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Tis article proposes the use of Wi-Fi ToF and a deep learning approach to build a cheap, practical, and highly-accurate IPS. To
complement that, rather than using the classic geometrical approach (such as multilateration), it uses a more data-driven
approach, i.e., the location fngerprinting technique. Te fngerprint of a location, in this case, is a set of Wi-Fi ToFs between the
target device and an access point (AP). Terefore, the number of APs in the area dictates the set size. Te location fngerprinting
technique requires a collection of fngerprints of various locations in the area to build a reference database ormap.Tis database or
map contains the information used to carry out the main task of the location fngerprinting technique, namely, estimating the
position of a device based on its location fngerprint. For that task, we propose using a fully connected deep neural network
(FCDNN) model to act as a positioning engine. Te model is given a location fngerprint as its input to produce the estimated
location coordinates as its output. We conduct an experiment to analyze the impact of the available AP pair in the dataset, from 1
unique AP pair, 2 AP pairs, and more, using WKNN and FCDNN to compare their performance. Our experimental results show
that our IPS, DeepIndoor, can achieve an average positioning error or mean square error of 0.1749m, and root mean square error
of 0.5740m in scenario 3, where 1–10 AP pairs or the raw dataset is used.

1. Introduction

Te goal of 5G and IoTapplications is to improve people’s daily
lives by transforming a variety of things from conventional to
intelligent [1, 2]. Trough efcient packet radio access and
adjustable bandwidth, it will ofer better data speeds and reduced
latency [3]. Among them, the deep learning theory is considered
one of the most promising techniques to tackle tremendous
highdimensional data [4]. Many of those applications require
location-related information to deliver their services. Te ma-
jority of location-based services (LBSs) for outdoor environ-
ments are possible due to GNSSs andGlobal Navigation Satellite
System [5–7] andGlobal Positioning System (GPS) [8].Te state
of the art of outdoor positioning technologies nowadays can be
considered mature [9] and sufcient in terms of fulflling the

related service requirements such as QoS [10] and user mobility
[11] that depends on the network architecture used [12]. Un-
fortunately, that is not the case for indoor scenarios. Localizing
an object or route indoors using GPS is usually not feasible due
to the loss of the signal emitted by its satellites [13]. Te
complexity of indoor environments with walls and various
objects contributes to this phenomenon. Regarding the nu-
merous potential applications that can be enabled, e.g., indoor
wayfnding, asset tracking, and crowd monitoring; it is un-
fortunate that there is no standardized solution for indoor
positioning systems (IPSs) yet [5].

However, the topic of indoor positioning solutions has
gained substantial interest among industries and academia
[14–17]. Te current landscape of IPS underlying con-
nectivity technologies mainly consists of Bluetooth, Wi-Fi,
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Zigbee, RFID (radio frequency identifcation), and UWB
(ultra-wideband). Each of these technologies comes with its
characteristics in enabling an IPS. Te characteristics of
each mentioned technology in enabling an IPS are listed in
Table 1.

In the case of where the users are people, Bluetooth and
Wi-Fi are typically the preferred option over the other
technologies as both are available in most smartphones
nowadays. Regarding the deployment cost, Wi-Fi can be
preferred over Bluetooth as the deployment of Wi-Fi access
points (APs) in indoor facilities are more common than
Bluetooth beacons. It makes deploying a Wi-Fi-based IPS
cheaper than a Bluetooth-based IPS since there is no need to
implement new infrastructure in the area. On the UWB side,
it leads in terms of accuracy (see Table 1).

However, the availability of UWB in smartphones is not
very common yet besides its high deployment cost [22]. Tis
makes a UWB-based IPS not as practical as either a Wi-Fi-
based IPS or a Bluetooth-based IPS. Although the building
blocks of making an IPS have been available, realizing
a cheap, practical, and highly-accurate IPS remains a chal-
lenge [23–26]. It proposes DeepIndoor, a Wi-Fi-based IPS
utilizing the time of fight of Wi-Fi signals and a deep
learning approach. DeepIndoor leverages the advantages of
a Wi-Fi-based IPS in terms of its practicality and the low
deployment cost and combines them with a deep learning
approach to improve its accuracy. It uses a data-driven
approach for the location inference technique to work
with deep learning, i.e., location fngerprinting.

Te location fngerprinting technique can be consid-
ered more robust than the classic geometrical approaches
(such as multilateration). It does not rely on line-of-sight
(LOS) communication to make a good estimation. In
location fngerprinting, a location is estimated based on its
fngerprint (or set of features), which in this case is a set of
Wi-Fi time of fights (ToFs). For that task, it proposes
using a fully connected deep neural network (FCDNN)
model to act as a positioning engine. Te model is given
a location fngerprint as its input to produce the estimated
location coordinates as its output. Te successful appli-
cations of deep learning in various domains [27] and as
computing resources become cheaper and more available,
it encourage us to apply it in this domain. By doing this
research, our major contributions can be seen as follows:

(i) We design a cheap, practical, and highly-accurate
IPS using Wi-Fi ToF and a deep learning approach.

(ii) We conduct extensive experiments to evaluate the
condition of available AP pair scenarios and opti-
mize the performance of the WKNN algorithm and
our positioning engine or DeepIndoor on a publicly
available dataset which can be accessed in [28].

(iii) We detail the structure and confguration of our
positioning engine to encourage its applications in
other testbeds or perhaps to work with other fea-
tures than Wi-Fi ToF for future developments.

Te rest of this article is divided into several sections:
Section 2 presents some previous related works, Section 3
details our system model, Section 4 covers our experiment
settings, Section 5 shows our results and fndings, and
Section 6 provides the conclusions of this research.

2. Related Works

Indoor positioning system or IPS consists of radio
frequency-based system and nonradio-frequency-based
system. In frequency-based system, namely, Wi-Fi, there
are several localization parameters that consist of distance
based and direction based [29]. In distance based, there are
signal based and time based. In signal based, there are RSSI
and CSI. While in time based, there are ToF and RTT. Te
localization parameter, ToF is a time diference between time
of departure in APs and time of arrival in users. Te dis-
advantages are time synchronization, needed for both APs
and the user, and higher cost. Te strengths include great
resistance to multipath efects and high localization accu-
racy. Te other localization parameter, RSSI is a received
signal strength indicator that computes distance by power
loss and the signal strength defciency between APs and the
user. Te weakness is prone to the noise, multipath efects,
and NLoS, and the strength is easy to implement and no
synchronization of time and additional hardware is needed.
Hence, if the priority is the high accuracy, then the ToF
localization parameter can be considered over RSSI. How-
ever, the RSSI localization option might be preferred over
ToF if the priority is low price. To estimate the user position,
the positioning algorithm is needed to calculate the locali-
zation parameter.

Tere are the range-based method like trilateration and
the range-free method like fngerprint to utilize the locali-
zation parameter. Te user position estimation for both the
methods in a 2D space requires measurements from at least
three APs [30], and at least four APs needed for 3D space.

Ma et al. [31] proposed a novel positioning algorithm to
improve positioning result of Wi-Fi RTT ranging. Tey also
explained a characteristic of Wi-Fi fne time measurement
(FTM). From the results, the proposed approach achieved
a localization error of 1.20m for static and 1.31m for dy-
namic positioning.

Zhou et al. [32] proposed a novel indoor-positioning
system algorithm with matrix completion and anchor se-
lection. From the results, the proposed approach achieved
a localization error of 1.52m.

In fngerprinting algorithm, there are deterministic
approach such as the Kalman flter, NN, KNN, WKNN,
SVM, DT, PCA, and neural networks and the probabilistic
approach such as Gaussian distribution, particle flter,
Kernel method, hidden Markov model, and Naive Bayes
method. For example, using the fngerprinting algorithm
and Kalman flter, Giovanelli et al. [33] proposed a novel
indoor-positioning system with ToF and RSSI data fusion.
Te mean RMS error of data fusion is about 50% lower than
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when just RSSI data are used, 5.69m and 2.78m, re-
spectively. Te proposed system utilizes both ToF and RSSI
as the location-dependent characteristic. Te ToF mea-
surement might have large fuctuations because of the jitter,
the limited resolution of time intervals, or a combination of
both. Hence, it can be reduced with averaging [34–36].
Although, the impact of ToF on range measurements may
decrease with distance, though, the uncertainty of RSSI
measurements may grow with distance. Tus, the RSSI and
ToF data may complement each other.

Rizk et al. [37] presents an indoor-positioning system
with Wi-Fi RTT and RSSI. To solve the problem of signal
fuctuations, interference from fngerprinting, multipath
propagation errors, and NLOS transmissions, the proposed
system achieved a localization error of 0.51m and 0.59m,
respectively, for ofce and lab environments.

Singh et al. [38] presents an overview of machine
learning-based indoor-positioning system with Wi-Fi RSSI
fngerprints. Te survey provided an ML-based Wi-Fi RSSI
fngerprinting for indoor localization and a comparison of
their performance. Te performance of ML prediction
models such as DT, SVM, KNN, ANN, MLP, CNN, RNN,
and DQN has been compared based on classifcation ac-
curacy, positioning error, robustness, scalability, complexity,
localization space, and database used. Also, the author
evaluated that CNN [39] has high robustness, high scal-
ability, and low complexity. Ten, from the summarized
view of indoor localization schemes table, it can be con-
cluded that KNN could increase the robustness and decrease
the positioning error, while PCA could decrease the com-
plexity to reduce the computational time. Tey also sum-
marized the lists of available open-source datasets.

Chin et al. [40] proposed a MIMO-based indoor posi-
tioning with CSI data using the artifcial neural network.
Tey compare the performance of GCNN, CNN, and FCNN.
Te error distance that is below 0.2m is more than 90% for
the GCNN, error distance that is below 0.2m is 75% for the
proposed CNN, and error distance is all above 0.4m for
the FCNN.

3. System Model

3.1. Location Fingerprinting. Location fngerprinting is
a location inference technique that utilizes location-
dependent characteristics to infer where the estimated lo-
cation is [41]. A fngerprint, in this context, is a set of
characteristics or features that characterize a location. As it

utilizes Wi-Fi ToF for this research, a fngerprint is a set of
Wi-Fi ToFs. Te location fngerprinting technique consists
of two stages: (i) the ofine stage and (ii) the online stage.
Te features of various locations in the testbed are collected
to build a reference database or map in the ofine stage. Tis
database contains various fngerprints with their respective
location coordinates. In the online stage, the features of an
unknown location are collected to create its fngerprint. Te
fngerprint of the unknown location is then compared with
the fngerprints stored in the reference database to estimate
where the unknown location is. A high-level view of the
location fngerprinting technique is depicted in Figure 1.

3.2.Wi-FiToF. Measuring the ToF of aWi-Fi signal has been
made possible from the time the fne time measurement
(FTM) protocol was introduced in the IEEE 802.11-2016
standard. Te communication between a client device and
an AP under the FTM protocol is shown in Figure 2.

Te ToF between two devices is perceived as half of the
round-trip time (RTT).Tus, the ToF between a client device
and an AP (as illustrated in Figure 2) can be calculated as
follows:

TOF �
t4 − t1( 􏼁 − t3 − t2( 􏼁

2
, (1)

where t1, t2, t3, and t4 are timestamps recorded on the local
device denoting the time of arrival (ToA) or time of de-
parture (ToD) of the corresponding message.

Tis research uses a publicly available dataset (that can
be accessed at [28]) for our experiments.Te dataset consists
of records of Wi-Fi signals traveling from a transmitting
(Tx) device to a receiving (Rx) device. Te ToD and ToA of
the corresponding Wi-Fi signal are available in each record.
Te ToF of each record can be formulated as follows:

ψ � ToFTx,Rx
− e

� ToFRx
− ToDTx

,
(2)

Feature based on ToF for fngerprint, ToF from Tx to Rx,
ToA of the signal assessment Rx, ToD of the signal assess-
ment Tx, and the assessment error path indicates ψ,
ToFTx,Rx, ToFRx, ToDTx, and e, respectively. Note that the
value of e is not provided in the dataset. However, it con-
siders the value of e as part of the characteristics that are
willing to be captured since it represents the area condition.

Table 1: Te characteristics of IPS underlying technologies.

Parameters
Technologies

Bluetooth Wi-Fi Zigbee UWB RFID
Typical accuracy 2–5m [16] <5m [16] RSSI <50 cm [16] <2m [16]
Transmission range ∼30m [17] ∼50m [17] 10–100m [18] 10m [18] <100m1

Power consumption Very low [19] Moderate [19] Low [19] Ultralow [18] High [20]
Embedded in smart phones Yes Yes No Uncommon Uncommon
Deployment cost Moderate Low [17] Moderate High [19] Depends2
1Te transmission range of RFID is below 100m in free space [20]. 2Te deployment cost of an RFID-based IPS depends on the utilized positionning
algorithm [21].

Journal of Computer Networks and Communications 3



3.3. FCDNN as a Positioning Engine. Te role of an FCDNN
as the positioning engine, in this case, is to estimate the
position of the client device based on its location fngerprint.
In the input layer of the FCDNN, the number of neurons is
equal to the number of features in the dataset. Additionally,
the number of neurons in the output layer depends on the 2-
D or 3-D space coordinate. In our case, there are 6 available
features in the dataset and 10 APs in the area, and they use
the 3-D Cartesian coordinate system to represent the client
device location. However, we just used 5 features and
omitted the column that displays the AP index in order to
evaluate the simulated situations. Te structure of the
FCDNN for such a case is shown in Figure 3. On the other
hand, the number of hidden layers and their neurons is not
specifed initially (presented in another section).

3.4.Using theFCDNN. To use the FCDNN, it needs to feed it
with an input of a location fngerprint. In Figure 3, it is
shown in the input layer that each element of the input is
connected to a neuron. Terefore, for the input of
X � (x1, . . . ., xN) ∈ RN, the activation value of each neu-
ron in the input layer is as follows:

a
[1]
j � xj, (3)

where xj denotes the jth element of the input and a
[1]
j denotes

the activation value of the jth neuron in the input layer.
For the remaining layers, each neuron is connected to all

the neurons in the previous layer (see Figure 3). De-
termination of the neuron’s activation value in the hidden
and output layers is as follows:

a[1]
j � max 0, 􏽘

k,l�2,···,L

w
[l]
jk a

[l−1]
k + b

[l]
j

⎛⎝ ⎞⎠. (4)

Te activation value of jth neuron in ith layer, link’s
weight from a[1]

j to a
[l−1]
k , activation bias of jth neuron in ith

layer, and number of layers represents a[1]
j , w[l]

jk , b[l]
j , and L,

respectively. Notice that in equation (4), it implements the
rectifed linear units (ReLU) function in calculating the
activation value of the neurons.

Te output of the FCDNN is generated based on the
value of the neurons in the output layer. As shown in
Figure 3, each neuron in the output layer is connected to an
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…
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…

Figure 1: A high-level view of the location fngerprinting technique.
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input element. Terefore, the output of the FCDNN is
calculated as follows:

􏽢Y � 􏽢yi, . . . , 􏽢yn( 􏼁

� a
[L]
1 , · · · , a

[L]

n[L]􏼐 􏼑 ∈ R
n[L]

,
(5)

where 􏽢Y denotes the output, which is the estimated location
coordinates (or label), and n[L] denotes the number of
neurons in the output layer.

3.5. Optimizing the FCDNN. By changing the model’s pa-
rameters θ ∈ Rd, such as weights and biases, the FCDNN is
optimized. Tis process aims to make the model better at

doing its task. For that purpose, it uses gradient descent to
minimize the cost function J(θ) by updating each element of
θ in the opposite direction of the cost function gradient
∇θj(θ) w.r.t. the elements of θ [41].

Te model’s cost using the root mean square error
(RMSE), since it considers the issue as a regression problem
as follows:

J(θ) � J Y
(i)

, 􏽢Y
(i)

􏼒 􏼓

�

�����������������

1
m

􏽘

m

i�1
Y

(i)
− 􏽢Y

(i)
􏼒 􏼓

2
;

􏽶
􏽴

θ ∈ R
d
.

(6)

Sample count, weights and biases, true label of ith sample,
and estimated label of ith sample indicated by m, d, Y(i), and
􏽢Y

(i), respectively. Note that J(θ) and (Y(i), 􏽢Y
(i)

) are treated
equally as both depend on the model’s parameters.

To update the parameters using gradient descent, it
adopts the stochastic gradient descent (SGD) algorithm [41].
Additionally, minibatch SGD improves computing ef-
ciency. We use the estimate of moments of gradients to
hasten convergence and slow down the quick decay of
learning rates [42, 43]. First, calculate gt,i that is the gradient
of the cost function w.r.t. to the parameter θ(i) at the
timestep t as follows:

gt,i � ∇θt
J θt,i􏼐 􏼑. (7)

After obtaining gt,i, compute the value of mt and vt,
which are the exponential moving averages of the gradient
and the squared gradient, respectively.Te computations are
as follows:

Vt � βVt−1 +(1 − β)St, (8)

FTM request

FTM measurement

Acknowledgement (ACK)

FTM result (t1, t4)

ACK
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t2
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Client Device Wi-Fi AP

Figure 2: FTM protocol illustration.

Input Input
Layer

OutputOutput
Layer

Hidden Layers

x1
(i)

y1
(i)

y2
(i)

y3
(i)

a1
[1]

x2
(i) a2

[1]

x3
(i) a3

[1]

x4
(i) a4

[1]

x5
(i) a5

[1]

a1
[L]

a2
[L]

a3
[L]

a1
[2]

a2
[2]

a3
[2]

a4
[2]

a5
[2]

a[2]
n[2] a[L-1]

n[L-1]

a1
[L-1]

a2
[L-1]

a3
[L-1]

a4
[L-1]

a5
[L-1]

…
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where β is the hyperparameter that controls the exponential
decay rates of the corresponding moving averages and wt

and bt are the frst moment (the mean) and the second raw
moment (the uncentered variance) of the gradient estimates,
respectively.

Since the value of wt and bt is initialized as 0, weight-
correction and bias-correction to both mt and vt is per-
formed to counteract the moment estimates that are biased
towards zero at initial timesteps. Te value of bias-
correctedwt and bt is calculated as follows:

wt � wt−1 − η
zL

zwt−1
,

bt � bt−1 − η
zL

zbt−1
,

(9)

where wt and bt denotes the weight-corrected and bias-
corrected, respectively. Finally, it can update the model’s
parameters as follows:

w ≔ w − η∇Qi(w), (10)

where the parameter w that minimizes Q(w) is to be esti-
mated. Each summand function Qi is typically associated
with the ith observation in the dataset (used for training).Te
hyperparameter η, or the learning rate, controls the step size
for each iteration.

4. Experiment Settings

4.1. Te Testbed Map. Te dataset used in this research is
obtained from [28]. Te dataset consists of ToF measure-
ments at 4410 locations in the given area. Before creating the
fngerprints of each location, we check if all of the APs are
accessible at each of those 4410 locations. Te locations
where a pair of 1, 2, 3, andmore APs in the area can be heard.
Ten, we make 3 scenarios for those APs pair locations.
Where, 1 AP pair, 2–10 AP pairs, 1–10 AP pairs, or raw
dataset is simulated as shown in Table 2. Te ToF mea-
surement samples at 4410 diferent locations in the given
area. In our experiment, our goal is to estimate the client
device location based on the Wi-Fi ToFs between the client
device and the available APs in the area. Table 3 provides an
illustration of measurement data at a specifc place, where
for every client location (X, Y, Z), there are ψ or the ToF-
based feature between the Tx device or the user device and
Rx device or APs. Ten, these features are available from
distance (m) in the dataset. Some client location (X, Y, Z)
may have 1, 2, 3, 4, 5, or more available ToF-based feature
from nearby APs. For example, in Table 4, in the dataset
there are 4 available ToF-based features from 4 nearby APs
for client location (−0.74769843m, 7.46585460m, and
1.4m) and (−0.72188836m, 8.71135620m, and 1.4m).

4.2. Te Training, Validation, and Testing Dataset. From the
ToF measurement samples, it can create 4410 fngerprints,
and each of the fngerprints belongs to a location in the
testbed. Tose fngerprints are split into diferent sets for

training and testing purpose. 80% of them are used for
training, and the rest of 20% are used for testing. Tus, the
number of fngerprints in the training and testing dataset are
3528 and 882, respectively. In Table 4, for the scenario 1,
where 1 AP pair was fltered from the dataset with 1006
fngerprints. Tus, the number of fngerprints in the training
and testing dataset are 805 and 201, respectively. In addition,
the dataset containing 2689 fngerprints was fltered for
scenario 2, which included 2 AP pairs and above, up to 10 AP
pairs. Tus, the number of fngerprints in the training and
testing dataset are 2151 and 538, respectively. Additionally,
for scenario 3, where there were at least one AP pair and up
to ten AP pairs were fltered out of the dataset with 4410
fngerprints. Tus, the number of fngerprints in the training
and testing dataset are 3528 and 882, respectively. Notice
that rounding is applied. Ten, for these 3 scenarios, 2 al-
gorithms which are WKNN and the proposed FCDNN were
simulated to compare the performance to predicted user
positions.

4.3. Te Model’s Hyperparameters. Te value of each
hyperparameter of our model is detailed in Table 5.Tere are
options for batch size, epochs, hidden layer, neuron in the
hidden layer, and η.

Table 2: Simulation scenario.

AP distributions Algorithms
1 AP pair WKNN FCDNN
2–10 AP pairs WKNN FCDNN
1–10 AP pairs WKNN FCDNN

Table 3: An example of measurement data at a certain location.

Client locations
Distance (m) AP

X axis (m) Y axis (m) Z axis (m)
−0.74769843 7.46585460 1.4 19.9000 1
−0.74769843 7.46585460 1.4 7.0900 7
−0.74769843 7.46585460 1.4 30.1600 3
−0.74769843 7.46585460 1.4 5.7600 8
−0.72188836 8.71135620 1.4 5.5000 10
−0.72188836 8.71135620 1.4 37.9100 5
−0.72188836 8.71135620 1.4 52.6600 9
−0.72188836 8.71135620 1.4 53.0700 2

Table 4: Te fngerprints of point (−0.74769843, 7.46585460, and
1.4) and (−0.72188836, 8.71135620, and 1.4) based on the mea-
surement data in Table 3.

F(−0.74769843, 7.46585460, 1.4)
FAP1 FAP7 FAP3 FAP8
19.9000 7.0900 30.1600 5.7600

F(−0.72188836, 8.71135620, 1.4)
FAP10 FAP5 FAP9 FAP2
5.5000 37.9100 52.6600 53.0700
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Table 5: Te hyperparameter settings of our model.

Hyperparameters Values
Batch size 10
Number of epochs 1000
Hidden layer 6
Neuron in hidden layer 128, 64, 32, 16, 8, and 4
η 0.001
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Figure 4: WKNN predictions (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.

Journal of Computer Networks and Communications 7



5. Results

5.1.ExplorationofModel Structures. Te experiments started
by trainingWKNN and the proposed FCDNNmodels where
each model has a diferent combination of an AP pair that
fltered from the dataset. To obtain their accuracy, 3 sce-
narios were simulated to predict user locations (X, Y, Z).
Tus, in terms of number of AP pairs, these models are
tested for their accuracy. Note that there is a trade-of be-
tween accuracy and over-ftness; therefore, the right balance
between the two is aimed.Te positioning error is calculated
as the L-2 norm between the estimated and the ground-truth
position in Equation (11), where l(Y(i), 􏽢Y

(i)
) denotes the

positioning error of the ith example.

l Y
(i)

, 􏽢Y
(i)

􏼒 􏼓 � 􏽢Y
(i)

− Y(i)
�����

�����2
. (11)

5.2. Exploration of Model Structures. Weighted k-nearest
neighbor: in Figure 4, the positioning error of X, Y, and
Z in the WKNN algorithm are shown. It can be seen, if the
distribution of the true values is more condensed near the
predicted lines and also linear along the lines, the algorithm
can be considered more accurate. Additionally, because
every user’s z location is the same (1.4m), the WKNN

algorithm can identify this distribution of user z positions
and forecast that all user z positions will be at a single lo-
cation with a value of almost 1.4m. It may be inferred from
this that the WKNN was able to discriminate between the
user x, y, and z position distribution, where the user x and y
position have diverse distributions. Additionally, distinguish
between the user z locations and the fact that they all have
the same value under a single distribution. Figures 5 and 6
show WKNN loss for K� [1, 39]. It can be seen that,
0.9424m loss and 1.3635m RMSE are the lowest in scenario
3 with K� 3, where the dataset used has 1 and above, up to
the 10 AP pair distribution. For scenarios 1 and 2, the loss
and RMSE are lowest with K� 2. Furthermore, scenario 1
with K� 2 has the greatest 3.1136m loss and 2.4771m
RMSE. Tus, in order for WKNN to achieve lower loss and
RMSE, the AP pair distribution of 2 and even 1 are needed in
scenario 3.

5.3. Fully Connected Deep Neural Network. In Figure 7, the
positioning error of X, Y, and Z in the proposed FCDNN
algorithm are shown. It can be seen, if the distribution of
the true values is more condensed near the predicted lines
and also linear along the lines, the algorithm can be
considered more accurate. Moreover, because every user’s z
location is the same (1.4m), the FCDNN method predicts
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Figure 5: WKNN loss (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.
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that the user’s z position has a variety of points with values
ranging from 1.39m to 1.49m but is unable to discern the
user’s z position distribution. Terefore, it may be inferred
that with a single distribution, the FCDNN was unable to
discriminate across user z position distributions where the
user x and y position have diverse distributions and were
unable to distinguish between the user z places since they
all had the same value under one distribution. Figures 8 and
9 show the proposed FCDNN loss for 1000 epochs for both
training and testing. It can be seen that, 0.1749m loss and
0.5740m RMSE are the lowest in scenario 3, where the
dataset used has 1 and above, up to the 10 AP pair

distributions, and 0.6277m loss and 1.1231m RMSE are the
highest in scenario 1. Tus, in order for FCDNN to achieve
lower loss and RMSE, the AP pair distribution of 2 and even
1 are needed in scenario 3.

5.4. Performance Comparison of WKNN and FCDNN. In
Table 6, FCDNN has lower loss and RMSE than WKNN in
all 3 scenarios, and if there are ever more diverse APs ac-
cessible, the performance of both algorithms is more likely to
improve. Te WKNN has the lowest loss and RMSE with
0.9424m and 1.3635m, respectively in scenario 3 or 1–10 AP
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Figure 6: WKNN RMSE (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.
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Figure 7: FCDNN predictions (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.
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Figure 8: FCDNN loss (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.
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Figure 9: FCDNN RMSE (a) 1 AP pair, (b) 2–10 AP pairs, and (c) 1–10 AP pairs.

Table 6: Te error metrics (a) WKNN and (b) FCDNN.

Error metrics 1 AP pair (m) 2–10 AP pairs (m) 1–10 AP pairs (m)
(a) WKNN
Loss 3.1136 1.0968 0.9424
RMSE 2.4771 1.4810 1.3635
(b) FCDNN
Loss 0.6277 0.2142 0.1749
RMSE 1.1231 0.6532 0.5740
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pairs. Te FCDNN has the lowest loss and RMSE with
0.1749m and 0.5740m, respectively, in scenario 3 or 1–10
AP pairs or the raw dataset.

6. Conclusion

Te proposed IPS, DeepIndoor, which combines Wi-Fi ToF
and a deep learning approach, successfully achieves the goal
of this research, namely, enabling the realization of a high-
accuracy, cheap, and practical IPS.Te use of a deep learning
model, where it established FCDNN that was made for this
purpose, allows for the high accuracy. Te average posi-
tioning error of DeepIndoor is 0.1749m and RMSE of
0.5740m. Te realization of DeepIndoor is also cheap and
practical since it utilizes Wi-Fi as the underlying technology
where the availability of Wi-Fi in most smartphones and the
deployment of Wi-Fi networks in many indoor facilities
contribute to these advantages. Terefore, accuracy will
increase if there is a larger variety of the AP pair distribution
available in the dataset used for training and testing.

Data Availability
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study are available in the GitHub repository (https://github.
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