold: 8, training set: 93455, test set: 10384
Fold: 9, training set: 93455, test set: 10384
Fold: 10, training set: 93456, test set: 10383
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(2) Experimenting Elephant Flow Detection Using Autoen-
coder. Te goal of the autoencoder is to fnd optimal model
parameters for the minimization of a loss function. Te msle
loss function on training samples fnds the maximum loss
value [74]. For this work, mean squared error loss function
(msle) was used with the Adam optimizer and the loss
approaches zero as it is seen in Figure 9.

Distribution of the deep autoencoder model, re-
construction loss distribution visualization, and the loss
decreases uniformly and approaches zero over training
history. In particular, the loss decreases from 1 to 0.13. Based
on the train loss, many reconstruction loss values are cal-
culated [73]. Te best reconstruction loss helps to fnd the
optimal threshold. Accordingly, we detect elephants by

reconstructing the input trafc. Te threshold value for
elephant fow detection is 0.1555 with model validation
accuracy of 97.95%, as shown in Table 5. If the re-
construction loss for a sample is greater than this threshold
value, then we can infer that the model is seeing a pattern
that it is not familiar with mouse fows. Te test accuracy
score obtained is 96.58% accuracy.

5.4.2. Discussion on Performance Result of Autoencoder.
Te loss function quantifes how well or how bad the given
predictor is when it classifes the input data points in the
dataset. Te smaller the loss, the better the classifer is doing
at modeling the relationship between the input data and
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output class labels [70]. Loss is a cumulative noise per epoch.
At the beginning of each epoch, the loss is 9.5. For each time,
loss calculation is added to the loss metric [70]. What is seen
over time in the plotted results is the total loss of training and
validation loss is decreasing generally.Tis decreasing of loss
means the weights of the network is getting more accurate.
Usually, reading such a low loss of near zero indicates that
the potential of the model to detect elephant fows.

It is implicitly expected that the classifcation accuracy is
inversely proportional to the average loss value, i.e., the
training loss and validation loss both decrease and stabilize
at a specifc point at round epoch 20.

Usually, the validation loss is greater than the training
loss. Tis may indicate that the model is under ftting for
some extent [63]. Even though the results show small loss,
result indicates that further training is needed to reduce the

loss incurred during training for more performance im-
provement. Alternatively, we can also increase the training
data either by obtaining more samples or augmenting the
data [75].

(3) Experimenting Elephant Flow Detection Using CNN and
LSTM Algorithms. We compared the performance of the
DNN with the state of the art CNN and LSTM algorithms.
We ran the CNN on the SDN dataset, and its performance
result was 98.17% accuracy and 98.13% validation accu-
racy. Loss of 1.83% is occurred during training. Te total
training takes 8 seconds to build the elephant detection
model. We also develop the elephant detection model
using LSTM. Te training performance result scores
98.78% training accuracy and 97.55% validation accuracy,
respectively, as shown in Figure 10(a). Te training takes
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Figure 5: DNN loss on Unicauca-dataset [69]: (a) training accuracy and validation accuracy and (b) training loss and validation loss.
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57 seconds in average with minimum (3.2%) loss, as
shown in Figure 10b.

5.4.3. Discussion on Performance Result of LSTM. A slightly
higher increase of validation accuracy over training accuracy
up to epoch 11 is due to the overftting problem and sta-
bilizes the training to the normal state after 11 epochs [63].
Te LSTM model shows fairly increasing accuracy after 11
epochs. Tereby, the loss value drops from 7.84% to 0.56%
which is near to zero. A low loss of near zero indicates that
the elephant andmouse classifer has the model to categorize
the trafc fow to the target trafc class [76].

At the beginning of the training, overftting of the model
on the SDN dataset took place. Figure 10(a) shows that after
a certain epoch, the validation accuracy increases while the
training accuracy decreases. After epoch 5, the training
accuracy becomes higher than the validation accuracy,
which is due to the dropout techniques we incorporated.
Here, both the training accuracy and validation accuracy
were balanced, which is advisable when building the best
models. Figure 10(b) shows the gap between training loss
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Table 5: Best validation accuracy and threshold.

Best validation accuracy: 0.9795 for threshold: 0.1555
Perentile: 90, threshold: 0.1005, validation accuracy: 0.9521
Perentile: 91, threshold: 0.1028 validation, accuracy: 0.9543
Perentile: 92, threshold: 0.1083, validation accuracy: 0.9658
Perentile: 93, threshold: 0.1113, validation accuracy: 0.9658
Perentile: 94, threshold: 0.1173, validation accuracy: 0.9703
Perentile: 95, threshold: 0.1245 validation accuracy: 0.9726
Perentile: 96, threshold: 0.1383, validation accuracy: 0.9772
Perentile: 97, threshold: 0.1555, validation accuracy: 0.9795
Perentile: 98, threshold: 0.192, validation accuracy: 0.9795
Perentile: 99, threshold: 0.2614, validation accuracy: 0.8174
Best validation accuracy: 0.9795 for threshold: 0.1555.
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and validation loss over time. Both the training loss and
validation loss are close to zero.Te scenario ensures that the
training was performed in a normal situation that is free
from overftting and underftting problems. Terefore,
LSTM shows good ftting, validation accuracy, and training
accuracy are high, with the former slightly lower than the
latter [63]. LSTM not only shows good ft, but also achieves
the highest accuracy (98.78%) among the other deep
learning algorithms used in this work.

Experiment 2. Comparison of DL techniques
Deep learning algorithms were compared in terms of

their relevant complexity including performance in accu-
racy, model runtime, number of trainable parameters, and
loss incurred.

Te optimal performance accuracy of the models is
represented in various indicator parameters. 99.12%, average
accuracy, is the highest performance obtained with the
DNN. Although this is the highest performance, LSTM,
CNN, and autoencoder also provide promising models with
accuracy greater than 96%.

In addition to accuracy, we also compared the time taken
to produce the models, as shown in Table 6. From the
comparison results, our models generally run in less than
60 seconds. In particular, the DNN has the lowest runtime of
all the algorithms used, at 4 seconds. Deep autoencoder takes
59 seconds, which is a relatively slow performance due to the
additional compression and decompression tasks [20, 77].

Te comparison result on three QoS-based datasets,
NIMIS, Unicauca, and SDN, is also presented with the
number of parameters being, 24, 75, and 21, respectively.
Tus, the dataset preparation and parameterizations were
important steps in the elephant fow detection process.
Duration, fow size, packet size, and application type were
used as heuristics parameters. Since the focus of this work is
on SDN, the SDN dataset with the DNN, CNN, LSTM, and
deep autoencoder was used.

Experiment 3. What optimal epochs will be required for
producing the fow classifcation model?

As we try to fnd the optimal or correct number of
epochs to train a neural network model, we experiment with
diferent epoch numbers and batch sizes to check how ac-
curacy is afected. It is also used to check whether overftting
and undermining of the training occurs when classifying the
network trafc. First, we perform the training on the NIMS
dataset with 2 hidden layers, an input layer and an output
layer, by initializing the epochs to 50.

Epoch is a kind of hyperparameter that plays an essential
role in the training process of a model and helps to decide
whether the data are overtrained or not [67]. Tus, we fnd
that epochs play an important role in obtaining good ac-
curacy for training the neural network model only on the
trafc training dataset [70].

Neural networks are able to learn by changing the
distribution of weights. It is possible to approximate
a function that is representative of the patterns in the
input. Te key idea is to stimulate the black box with new
stimuli (data) until a sufciently well-structured rep-
resentation is obtained [78]. Terefore, the dataset is
tested in diferent epochal iterations. Accordingly, we
test diferent epoch intervals to fnd the optimal epoch
for the dataset NIMS using CNN-based AE, as shown in
Table 7.

We choose CNN-based autoencoder to assess the
efect of epoch on the models having the behavior of
mixed algorithms used to construct models in the work:
CNN and AE. Te result of this mixed algorithm is shown
in Table 7. We can see the accuracy of the models for the
six diferent epoch values. It is shown that the classif-
cation result is trained with 5, 10, 20, 50, 100, and 1000
epochs, respectively, with constant stack size. Te network
computes the errors for both the training and validation
sets. We stop training when the validation error reaches
the minimum.
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Figure 10: LSTM model performance: (a) training accuracy and validation accuracy and (b) training loss and validation loss.
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6. Discussion

As we tried to fnd the optimal epochs to train a deep
learning, an experiment was conducted with various
numbers of epochs to check how the accuracy afects the
model performance as well as if there is any overftting
happening in the training process.

As the results shown in Table 7, as the epoch value
increases, the accuracy of the system is improved starting
epoch 5 to epoch 50.

We can conclude that the accuracy of the model is
promising for detecting elephant fows with the same stack
size and number of classes; so most models have good ac-
curacy for each epoch [76]. However, performance begins to
decline after epoch 50.Tis is due to the fact that up to epoch
50, most records are classifed into their category based on
the optimal updated weights. Tus, the classifcation satu-
rates when epoch is selected until about epoch 50, then the
classifcation accuracy decreases because the trafc fows are
already assigned to their class, i.e., the updated weights are
summed up beyond the expected computational result [70].
In other words: If the accuracy of the training data increases,
but the accuracy of the validation data remains the same or
even decreases, it means that the model is overftted, which
in turn means that we should stop the training process [78].
Tus, we can conclude that the validation error is increasing.
At epoch 1024, the accuracy becomes high (98.22%), but this
is an overftting since the training error is equal to 0 [70]. So
we have to stop at epoch 50 for sure.We can stop the training
process early at about epoch 50 to get better performance of
the model. Since epoch 50 has achieved 98.74% accuracy,
this is optimal and promising for integration with SDN
controllers or OpenSwitches for trafc management to
improve QoS.

Experiment 4. By what extent batch size variation afects
trafc fow classifcation model at constant epoch?

We test the performance of the elephant detection
models when the lot size varies. As shown in Table 8, the best
model performance is achieved at a batch size of 512, while
the epoch is constant at 50 when using the CNN-based AE.

Te batch size indicates how much of the dataset is used
for each training step. Te training process is a stepwise
process where the dataset is divided into batches [76]. In our
case, we tested our dataset by dividing it into 32, 64, 512, and
1024 batches. Te stack size of 512 achieves the best per-
formance, 98.74% accuracy, as seen in Table 8 mentioned
above. We tested the variation of stack size to understand its
impact on the trafcmodel construction.We tested the stack
size starting from 32, 64, 128, 512, and 1024 under the
constant optimal number of 50 epochs. Te stack size with
50 epochs gives an accuracy of 98.74%. Te best results in
trafc classifcation accuracy are obtained with stack size of
512 and 1024 examples. Te larger the stack size, the higher
the trafc classifcation accuracy [79]. It can be concluded
that a model with a stack size of 512 examples and an epoch
of 50 examples is promising for a small trafc dataset and
shows the potential of the QoS provisioning mechanism.

7. Conclusion and Future Work

7.1. Conclusion. Deep learning techniques have become one
of the most interesting and practical topics in network
engineering. In this paper, we propose a trafc classifcation
model that detects elephant fows and can be integrated with
SDN controllers to ensure good QoS. In particular, we used
deep neural networks, CNN, LSTM, and autoencoders. To
consider a model as the best model, its performance was
tested with the training dataset, validation dataset, and test
datasets. Te fow classifcation model was found to be the
most infuential model for classifying elephant and mouse
fows in the SDN. Te average detection rate of elephant
fuxes is 98.77%, 98.17%, and 98.78% using DNN, CNN, and
LSTM in the three datasets, respectively. Terefore, we can
conclude that the potential and capabilities of deep learning
algorithms for elephant fow detection are promising for
better QoS in the SDN.

Table 6: Comparison of deep learning algorithm.

Algorithm Performance in
accuracy

Model run
time Loss Dataset used #Parameters

DNN 99.12% in average 4 s 0.041 NIMS, Unicauca, and SDN NIMS-24, SDN-21, and Unicauca-75
CNN 98.49% 5 s 3ms 0.015 SDN 21
LSTM 98.78% 57 s 60ms 0.03 SDN 21
Deep autoencoder 97.95% 59 s 0.13 SDN 21

Table 7: Model performance using diferent epochs.

Batch size Epoch
Accuracy
NIMS

dataset [30] (%)
512 5 96.08
512 10 97.01
512 20 98.70
512 50 98.74
512 100 98.70
512 1000 98.06

Table 8: Diferent batch size on model performance.

Batch size Epoch Accuracy
32 50 97.01
64 50 94.30
128 50 97.60
512 50 98.74
1024 50 98.22
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Terefore, we can conclude that the potentiality and
promising of deep learning algorithms on elephant fow
detection for better QoS in the SDN.

7.2. Research Implication. Deep learning techniques have
become one of the most interesting and practical topics in
network engineering. In this paper, we propose a trafc clas-
sifcationmodel that detects elephant fows and can be integrated
with SDN controllers to ensure goodQoS. In particular, we used
deep neural networks, CNN, LSTM, and autoencoders. To
consider a model as the best model, its performance was tested
with the training dataset, validation dataset, and test datasets.Te
fow classifcation model was found to be the most infuential
model for classifying elephant andmouse fows in the SDN.Te
average detection rate of elephant fuxes is 98.77%, 98.17%, and
98.78% using DNN, CNN, and LSTM in the three datasets,
respectively. Terefore, we can conclude that the potential and
capabilities of deep learning algorithms for elephant fow de-
tection are promising for better QoS in the SDN.

7.3. Future Work. In our future work, we plan to conduct
a research on the SDN by integrating the best model obtained
in this work so that we will review the QoS and QoE im-
provements between users and network administrators. In the
future, we plan to increase the amount of data and extend this
research study by using diferent deep learning methods in an
SDN environment. Tis will provide an opportunity for very
accurate, fast, and reliable classifcation. In particular, the el-
ephant fow detection task should be better tested with
a generative adversarial network (GAN) since GAN shows
good performance in pattern recognition. Generating adver-
sarial deep convolutional networks helps for efective fts and
expands trafc dataset to maintain balance between elephant
and mice classes of the dataset, which enhances the dataset
stability [36]. In addition, the efect of explainable artifcial
intelligence (EAI) to improve the quality of service in the SDN
networks is investigated [11, 12, 80–82].
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