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Leaf blight spot disease, caused by bacteria and fungi, poses a considerable threat to commercial plants, manifesting as yellow to
brown color spots on the leaves and potentially leading to plant mortality and reduced agricultural productivity.Te susceptibility
of jasmine plants to this disease emphasizes the necessity for efective detection methods. In this study, we harness the power of
a deep convolutional generative adversarial network (DCGAN) to generate a dataset of jasmine plant leaf disease images.
Leveraging the capabilities of DCGAN, we curate a dataset comprising 10,000 images with two distinct classes specifcally
designed for segmentation applications. To evaluate the efectiveness of DCGAN-based generation, we propose and assess a novel
loss function. For accurate segmentation of the leaf disease, we utilize a UNet architecture with a custom backbone based on the
MobileNetV4 CNN. Te proposed segmentation model yields an average pixel accuracy of 0.91 and an mIoU (mean intersection
over union) of 0.95. Furthermore, we explore diferent UNet-based segmentation approaches and evaluate the performance of
various backbones to assess their efectiveness. By leveraging deep learning techniques, including DCGAN for dataset generation
and the UNet framework for precise segmentation, we signifcantly contribute to the development of efective methods for
detecting and segmenting leaf diseases in jasmine plants.

1. Introduction

In recent times, there has been a notable rise in the oc-
currence of plant diseases caused by microorganisms such as
bacteria, fungi, and viruses [1] in plants, animals, and
humans. Tese infections present a signifcant threat to
plants throughout diferent stages of agricultural pro-
duction, ultimately resulting in reduced plant yield [2, 3].
Te consequences of these diseases have far-reaching im-
plications for human dependence on agriculture, encom-
passing vital necessities such as food, shelter, and clothing.
Tis is especially notable in low-income countries [4, 5].
Jasmine plants, commonly cultivated in coastal regions of
Southeast Asia [6], are known to be vulnerable to a range of
leaf diseases, including Alternaria leaf blight spot [7]. Tis
disease exhibits initial signs characterized by yellow patches

with dark brown stains surrounded by yellow rings [8]. As
the disease progresses, the spots grow larger, spreading
across a signifcant portion of the leaves, eventually leading
to blight. Notably, concentric rings can be observed within
the lesions, and the disease also afects the stem, petiole, and
fowers [9]. Te fnal two stages are critical for disease de-
tection, with the transition from yellow to brown in leaves
referred to as the “brown stage.” Subsequently, the “fnal
stage” involves the maximum coverage of brown spots on
the leaf, leading to the plant’s fatality. Identifying these
crucial stages is essential, as timely action can be taken to
address the issue efectively [10]. Various datasets, including
cassava, tomato, cotton, and tobacco, have been utilized to
report several CNN-based approaches for detecting plant
leaf diseases [11–16]. Nevertheless, the research on jasmine
plant leaf spot disease detection remains limited.Te scarcity
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of suitable datasets poses a signifcant challenge in the de-
velopment of CNN-based detection algorithms capable of
detecting various stages of jasmine plant leaf spot disease. In
the past, several segmentation and morphological methods
have been reported for grapes and other leaves [17–19].
However, there is a need for a semantic segmentation
method specifcally designed to extract the leaf spot features
of jasmine plants.

Te contribution of this work is as follows:

(1) Tis study introduces a novel leaf image augmen-
tation strategy employing DCGAN, resulting in the
generation of an expanded dataset with 10,000
synthetic jasmine plant images. Diverging from
conventional methods, our approach exhibits su-
perior scalability and image quality. Comparative
analyses underscore the efectiveness of our
DCGAN-based augmentation, positioning it as an
advanced and impactful contribution in dataset
expansion techniques.

(2) Our proposed methodology for identifying the
“brown stage” and “fnal stage” of leaf spot disease in
jasmine leaves introduces an original approach using
UNet-based semantic segmentation, specifcally
ResUNet with a custom CNN backbone. Out-
performing traditional methods, our approach
achieves heightened accuracy and efciency. Com-
parative evaluations highlight its superiority in
disease stage recognition, marking it as a signifcant
advancement over current identifcation techniques.

(3) Tis research explores various semantic segmenta-
tion techniques and pretrained CNN backbones for
leaf spot identifcation. Te proposed model,
boasting an mIoU of 0.95, surpasses alternative
segmentation methods, providing a more precise
and reliable classifcation of disease stages. Com-
parative assessments underscore the efectiveness of
our model in capturing nuanced details, establishing
it as a leading solution in the feld of leaf spot
identifcation.

Section 2 discusses recent works proposed for leaf dis-
ease detection in the literature. Sections 3 and 4 introduce
the proposedmodel and present the experimentation results.
Finally, Section 5 provides the study’s conclusion.

2. Related Works

In recent years, remarkable progress has been achieved in
detecting diseases from leaf images.Tese approaches can be
broadly classifed into two main groups: traditional de-
tection methods and deep learning-based detection
methods. In addition, this section will delve into various
augmentation techniques employed to expand the dataset.

2.1. Traditional Detection Methods. A leaf stage recognition
system was developed by incorporating K-mean clustering
approaches [20] to focus on specifc areas that play a crucial
role in leaf disease detection. Geetha et al. [21] proposed four

preprocessing steps to reduce noise in the leaf image dataset.
Furthermore, Annabel et al. [22] utilized traditional de-
tection techniques, including the K-nearest neighbor (KNN)
algorithm, to classify plant leaves based on morphological
features such as color, intensity, and size. For color analysis,
Narmadha and Arulvadivu [23] reported the conversion of
primary leaf colors into LAB color space and employed
clustering algorithms. In the work of Gupta et al. [24], an
automated strategic removal of the background was per-
formed, and the desired diseased portion was extracted for
mildew disease detection from cherry leaves. In addition,
Kurmi and Gangwar [25] employed color transformation for
seed region identifcation in leaf analysis. Literature [26]
describes several methods used in precision agriculture.
However, achieving high classifcation accuracy in leaf spot
detection has proven to be a challenge for most machine-
learning approaches. In this context, various literature
studies have explored deep learning methods for leaf
morphology identifcation, which will be discussed in the
following subsection.

2.2. Deep Learning-Based Detection Methods. Te detection
of tomato plant disease through deep learning-based seg-
mentation has been previously explored in the works of
Shoaib et al. [27] and Agarwal et al. [14]. Another study by
Xie et al. [28] proposes a technique utilizing a fully con-
volutional neural network (FCN) for the segmentation of
maize leaf disease. Prior studies have presented deep neural
network-based classifcation models for plant diseases.
Hridoy et al. [29] employed a deep neural network approach
to identify betel leaf diseases. Kaur et al. [30] introduced
a semiautomatic CNN model for soybean leaf disease
classifcation. Haridasan et al. [31] developed a CNN-based
detection model for paddy leaf diseases. Furthermore,
Alsabai et al. [32] proposed a hybrid deep learning approach,
incorporating improved Salp swarm optimization, for the
multiclass detection of grape diseases. Shoaib et al. [33]
focused on addressing the challenge of accurately identifying
diseased spots amidst complex feld conditions.Tey trained
their proposed system using a dataset comprising crop leaf
images with both healthy and diseased sections. Te algo-
rithm’s performance was evaluated using metrics like ac-
curacy and intersectional union ratio (IoU) to segment
lesion regions from the images precisely. In a diferent
context, Lin et al. [34] propose a semantic segmentation
model that employs convolutional neural networks (CNNs)
to recognize and segment powdery mildew in individual
pixel-level images of cucumber leaf.Teir approach achieved
a joint intersection ratio score of 79.54% and a dice accuracy
of 81.5% based on 20 test images. Finally, Soliman et al. [35]
presented work that proposed employing deep learning
techniques to detect plant lesions by extracting hidden
patterns from plant leaf disease. Despite the availability of
plant disease datasets such as the PlantVillage dataset [36],
the AgriVision collection [37], and the Plant Disease
Identifcation dataset, implementing CNN-based detection
algorithms requires large datasets. Past research such as
Kumar et al. [38], Sladojevic et al. [39], and He et al. [40]
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examined the signifcant consequences of crop diseases on
food security and economic losses in India’s agriculture-
reliant rural regions. It underscored the requirement for
innovative computer vision methods to autonomously
identify and categorize these diseases, with studies showing
diverse approaches and notable successes, especially in deep
learning-based techniques. Te following subsection will
discuss various augmentation techniques used to increase
the plant disease dataset.

2.3. Various Augmentation Techniques. Rotate, fip, shift,
and scale techniques were employed to augment the leaf
dataset [41, 42]. In addition, a combination of rotation and
shift was explored to increase the dataset further [43]. By
utilizing GAN-based augmentation, the dataset’s enlarge-
ment resulted in a 20% increase in classifcation accuracy
[44]. Another study employing a detection framework saw
an improvement of 7.4% in classifcation accuracy [45]. Data
augmentation is of utmost importance in efciently en-
hancing the dataset for detection and classifcation ap-
proaches. A novel augmentation method will be detailed in
the next section.

3. Methodology

Tis research focuses on enhancing the detection of disease
spots on Jasmine leaves, particularly brown-stage and fnal-
stage spots that are challenging to identify accurately. To
overcome limited data, a GAN-based augmentation model is
employed to expand the leaf dataset used for segmentation.
Te study explores the efectiveness of UNet, WUNet,
U2Net, and ResUNet architectures in this context while also
investigating diferent segmentation backbones to optimize
the detection performance, as shown in Figure 1.

3.1. Dataset. In this study, Figure 2 presents image samples
depicting diferent stages of diseased leaves. Te dataset for
these images was collaboratively developed with experts
from Krishi Vigyan Kendra, Karnataka, India, who utilized
digital cameras to capture a total of 1000 images. Tese
images cover four stages of Alternaria leaf blight spot dis-
ease, including 450 images for the brown stage, as illustrated
in Figure 2(a), where the blight spot covers a quarter of the
leaf, and 550 images for the fnal stage, as depicted in
Figure 2(b), which covers a larger area of the leaf with blight
spots. To enhance the dataset, generative advisory network-
based augmentation techniques were employed. It is worth
mentioning that the early stage of leaf spot disease was not
considered in this study. Instead, the focus was on the later
stages of brown stage and fnal stage, which are crucial for
understanding disease progression. Further details regarding
the application of augmentation techniques can be found in
the subsequent section.

3.2.DataAugmentationUsingDCGAN. Ian Goodfellow and
his colleagues pioneered the creation of DCGAN (deep
convolutional generative adversarial network) in 2015 [46].

Te DCGAN’s conditional input allows the generator to
produce synthetic samples based on specifed conditions.
Convolutional neural networks (CNNs) are widely adopted
in GANs, particularly for image processing, delivering re-
markable results in various computer vision tasks. Te
generator takes a compressed representation of the training
image set, consisting of 1000 images, and generates new
images with a resolution of 256× 256 pixels in RGB format.
A 100-dimensional vector with random values between
0 and 1 augments the input image generation process. To
achieve the desired resolution for generated images, the
generator incorporates convolutional transpose layers, while
the discriminator relies on two convolutional layers with 256
neurons each and LeakyReLU activation. Te training
process utilizes the SGD optimizer and focuses on mini-
mizing the Ladv loss.Te aim is to prevent the discriminator
from accurately distinguishing fake images. During training,
the GAN model aims for a Frechet inception distance (FID)
score below 15 as a performance measure. Training involves
200 epochs with a batch size of 32, and the similarity between
generated and template images is evaluated using the
structural similarity index (SSIM) and signal-to-noise ratio
(SNR) metrics. Te overall methodology is illustrated in
Figure 3.

3.3. Proposed Segmentation Model for Jasmine Plant Leaf
DiseaseDetection. Segmentation of images is a crucial aspect
of computer vision, wherein an image is divided into dif-
ferent regions and assigned specifc class labels to create
a map that provides information about each pixel of the
image. A custom backbone based on MobileNetV4 is in-
tegrated into the UNet-based architectures to detect critical
types of leaf spot diseases in jasmine plants. Integrating
MobileNetV4 into various UNet frameworks, including
UNet, WUNet, U2Net, and ResUNet, involves utilizing it as
the encoder component. It replaces conventional convolu-
tional layers, seamlessly integrating its efcient multiscale
feature extraction capabilities. Tis reduces model param-
eters signifcantly compared to traditional architectures
while preserving the decoder’s precision, thereby reducing
computational load. Our choice of these semantic seg-
mentation models was driven by specifc strengths: UNet’s
efciency in preserving structural elements, U2Net’s light-
weight design for real-time segmentation without com-
promising precision, WUNet’s adaptability to resource
constraints, and ResUNet’s balance between accuracy and
efciency. We conducted experiments to determine the
optimal model for jasmine leaf disease detection. Mobile-
NetV4 is a big architecture. Its implementation at the en-
coder part is shown in Figure 4 and detail information is
provided in Table 1. Te proposed CNN network uses
a novel computation technique called depthwise separable
convolution, which bears similarities to traditional convo-
lution but involves a two-stage calculation process. Unlike
the conventional approach, where a single convolutional
calculation is performed per layer, depthwise separable
convolution divides the process into two phases. Te frst
stage encompasses a separate convolution operation with
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a 3× 3 kernel for each input channel, followed by batch
normalization and activation. Tis phase is referred to as
depthwise convolution. Te second stage involves further
processing the output channels from the depthwise con-
volution using a 1× 1 pointwise convolution. Tis pointwise
convolution is applied across all depthwise convolution
output channels. Overall, depthwise separable convolution
signifcantly enhances computational efciency by reducing
the computational load. Table 1 presents a comprehensive
description, providing details about convolution layers 1 and
2. For clarity, in this study, we denote the depthwise

convolution layer as “conv_dw” and the pointwise convo-
lution layer as “conv_pw.”Tis process is repeated for layers
3 to 6, and the fnal convolutional layer is identifed as “layer
7.” Notably, Table 1 showcases the parameter reduction at
each sequential layer, highlighting the achieved computa-
tional efciency.

UNet is an encoder-decoder model comprising two
distinct networks, namely, the contraction network and the
expansion network. Te contraction network, referred to as
the encoder, is responsible for extracting pertinent features
from the leaf image [47]. On the other hand, the expansion

(a) (b)

Figure 2: Jasmine plant leaf spot disease dataset.
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Figure 1: Overall methodology for jasmine leaf disease segmentation.
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network, known as the decoder, reconstructs the segmen-
tation map using the encoded features obtained from the
encoder [48]. Te earlier proposed UNet model is designed
with four blocks to extract spatial features from the image.
Each block consists of two convolution layers with ReLU
activation and a max-pooling layer, downsampling the input
by a factor of 2 [49]. Te proposed UNet model extends
beyond the four blocks and includes additional convolution
layers activated by the leaky ReLU activation function. Tese
enhancements, along with the custom backbone, contribute to
capturing low-level features essential for the leaf spot disease
model. Te overall network architecture is shown in Figure 5.

3.3.1. Comparison of Diferent UNet-Based Segmentation
Approaches. In this research, we investigate and compare
several UNet-based segmentation architectures, each of-
fering distinctive design characteristics and advantages for
leaf spot detection tasks. Te UNet architecture features
a symmetric encoder-decoder design, skillfully utilizing skip
connections to concatenate feature maps from the encoder
with corresponding decoder layers.Tis approach efectively
preserves high-resolution information during the decoding
process. WUNet, an extension of UNet, is commonly re-
ferred to as wide UNet [50]. It enhances the architecture by
widening the convolutional layers with an increased number
of channels. Tis design choice signifcantly improves the
model’s capture of contextual information, potentially
leading to enhanced segmentation performance. U2Net,

a recent and specialized architecture, is purposefully tailored
for salient object detection. Inspired by UNet, U2Net in-
corporates several improvements, including additional
branches and attention mechanisms. Tese attention
modules are crucial in highlighting salient features, ren-
dering U2Net highly suitable for tasks requiring precise
boundary detection. On the other hand, ResUNet, also
known as residual UNet, is a variant of UNet that integrates
residual connections derived from the ResNet architecture.
By leveraging these residual connections, the model ef-
ciently facilitates gradient fow during training, enabling the
efective training of deeper architectures. Tis capability
makes ResUNet [51] particularly well-suited for handling
more complex segmentation tasks. Trough a comprehen-
sive evaluation and comparison of these U-Net-based
models, we aim to gain valuable insights into their indi-
vidual performance, strengths, and suitability for a diverse
range of semantic segmentation challenges.

3.3.2. Assessing the Diferent Backbone Architectures for
Segmentation Models. To assess the semantic functionality,
all the models are trained with various pretrained networks,
such as ResNet, EfcientNet, VGG16, and VGG19, as
backbones. In addition, a custom backbone is utilized for the
evaluation. Te backbone models are employed in the en-
coder part of the various semantic segmentation models
such as UNet, WUNet, U2Net, and ResUNet. Initially,
a semantic segmentation model with baseline backbones is
assessed. Subsequently, one-by-one, pretrained models and
custom backbone CNN networks were used to assess the
model. For this study, UNet with skip connection is
employed as the segmentation model.

3.3.3. Steps Used for Leaf Spot Disease Detection Using the
Custom Backbone UNet Framework

(1) Prepare the leaf dataset using DCGAN augmentation
(2) Train the chosen segmentation model with input

images and corresponding masks, considering per-
formance metrics like mIoU, Dice, and pixel accu-
racy calculated using equations (1)–(4)

(3) Train and fne-tune the segmentation model
parameters.

(4) Iteratively train the model until achieving a satis-
factory training and validation accuracy curve,
otherwise, repeat Step 3

(5) Deploy the model for testing on a real image test set
(6) Output the segmentation results to identify the

brown stage and fnal stage of the leaf

Te overall fowchart of the leaf spot disease detection is
illustrated in Figure 4.

3.4. Training Details. Te segmentation task involves using
an augmentation model to generate a total of 5000 images
for each type. During the training process, the loss function
Ladv of the DCGAN is fne-tuned.Te GANmodel is trained

Table 1: Overview of the network framework, featuring Mobile-
NetV4 large as the backbone architecture.

Name Layer Feature
maps Parameter

Input_1 InputLayer 3 0
conv1 Conv2D 32 864
conv1_bn BatchNormalization 32 128
conv1_relu ReLU 32 0
conv_dw_1 DepthwiseConv2D 32 288
conv_dw_1_bn BatchNormalization 32 128
conv_dw_1_relu ReLU 32 0
conv_pw_1 Conv2D 64 2048
conv_pw_1_bn BatchNormalization 64 256
conv_pw_1_relu ReLU 64 0
conv_pad_2 ZeroPadding2D 64 0
conv_dw_2_bn BatchNormalization 64 256
conv_dw_2_relu ReLU 64 0
conv_pw_2 Conv2D 128 8192
conv_pw_2_bn BatchNormalization 128 512
conv_pw_2_relu (ReLU) 128 0
conv_dw_3 DepthwiseConv2D 128 1152
conv_dw_3_bn BatchNormalization 128 512
conv_dw_3_relu ReLU 128 0
conv_pw_7 Conv2D 128 11384
conv_pw_7_bn BatchNormalization 128 512
conv_dw_7 DepthwiseConv2D 1024 9216
conv_dw_7_bn BatchNormalization 1024 4096
conv_dw_7_relu ReLU 1024 0
conv_pw_7 Conv2D 1024 18576
sequential_1 Sequential 128 19728
dense_1 Dense 5 645
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for 100 epochs, with 5000 iterations in total. To initiate the
process, the initial value of the loss function’s λ is set at 0.1
[52]. As iterative training progresses, the lambda value is
updated to 0.01. Following the iterative training process,
these augmented images, along with their corresponding
masks, are passed to the segmentation block. Te study
employs various models, including UNet, WUNet, U2Net,
and ResUNet, all utilizing a 3× 3 kernel. Each model un-
dergoes 300 training epochs.

3.5. Hyperparameter Tuning of Segmentation Models. Te
UNet, WUNet, U2Net, and ResUNet models were trained
using various backbones, each with a batch size of 32, over 300
epochs. Here, the batch size determines how many samples
are processed before updating the model’s parameters, while
epochs represent the number of complete passes over the
training data.Te learning rate, a critical hyperparameter, was
set to 0.0001 to balance learning speed and convergence. Te
Adam optimization method was used for model compilation,
activating all convolutional layers with the ReLU activation
function using a 3× 3 kernel. An early-stop mechanism based
on validation performance was implemented during training
to prevent overftting. In our proposed segmentation model
with a custom backbone, the Adam optimizer was utilized
with a learning rate of 0.001 and a batch size of 32. Te model
underwent training for 100 epochs with the ReLU activation
function, following an iterative process to determine the
optimal parameter settings.

3.6.EvaluationMetrics. To assess the efcacy of the DCGAN
augmentation method, we analyze the similarity between the
synthesized images and the template images. Tis evaluation

utilizes well-established similarity metrics, including the
peak signal-to-noise ratio (PSNR) and the structural simi-
larity index (SSIM) [53]. Tese metrics ofer valuable in-
sights into the degree of resemblance between the generated
images and the target images, enabling a thorough evalu-
ation of DCGAN augmentation model performance. Te
segmentation tasks are evaluated based on the calculated
metrics, which are determined by the following equations:

pixel accuracy �
TP + TN

TP + TN + FP + FN
, (1)

IoU �
TP

TP + FP + FN
, (2)

mIoU �
1

Nclass


Nclass

i�1

TP(i)

TP(i) + FP(i) + FN(i)
, (3)

Dice �
2TP

2TP + FP + FN
. (4)

 . Result and Discussion

Te FID score serves as a widely adopted metric for assessing
the fdelity of generated images in relation to real images
from a given dataset. In this context, the objective is to train
the DCGAN in a manner that ensures the FID score remains
stable and lies within the specifed range of 13 to 15, as
depicted in Figure 6. Sustaining the FID score within this
designated range signifes that the generated images closely
mirror the characteristics of the real images in the dataset,
showcasing a notable level of visual quality and diversity.

Custom MobileNetV4 Network at the encoder block

Figure 5: Proposed UNet segmentation model with a custom backbone.
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Figure 7: Sample images obtained using DCGAN image augmentation on brown-stage images.

Figure 8: Sample images obtained using DCGAN image augmentation on fnal-stage images.
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Tis consistency in the FID score refects the success of the
training process in achieving realistic and diverse image
generation.

In this study, we shared the outcomes of our assessment
of image generation models. Te images generated during

the brown stage garnered an SSIM score of 0.84 ± 0.02 and
a PSNR score of 23 ± 1.7. In contrast, images produced
during the fnal stage achieved an SSIM score of 0.90 ± 0.172
and a PSNR score of 25 ± 2.4. Te SSIM score serves as an
indicator of the structural similarity between the generated

Input Image

Mask

UNet

U2Net

WUNet

ResUNet

Figure 9: Segmentation results with the diferent semantic segmentations with the proposed custom backbone.
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images and real images, while the PSNR score refects the
level of fdelity and noise present in the generated images.
Higher SSIM scores suggest a closer resemblance to real
images, whereas higher PSNR scores indicate enhanced
image quality. Upon comparing both sets of generated
images, it was observed that fnal-stage images attained
superior scores in both SSIM and PSNRmetrics.Tis implies
that they exhibit better similarity and higher quality when
compared to real images. Tese fndings ofer valuable in-
sights into the performance of our image generation models
and underscore the superior capabilities of the fnal stage in
producing high-quality images. Figure 7 visually presents
brown-stage-generated images obtained using DCGAN,
showcasing the visual aspects of our research outcomes.

In Figure 8, the fnal-stage-generated images produced
by DCGAN are displayed. Te analysis reveals that the
brown-stage-generated images outperform the fnal-stage
images both qualitatively and quantitatively.

Figure 9 shows the segmentation results of four models:
UNet, WUNet, U2Net, and ResNet, each equipped with
a custom backbone.Te comparison indicates that the UNet
model with the custom backbone outperforms the WUNet,
U2Net, and ResUNet models with the same custom back-
bone regarding segmentation performance.

In Figure 9, we present the training accuracy of several
segmentation models, each integrating unique pretrained

CNN networks in conjunction with our novel custom
backbone. Notably, the UNet segmentation with the custom
backbone emerges as particularly efective for detecting leaf
spot diseases. Te training accuracies depicted in
Figures 10(b) and 10(c) display variations throughout the
epochs. Concurrently, Figure 10(a) illustrates the perfor-
mance of ResUNet, which exhibits similar fuctuations.
However, a comparative analysis in Figure 10(d), representing
the proposedUNet with the custom backbone, reveals that the
latter demonstrates superior performance. Tis suggests that
our innovative custom backbone enhances the UNet seg-
mentation model’s efcacy in comparison to other confgu-
rations, underscoring its potential for accurate and robust leaf
spot disease detection. Further details and insights into these
results will be discussed in the subsequent sections.

In Table 2, performance metrics, namely, mean of IOU
referred as mIoU and Dice coefcient referred as Dice, are
shown for the two-stage leaf disease classifcation employing
various backbone CNN networks. Te results demonstrate
that the proposed custom backbone combined with the
UNet semantic segmentation yields superior outcomes. Tis
innovative framework successfully extracts the low-level
features for leaf spot disease detection, enhancing the ac-
curacy of the classifcation process.

Table 3 presents the outcomes of the evaluation con-
ducted to determine the most suitable backbone for the
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Figure 10: Training accuracy of the segmentation models (a) ResUNet, (b) WUNet, (c) U2Net, and (d) UNet with various backbones.
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ResUNet model, focusing on the overall segmentation
process and considering various performance metrics. In
this analysis, ResUNet exhibited robust performance,
achieving an impressive mIoU of 0.91, a Dice coefcient of
0.96, and a pixel accuracy of 0.95. Tese metrics collectively
gauge the model’s efcacy in accurately segmenting images.
Moving on to the evaluation of ResUNet with MobileNetV4
as its backbone, as illustrated in Table 4, the segmentation
model demonstrated exceptional performance. Mobile-
NetV4 outperformed other backbones, securing the highest
scores across all evaluated metrics: an mIoU of 0.91, a Dice
coefcient of 0.96, and a pixel accuracy of 0.95. Tese results
underscore the notable enhancement in segmentation ca-
pabilities achieved by coupling ResUNet with MobileNetV4.
Contrastingly, when EfcientNet served as the backbone,
there was a slight decline in performance, refected in an
mIoU of 0.82, a Dice coefcient of 0.72, and a pixel accuracy
of 0.73. Similarly, ResNet, as a backbone, exhibited the
lowest performance among the confgurations assessed, with
an mIoU of 0.72, a Dice coefcient of 0.69, and a pixel
accuracy of 0.71. Tese nuanced fndings underscore the
importance of carefully selecting a compatible backbone for
the ResUNet segmentation model. MobileNetV4 emerges as
the optimal choice, demonstrating superior segmentation
accuracy across multiple performance metrics. Tis detailed
analysis provides comprehensive insights into the

comparative performance of diferent backbones, facilitating
informed decisions about model architecture.

Figure 11 ofers a visual depiction of pixel accuracy
metrics derived from the comprehensive evaluation of four
distinct models: UNet, WUNet, U2Net, and ResUNet. It is
noteworthy that each of these models is confgured with its
unique backbone architecture. Notably, our proposed UNet
for semantic segmentation stands out for its remarkable
performance, a feat amplifed by the integration of a custom
backbone. In the specifc case of the custom backbone
working in tandemwith ResUNet, the results are particularly
impressive, achieving the highest pixel accuracy recorded at
an exceptional 0.98. Tis underscores the efectiveness of the
custom backbone in enhancing the segmentation capabil-
ities of ResUNet. To delve deeper into the comparative
analysis of pixel accuracy metrics among these models, UNet
demonstrated a pixel accuracy of 0.90, WUNet recorded
a pixel accuracy of 0.85, and U2Net yielded a pixel accuracy
of 0.87. Tese individual outcomes emphasize the superior
performance of our proposed ResUNet with a custom
backbone, especially when contrasted with other segmen-
tation models explored in this study that employed diverse
backbone confgurations. Tis detailed examination of pixel
accuracy metrics not only highlights the exemplary per-
formance of the proposed ResUNet but also provides
valuable insights into the relative strengths of each model.

Table 2: Performance metrics for various segmentation models with various backbones.

Backbones Stage
mIoU Dice

UNet WUNet U2Net ResUNet UNet WUNet U2Net ResUNet

ResNet Brown stage 0.68 0.61 0.62 0.72 0.73 0.71 0.68 0.69
Final stage 0.78 0.72 0.72 0.73 0.65 0.68 0.71 0.70

EfcientNet Brown stage 0.86 0.72 0.88 0.82 0.77 0.75 0.72 0.71
Final stage 0.81 0.68 0.62 0.82 0.78 0.76 0.78 0.74

VGG16 Brown stage 0.83 0.84 0.85 0.79 0.75 0.76 0.77 0.74
Final stage 0.85 0.81 0.80 0.82 0.84 0.77 0.79 0.78

VGG19 Brown stage 0.85 0.82 0.87 0.78 0.72 0.76 0.77 0.78
Final stage 0.86 0.81 0.85 0.75 0.79 0.75 0.76 0.79

Custombackbone Brown stage 0.  0. 6 0. 4 0.92 0. 5 0. 7 0. 5 0.95
Final stage 0. 5 0. 5 0. 7 0.91 0. 4 0. 5 0. 9 0.96

Bold values represent the best performance model.

Table 3: Selection of ResUNet for custom backbone MobileNetV4.

Segmentation models mIoU Dice Pixel accuracy
UNet 0.88 0.85 0.82
WUNet 0.86 0.87 0.85
U2Net 0.87 0.85 0.88
ResUNet 0.91 0.96 0.95

Table 4: Selection of MobileNetV4 as custom backbone for the ResUNet segmentation model.

Backbone mIoU Dice Pixel accuracy
ResNet 0.72 0.69 0.71
EfcientNet 0.82 0.72 0.73
VGG16 0.79 0.78 0.77
VGG19 0.78 0.77 0.71
MobileNetV4 0.91 0.96 0.95
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Comparison of pixel accuracy for segmentation
Models with Different CNN backbones

WUNetUNet U2Net ResUNet

1

0.75
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Figure 11: Pixel accuracy metrics of four diferent models UNet, WUNet, U2Net, and ResUNet, each utilizing distinct backbones.
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Figure 12: Confusion matrix of models UNet, WUNet, U2Net, and ResUNet, each utilizing distinct backbones for the prediction of brown
and fnal stages of leaf disease.
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Te integration of a custom backbone, particularly in
conjunction with ResUNet, emerges as a pivotal factor in
achieving outstanding pixel accuracy.

Figure 12 provides a detailed view of the confusion
matrix associated with four distinct models: UNet, WUNet,
U2Net, and ResUNet. Each of these models utilizes diverse
backbones to predict both the brown and fnal stages of leaf
disease. A standout observation is the remarkable perfor-
mance achieved by our proposed backbone in conjunction
with ResUNet, resulting in an impressive prediction accu-
racy of 95%.

Tis outstanding accuracy underscores the efcacy of
our proposed backbone when integrated with ResUNet,
showcasing its capability to accurately predict both brown
and fnal stages of leaf disease. Te synergy between the
custom backbone and ResUNet evidently contributes to
superior predictive outcomes.

In conclusion, the results presented in Figure 12 afrm
the excellence of our proposed approach. 95% prediction
accuracy demonstrates the practical success of our model in
efectively handling the complexity of leaf disease prediction.
Tis achievement not only highlights the advancements
made in the feld but also serves as a testament to the po-
tential impact of innovative backbone confgurations in
enhancing the overall performance of segmentation models.
Te combination of a well-designed backbone with ResUNet
stands out as a key factor in achieving this commendable
accuracy.

5. Conclusion

In conclusion, this paper introduces a groundbreaking
segmentation approach for efectively detecting leaf spot
disease. Te study employs various baseline models (UNet,
WUNet, U2Net, and ResUNet), each integrated with distinct
pretrained CNN network backbones in the encoder path,
leading to signifcant improvements in segmentation ef-
ciency. One of the key contributions of this research is the
proposal of a custom backbone specifcally tailored for UNet
segmentation, which demonstrated exceptional accuracy in
precisely delineating spots associated with both brown-stage
and fnal-stage leaf spot diseases. In addition, the study
explores the efcacy of DCGAN-based augmentation, a se-
mantic and efcient process that successfully generates
10,000 images (5,000 images for each type). Tis augmen-
tation technique signifcantly enriches the dataset, resulting
in notable performance enhancements for the segmentation
models. Specifcally, our proposed DCGAN augmentation
achieved an impressive SSIM score of 0.90 ± 0.172 and
a PSNR score of 25 ± 2.4. Te proposed approach exhibits
remarkable potential in advancing leaf spot disease detection
and has practical implications for agricultural research and
applications. Te study’s promising results underscore the
importance of employing efcient segmentation techniques
and augmentations to elevate the accuracy and reliability of
disease classifcation processes. Furthermore, the integration
of the custom backbone has proven to be particularly
benefcial, enabling the detection model to capture low-level
features of brown spots of varying sizes with an impressive

mIoU of 0.95. Tis customized backbone can be imple-
mented in lightweight networks suitable for mobile-based
applications. Despite the heightened computational com-
plexity and extended training time associated with the larger
and more diverse dataset, our deployed segmentation model
exhibited improved efciency. Initially, segmentation results
were suboptimal, with mIoU and Dice scores falling below
the 0.5 range. However, substantial enhancements were
observed post-augmentation, with reported mIoU reaching
0.91 and Dice reaching 0.96, underscoring the efectiveness
of DCGAN augmentation in refning segmentation accuracy
and consistency. In addition, our proposed segmentation
model efectively handled the larger and more complex
dataset, achieving a pixel accuracy of 0.96 and achieving
efcient segmentation. It is worth noting that the aug-
mentation process was introduced to address data-related
efciency challenges, yet our segmentation model proved
capable of managing these complexities adeptly. Overall, the
fndings of this research open up new avenues for more
efective leaf spot disease detection, ofering valuable insights
into the application of efcient segmentation methods and
augmentations in the feld of agriculture. With continued
development and implementation, the proposed approach
has the potential to make a signifcant impact on crop disease
management and contribute to the advancement of agri-
cultural practices.
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