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Data ofoading is considered as a potential candidate for alleviating congestion on wireless networks and for improving user
experience. However, due to the stochastic nature of the wireless networks, it is important to take optimal actions under diferent
conditions such that the user experience is enhanced and congestion on heavy-loaded radio access technologies (RATs) is reduced
by ofoading data through lower loaded RATs. Since artifcial intelligence (AI)-based techniques can learn optimal actions and
adapt to diferent conditions, in this work, we develop an AI-enabled Q-agent formaking data ofoading decisions in amulti-RAT
wireless network. We employ a model-free Q-learning algorithm for training of the Q-agent. We use stochastic geometry as a tool
for estimating the average data rate ofered by the network in a given region by considering the efect of interference. We use the
Markov process for modeling users’ mobility, that is, estimating the probability that a user is currently located in a region given its
previous location. Te user equipment (UE) plays the role of a Q-agent responsible for taking sequence of actions such that the
long-term discounted cost for using network service is minimized. Q-agent performance has been evaluated and compared with
the existing data ofoading policies. Te results suggest that the existing policies ofer the best performance under specifc
situations. However, the Q-agent has learned to take near-optimal actions under diferent conditions. Tus, the Q-agent ofers
performance which is close to the best under diferent conditions.

1. Introduction

Te remarkable surge in mobile data usage resulting from
technological advancements in various domains like In-
ternet-of-Tings, online gaming, social networks, aug-
mented/virtual reality, and more has signifcantly amplifed
the burden on wireless networks and introduced a wide
variety of applications with varying characteristics. In order
to meet such intensive and highly heterogeneous demands,
the 5th generation (5G) wireless networks are expected to be
ultradense, autonomous, or intelligent, operate on multiple
higher frequency bands, and with multiple radio access
technologies (multi-RATs). Te deployment of ultradense

networks increases the spatial reuse factor of the resources.
Te use of multiple RATs and multiple bands enables ef-
fective use of spectral bands and resources of the wireless
network. Moreover, it also helps in alleviating congestion on
cellular RAT by ofoading data to underloaded RATs like
wireless fdelity (Wi-Fi) [1].Te concept of ofoading across
multiple RATs extends beyond data transfer; it has also been
harnessed for the sharing of computational [2] and power
resources [3].

Te 5G networks are expected to be intelligent to meet
the quality-of-service (QoS) requirements imposed by the
users with heterogeneous demands. Tat is why, artifcial
intelligence (AI) has an important role to play in the
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development of intelligent and autonomous algorithms for
5G networks. Te efcient allocation and utilization of re-
sources among users with diferent demands in a 5G multi-
RATwireless network is a challenging problem.Te network
densifcation further complicates this problem by in-
troducing interference and coverage issues, often mani-
festing in terms of degraded network performance and user
experience. Terefore, it becomes challenging to satisfy the
QoS requirements imposed by the user. Various algorithms
have been presented in the literature, as discussed in Section
2, for alleviating congestion on wireless networks and for
efcient utilization of the resources by employing the
concept of data ofoading and AI techniques. However,
some of these have been developed without taking into
account the efect of interference caused due to the de-
ployment of ultradense wireless networks [1], and others
have been developed without using AI techniques.

Terefore, the main objective of this work is to develop
an AI-enabled Q-agent for making data ofoading decisions
in a multi-RAT wireless network by taking into account the
efect of interference caused by an ultradense network and by
making use of a model-free reinforcement learning (RL)
technique. Here, the term “model-free” means that an ac-
curate or approximate mathematical representation of the
system under consideration is not required; thus, the AI
agent can learn through trial-and-error approach. A high-
level diagram of the proposed work is shown in Figure 1. A
multi-RAT wireless network scenario has been assumed
which includes a cellular and a Wi-Fi RAT. Te coverage
provided by both the RATs has been divided into diferent
zones based on the signal-to-interference (SIR) experienced
by the user in a given region. Initially, the user is under
coverage of cellular RATonly, and it has generated a request
for downloading of a fle. We use the Q-learning algorithm
which is a model-free RL algorithm for training of the agent;
that is why, we have named it as a Q-agent. It is responsible
for taking a sequence of actions by observing states such that
the long-term discounted cost of using a network service is
minimized.

We formulate the problem of data ofoading by as-
suming that the user equipment (UE) plays the role of the Q-
agent as depicted in Figure 1. Te users’ request for
downloading a fle of certain size in a given duration and at
a given location is used for defning states. Te Q-agent can
take three actions, that is, download data through cellular
RAT, ofoad data through Wi-Fi RAT, and remain idle. We
defne a cost function for using network services which is
a function of the actions taken by the Q-agent. We also
defne a penalty function for missing the defned delay limit.
Te task of the Q-learning algorithm is to minimize this cost
function by learning an optimal data ofoading policy that
takes best action in a given state. We have evaluated the
performance of the developed Q-agent for making data
ofoading decisions and also compared the results with
existing model-based analytical ofoading approach [4] and
some other standard data ofoading policies. In the end, we
have also discussed about the issues and challenges imposed
by the Q-learning algorithm and how we can tackle these for
developing efcient agents that ofer near to optimal

performance. Advanced AI techniques based on deep
learning such as the deep Q-network (DQN) or double DQN
can also be adopted for tackling the issues imposed by the
Q-learning algorithm. However, the data ofoading problem
considered in this work is user-centric. Terefore, its state
and action space is small, and a simple algorithm such as Q-
learning, with slight modifcations, ofers satisfactory per-
formance. Moreover, according to the authors in [5], ad-
vanced AI techniques are not yet been considered for
deployment in wireless networks because of the resource-
constrained nature of these networks.

Te rest of the paper has been organized as follows. Te
details of the related are covered in Section 2. Te problem
formulation and the assumptions are discussed in Section 3.
Te development of AI-enabled Q-agent is discussed in
Section 4. Performance evaluation of the developed Q-agent
and comparison with existing data ofoading policies is in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we provide details of the studies presented in
the existing literature and are related to this work in one or
another way. A concise summary of these studies and our
work is presented in Table 1.

A dynamic ofoading algorithm has been presented in
[11] for UEs by assuming a multi-RATwireless network. An
autonomous resource allocation policy has also been de-
veloped for multiaccess edge servers. Te authors used
a penalty-based genetic algorithm for learning ofoading
decisions and deep Q-neural network (DQN) for efcient
allocation of resources by the edge servers. Te authors
assumed multiple RATs which include cellular and Wi-Fi
RATs by defning diferent frequency bands. However, they
did not take into account the efect of the channel-accessing
scheme employed by Wi-Fi RAT which is diferent from
cellular RAT. Moreover, the authors also did not consider
the efect of interference due to ultradense deployment of
base stations (BSs) while modeling the data rate experienced
by a user. In another paper [8], a near to optimal policy for
users’ association in a heterogeneous wireless network has
been obtained by employing DQN. Instead of assuming
a multi-RATwireless network scenario, they assumed a dual
connectivity scenario wherein a user can associate with the
BSs of diferent tiers under the same network, that is, macro-
and micro-BSs. Te authors selected DQN over SARSA or
Q-learning algorithms because they were optimizing a net-
work-centric user association policy which had large state
and action spaces. Since in this work we propose a user-
centric data ofoading approach wherein each UE is re-
sponsible to minimize the cost of using a network service by
making automated optimal data ofoading decisions, the
state and action spaces are small. Tat is why, we selected the
Q-learning algorithm instead of DQN.

A multiagent RL-based algorithm for RAT access in
a multi-RATwireless network has been proposed in [9]. Te
authors assumed one cellular and one Wi-Fi RAToperating
in diferent bands and with diferent channel accessing
techniques. According to the authors, their proposed
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approach for RAT access ofers better performance com-
pared to the traditional data ofoading schemes. However,
the system model assumed by the authors did not in-
corporate the efect of dense deployment of the access points
(APs) and the resulting interference, which highly impacts
the data rate experienced by the users. Te authors in [12]
presented an incentive-based contract-theoretic approach to
motivate the third-party operators, like Wi-Fi operators, to
share their resources during peak time to overloaded cellular
RAT. However, the main focus of this work was to propose
optimal contracts to third-party operators such that they
agree to accept the ofoaded requests while the proft of the
mobile network operators is maximized.

A delay aware ofoading and network selection opti-
mization algorithm has been proposed in [6] by assuming
that unlimited cellular RATcoverage and limitedWi-Fi RAT
coverage are available for the users. For solving the opti-
mization problem, the authors used the backward induction
algorithm which is computationally expensive. In another
study [7], the authors proposed a data ofoading approach
by dividing the network coverage into various zones where
each zone ofers a diferent data rate to a user. Tey con-
sidered signal-to-noise ratio (SNR) for estimating the data
rate ofered to a user in a zone. However, for highly dense
and heterogeneous wireless networks, SIR is considered as
a better metric for estimating the coverage and data rate
experienced by a user [13]. To better capture the coverage
and data rate ofered by Wi-Fi RAT, while estimating the
data ofoading gains, the authors in [10] employed sto-
chastic geometry (SG) modeling techniques. However, this
work is limited to estimation of data ofoading gains that
can be provided by a Wi-Fi RAT.

Te authors in [4] proposed an automated data of-
loading framework by assuming a multi-RAT wireless
network scenario and developed a model-based data of-
loading policy. Unlike [7], they divided the coverage pro-
vided by each RAT into diferent zones by using SIR and SG
modeling techniques. Tey adopted a model-based RL

approach for obtaining an optimal data ofoading policy. A
model-based RL algorithm requires a transition matrix
which depicts the complete stochastic nature of the assumed
environment. Te authors in [4] utilized SG and Markov
decision process (MDP) for modeling stochastic nature of
the assumed wireless network and for obtaining the cor-
responding transition matrix so that it can be used by the
model-based RL algorithm. However, due to various ran-
dom factors in spatial and temporal domains of a wireless
network, the trafc characteristics, load, and various other
parameters are prone to change. Tus, at any point in time,
the practical scenario may deviate widely from the transition
matrix derived for a specifc scenario. Tis problem initiates
the need for the design ofmodel-free data ofoading policies
which can learn the network or user behavior in real time
and accordingly take the optimal actions. Nevertheless, such
approaches pose various challenges and issues when it comes
to their convergence and implementation in practical sce-
narios due to their trial-and-error-based learning approach.

3. Network Model and Problem Formulation

In this section, we provide details about the wireless network
scenario assumed in this work. Moreover, we also formulate
the data ofoading problem by defning theMarkov decision
process (MDP) which includes details regarding Q-agent
and its environment, that is, the set of states, the set of
actions, cost, and penalty functions.

3.1. Multi-RAT Wireless Network Model. Similar to [4, 14],
we make use of SG modeling techniques for simulating
a multi-RAT wireless network which includes a cellular and
aWi-Fi RAT.We assume that each RAT is under the control
of the same operator [15]. We adopt homogeneous Poisson
point processes (HPPPs) Φc and Φw, with intensity λc and
λw, for drawing the locations of APs under cellular and Wi-
Fi RATs, respectively. Te users are assumed to be

Observe state s

UE

Observe new state s'

Zone 1: inside solid line boundary
Zone 2: between solid and dashed boundary
Zone 3: outside dashed line boundary

Black color: denoting the zone boundaries for cellular RAT
Red color: denoting the zone boundaries for Wi-Fi RAT

File Download
Request

Cellular AP

Wi-Fi AP

Data Offloading
Policy π* (s) 

Observe cost of taking
action a in state s 

Update data offloading
policy if needed

Take action a by using
Data Offloading Policy

c3

c2

c1

w2

w1

w3

w2 w1

w3

c3

c2

c1

Figure 1: An illustration of the multi-RATwireless network which includes cellular andWi-Fi RATs and UE playing the role of Q-agent for
taking sequence of optimal actions under diferent situations.
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distributed according to another HPPPΦu, with intensity λu.
We assume that all APs belonging to r ∈ c, w{ } RAToperate
at the same power level Pr over the entire bandwidth Br.
Furthermore, we assume a saturated downlink channel
wherein the same resources are shared by all the APs of
cellular RAT, and a single channel is shared by all the APs of
Wi-Fi RAT. As a result, the signal-to-interference ratio
experienced by a typical user under RAT r can be ap-
proximated by using the following equation:

SIRr �
ςyo

/l dyo

�����

�����􏼒 􏼓

􏽐y∈Φr/yo
êyςy/l dy

�����

�����􏼒 􏼓

, (1)

where l(‖d‖) denotes a free space path lass model, ςyo
and ςy

denote small-scale fading from the tagged and other BSs,
respectively, and êy is a medium access indicator function
which represents if an AP of RAT r, located at y, is active or
not. For an AP under cellular RAT (r � c), the indicator
function is unity because all the APs are assumed to transmit
simultaneously. For an AP under Wi-Fi RAT (r � w), it can
be either zero or unity because not all the APs are allowed to
transmit simultaneously due to the contention-based nature
of carrier sense multiple access with collision avoidance
(CSMA/CA) channel accessing scheme [16]. Te probability
that the network ofers a data rate to the user which is greater
than a threshold ρr can be defned as

ϖr � P Cr > ρr( 􏼁, (2)

where

Cr �
Br

􏽢Pr

Nr

log 1 + SIRr( 􏼁, (3)

Nr � λu/λr is the average load per AP and 􏽢Pr is the medium
access probability (MAP) for an AP. Based on the data rate
ofered to a user under a RAT, we divide the given region
under each RAT into three zones as depicted in Figure 1.Te
frst zone ofers the maximum data rate, the second zone
ofers the minimum data rate, and the third zone is like an
outage for a user. Te probability that a user is located in
zone z of RAT r has been defned in [4], and it is given as

P rz( 􏼁 �

ϖrz
, z � 1,

ϖrz
− ϖrz−1

, z � 2,

1 − ϖrz−1
, z � 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where

ϖrz
� P SIRr > τrz

􏼐 􏼑, (5)

τrz
� 2(ρrz

Nr/􏽢PrBr)−1, ρrz
is the data rate threshold. Here, (5)

is obtained after substituting (3) in (2) and rearranging.
Te users can move in a given region with possible

locations denoted by the set K � ∪ i∈ 1,2,3{ } ∪ j∈ 1,2,3{ }(ci, wj),
by following a widely used Markovian model [6]. Te

probability that a user moves to location k′ � (ci′ , wj′) in the
next time slot given the current location as k � (ci, wj) can
be defned as follows:

P k′ � ci′ , wj′ k � ci, wj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � P ci′ ci

􏼌􏼌􏼌􏼌􏼐 􏼑P wj′ wj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (6)

where

P rz′ rz

􏼌􏼌􏼌􏼌􏼐 􏼑 �

βrP rz( 􏼁, z′ � z,

1 − βrP rz( 􏼁, z′ ≠ z, z′ � 2,

1 − βrP rz( 􏼁

2
, z′ ≠ z, z � 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

r ∈ c, w{ }, z ∈ 1, 2, 3{ }, βr is the scaling factor capturing the
speed of mobility, and P(rz) is defned in (4). For readability
and clarity, we have included details of the assumed network
scenario in this section. For details of the derivation of these
equations which are obtained by using SG modeling tech-
niques, please see [4, 6, 14].

3.2. Markov Decision Process Formulation. An MDP is
a discrete stochastic process which is used for sequential
decision-making. It is defned by a tuple (S,A,P(s′|s, a),

Ω, α), where S is the state space, A is the action space,
P(s′|s, a) is the state transition probability, Ω is the cost
function, and α is the discount factor. Since we employ
a model-free RL algorithm, the transition probability matrix
is not required for the problem formulation. Te rest of the
components have been defned in the following subsections.

3.2.1. Q-Learning Agent: States and Actions. Te UE has
been defned as a Q-agent in this work which is responsible
for taking sequence of actions after observing states. Assume
that a user generates a request to download ψ bits of data
withinD units of time. Here, the users’ request is expressed
in terms of a tuple μo(ψ,D). We suppose that the time axis is
divided into slots t ∈ T � 1, 2, . . . ,D{ } of fxed length, and
the Q-agent is required to take action at each time epoch. It is
assumed that the duration of a time slot is so small such that
the state of the system does not change. Te state of the user,
s ∈ S, at a time slot t, has been defned as st � (k, h, d),
where h ∈ ψ represents the remaining fle size in bits, d ∈ D
denotes the remaining time, and k � (ci, wj) ∈K denotes
the location of the user specifed by available zones of cellular
andWi-Fi RATs, respectively. As we assume stationarity, for
simplicity, the notation t is omitted from this point onward.

Tree possible actions a ∈ A are available for the Q-
agent to make: remain idle (a � 0), download data through
cellular RAT (a � 1), and ofoad data through Wi-Fi RAT
(a � 2). However, in any state s, with a given location k and
∀h, d, the number of permitted actions a ∈ 􏽢A(s) is at most
two as defned in the following:
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􏽢A(s) �

2{ }, ρci
< ρwj

,

1, 2{ }, ρci
> ρwj
> 0,

0, 1{ }, ρci
> 0, ρwj

� 0,

0{ }, ρci
� 0, ρwj

� 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

Equation (8) refers to the decision of ofoading through
Wi-Fi RAT if the data rate supported by cellular RAT is
smaller than the Wi-Fi RAT. Equation (8) refers to the
permitted actions when the data rate supported by cellular
RAT is greater than the Wi-Fi RAT. Equation (8) refers to
the permitted actions when Wi-Fi RAT is not available.
Equation (8) refers to the action when none of the RATs are
available.

3.2.2. Feedback from Environment: Cost and Penalty.
Similar to [6], we assume that the cost for using cellular RAT
for data download is higher than the Wi-Fi RAT. It means,
by making an ofoading decision toWi-Fi RAT, the Q-agent
can minimize the cost of data usage for the user. Moreover,
while waiting for the availability of Wi-Fi RAT, the deadline
limit associated with the generated request cannot be ig-
nored which results, in the end, a huge penalty if exceeded.
Tus, through the ofoading process, the Q-agent is required
to minimize the overall cost of downloading the fle while
maintaining the given QoS requirement.

We adopt a usage-based cost scheme, where a user is
charged proportional to its data usage. Let φ(a) represents
the cost for downloading per unit of data by choosing action
a. Let us assume that ρ(k, a) denotes the average supported
data rate in bits per second at location k when action a is
chosen. Tus, the total cost during a time slot, when the
Q-agent chooses action a in state s such that the delay timer
is not expired, is given by

Ω(s, a) � min h, 60∗ ρ(k, a)􏼈 􏼉φ(a), d> 0. (9)

Te penalty for the Q-agent when it is not able to
complete the download within D units of time has been
defned as follows:

Ω(s,∀a) � Υ(h), d � 0, (10)

where Υ(h) is a nondecreasing function of h [6]. Tus, the
objective function can be defned as

mina 􏽘
0≤d≤D
Ω(s, a)

⎧⎨

⎩

⎫⎬

⎭, (11)

which implies that the Q-agent is responsible to choose
sequence of actions such that the accumulated cost of using
a network service is minimized.

4. Development of a Q-Learning Agent for
Data Offloading

Q-learning is a model-free RL algorithm in which an agent
interacts with its environment and tries to learn optimal
actions for given states through the trial-and-error

approach. Te quality of an action taken in a given state by
the agent is recorded by defning a quality function, which is
denoted by Qπ(s, a). It denotes the expected long-term
discounted reward of taking action a in state s by using
policy π. In this work, the UE plays the role of an agent,
named as Q-agent, and the Q value is defned as the expected
long-term discounted cost for taking action a in state s by
using policy π. Tus, here the aim of the agent is to fnd the
best policy π∗(s), that minimizes this quality function for
each (s, a) pair, by choosing the optimal action in a given
state, i.e., π∗(s) � argmina Q(s, a).

Assume that at the current time epoch, the agent ob-
serves state s and takes action a. As a result, it receives the
cost Ω(s, a) from the environment for taking action a in
state s, and it ends in state s′ at the next time epoch.Tus, the
Q value for (s, a) pair can be defned as follows:

Q(s, a)⟵Q(s, a) + c Ω(s, a) + αmin
a′

Q s
′
, a
′

􏼒 􏼓􏼚 􏼛 − Q(s, a)􏼠 􏼡,

(12)

where α is the discount factor and c is the learning rate, and
it is defned in [7] as

c(s, a) � (

���������

β(s, a) + 3
􏽱

)
− 1

, (13)

where β(s, a) denotes the number of times action a is taken
in state s. It has been proved that while β(s, a) is sufciently
large and c is reduced to zero over time, Q(s, a) is guar-
anteed to converge to Qπ∗(s, a) [17]. Te algorithm for
training of the Q-agent has been defned in Algorithm 1, and
its details are discussed in the following:

4.1. InitializationofQValues. Poor initialization of Q values,
like Q(s, a)⟵0, Q(s, a)⟵1 or Q(s, a)⟵ uniformly
distributed ∀(s, a) pairs, can badly afect the overall learning
curve of the Q-agent and convergence speed of the Q-
learning algorithm. However, initialization based on con-
text of the problem can greatly help in speeding up the
learning process. Terefore, in this work, as clear from
Algorithm 1, we initialize the Q values by exploiting a single
back-up sweep and using uniform random policy. Since at
the end of each episode, the Q-agent is supposed to observe
a penalty if the deadline is missed, and the single back-up
sweep spreads the infuence of penalty throughout the Q
values for all (s, a) pairs, which overall improves the learning
process.

4.2. Q-Learning Algorithm without Employing ϵ−Greedy
Approach. In the Q-learning algorithm, at decision epochs,
the agent decides randomly or based on previously learnedQ
values, which action should be taken in a given state. For
minimizing cost, the agent may take low-cost actions it has
tried in the past.Tis is known as the exploitation mode.Te
agent also needs to try actions it has not taken before, which
may play a role in further minimization of the accumulated
cost. Terefore, the agent may take one of the actions
randomly from the set of available actions, to enhance its
future decisions. Tis is known as the exploration mode.
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Since Q-learning is a model-free iterative learning algo-
rithm, it is important that exploration and exploitation
should be simultaneously performed. Te agent must ob-
serve the efect of taking diferent actions in a given state and
progressively favor ones with the minimal cost [17].

Inmost of the existing literature [7], the ϵ−greedymethod is
utilized, in which an agent explores with probability ϵ and
exploits with probability 1 − ϵ. However, in this work, we did
not employ any method for coping up with this trade-of as the
Q-learning algorithm by default has a feature which causes it to
switch between exploration and exploitation modes, during the
training of the Q-agent. For example, ∀(s, a) pairs if Q(s, a)

values are initialized to the same value, then random policy can
be executed for breaking the ties; here, the use of random policy
is equivalent to the exploration mode. Moreover, if we carefully
evaluate (12), when an (s, a) pair is visited for a number of
times, its Q value increases. Since, in this work, the agent is
required to fnd the action in a state with the smallest Q value,
the less visited (s, a) pairs by default get a chance to be ex-
plored. Tus, this insight shows that the Q-learning when
defned in terms of a minimization optimization problem, by
default, has the capability of switching between exploration and
exploitation modes.

5. Results and Discussion

We used Python for creating simulation setup and imple-
mentation of Algorithm 1. Unless otherwise specifed, the
parameters used for generating the results, presented in this
section, are mentioned in Table 2.

For training of theQ-agent, we executed 120 × 104 episodes
of Algorithm 1. Te numbers of times the Q-agent observed
certain states, irrespective of the actions taken, are reported in
Figure 2. According to [17], the Q-learning algorithm is
guaranteed to fnd an optimal solution if the number of visits to
each (s, a) pair is sufciently large. However, in practical
scenarios, it is highly likely that some states are observed more
often as compared to others. We have reported the results in
Figures 2(a)–2(c) for the states when the remaining fle size (h)

to download is 200Mbits, 500Mbits, and 800Mbits, re-
spectively, as a function of remaining delay (d) and users’
location (k). It must be evident from the numbers reported in
Figure 2 that some states are visited more often as compared to
the others. One of themain reasons behind such results is users’
mobility; that is, the locations with higher probabilities are
visited more often as compared to the others. Furthermore, the
states with higher d and larger h are visited less often as evident
from Figure 2. Because, if h � 800Mbits and d � 10mint at the

(1) Initialization
(2) π(a|s) as a random uniform policy
(3) Q(s, a)⟵Ω(s, a) + 􏽐∀ai

􏽐∀s′π(ai|s)Q(s′, ai)

(4) β(s, a)⟵0 ∀s ∈ S, a ∈ A
(5) for each download request μo(ψ,D) - episode do
(6) defne state s(k, h, d) - d � D, h � ψ, k randomly generated using (6)
(7) while download is not complete (h> 0) do
(8) if Q(s,∀a) is same then
(9) choose action a at random
(10) else
(11) choose a � argmina Q(s, a)

(12) end if
(13) take action a

(14) update c(s, a) by using (13)
(15) if d> 0 then
(16) obtain Ω(s, a) using (9)
(17) obtain s′(k′, h′, d′) - d′ � d − 1, h′ � h − min h, 60∗ ρ(k, a)􏼈 􏼉, k′ randomly generated using (6)
(18) update Q(s, a) by using (12)
(19) s⟵s′

(20) else
(21) obtain Ω(s, a) using (10)
(22) update Q(s, a) � Ω(s, a)

(23) break
(24) end if
(25) end While
(26) end for

ALGORITHM 1: Training of Q-agent.

Table 2: Te default parameters used for simulating multi-RAT
wireless network scenario and training of Q-agent.

Parameter(s) Value(s)
Pc, Pw 46 dBm, 23 dBm
λc, λw, λu 10 AP/km2, 100 AP/km2, 300 users/km2

Bc,Bw 50MHz, 10MHz
ρ(c1), ρ(c2) 3Mbps, 1Mbps
ρ(w1), ρ(w2) 3Mbps, 1Mbps
φ(0),φ(1),φ(2) 0$/GB, 6$/GB, 2$/GB
Υ(h) bh2, h is in Mbits and b � 0.001
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current decision epoch, then at the next decision epoch,
h≤ 800Mbits and d< 10mint. Tis implies that the states with
h≪ 800Mbits and d≪ 10mint are visited more often.

We have reported the data ofoading policy learned by
the Q-agent in Figure 3, that is, the optimal actions taken by
the Q-agent in the same states as mentioned in Figure 2. We
have included data for only three most important locations
wherein the decision-making is challenging just to give
better insights. For example, the decision is simple at the
locations where both the RATs ofer the same data rate, that
is, to ofoad data through Wi-Fi RAT. However, it is
challenging for Q-agent to choose the correct action at the
locations where both the RATs ofer diferent data rates. For
example, at location (c2, w1), the Wi-Fi RATofers data rate
which is greater than the cellular RAT; therefore, the
Q-agent has learned to ofoad data throughWi-Fi RATonly,
as evident from Figure 3(a). At location (c2, w3), the cellular
RAT is available, but Wi-Fi RAT is not available. Te
Q-agent has learned to download data through cellular RAT
in this case, as evident from Figure 3(a), although it can wait
for the availability of Wi-Fi RAT for higher d. However, due
to the stochastic nature of the wireless network, it is possible
that the Q-agent observes locations where both the RATs do
not ofer any data rate. Tat is why, the Q-agent has learned
to download data through cellular RAT even for higher d

which is evident from Figure 3(a). Moreover, since
Q-learning is a model-free learning algorithm, minor
fuctuations in the Q-agents’ decisions are possible because
of the stochastic nature of the environment. At location
(c1, w2), the data rate supported by cellular RAT is higher
than the Wi-Fi RAT. Since h � 200Mbits, it can be easily
downloaded in zone w2 of Wi-Fi RAT for d> 4mint.
Terefore, except for d � 6mint, the Q-agent has learned the
optimal actions at this location; that is, it has decided to
download data through cellular RAT for lower d and ofoad
data through Wi-Fi RAT for higher d, as evident from
Figure 3(a).

All the actions learned by the Q-agent in Figure 3(b) are
optimal. For larger h and d≤ 7mint, it is important to
download data through cellular RATwhenWi-Fi RATofers
a lower data rate or not available. In Figure 3(c), we have
reported results for h � 800Mbits as a function of d and k.
Te Q-agent has not learned optimal actions for most of the
states in Figure 3(c), because of larger h, most of these states
have not been visited as evident from Figure 2(c) and already
discussed in previous paragraphs. Tus, if observed, the
Q-agent employs random policy for taking actions in such
never visited states. At location (c1, w2), the Q-agent has
learned to download data through cellular RAT only, as
evident from Figure 3(c), because the data rate supported by
c1 is greater than w2. Moreover, since h � 800Mbits, the
RAT which ofers a higher data rate must be selected to
successfully complete the download before d⟶ 0. Tus,
the Q-agent has learned the optimal actions for these states.
Similarly, at location (c2, w1), the Q-agent has learned to
ofoad data through Wi-Fi RAT because the data rate
supported by zone w1 is greater than c2. Tus, we can
conclude that the Q-agent has learned the optimal actions
for almost all the states. Although it looks like it has learned

a few incorrect decisions as well, such decisions have been
learned due to the stochastic nature of the environment and
can change over time after sufcient experience.

After each learning episode, the remaining fle size (h)

after hitting the deadline (d) is reported in Figure 4. We
have reported the results in Figures 4(a)–4(c) for the ep-
isodes in which the users have generated requests for
ψ � 200Mbits, 500Mbits, and 800Mbits, respectively. Te
episodes are denoted in sorted order from left to right as
a function of delay limit D, and the color bar is used to
represent it. Te fle with ψ ≥ 200Mbits cannot be suc-
cessfully downloaded within D � 1mint no matter which
RAT Q-agent choose in the assumed scenario. Because the
maximum data rate supported by both the RATs is 3Mbps
and in 1mint at maximum 180Mbits can be downloaded
given that the user is located in the zone which supports the
maximum data rate. Tat is why, h ≈ 200Mbits for almost
all the episodes with D � 1mint. However, for higher D,
the Q-agent is trying to minimize the remaining fle size,
that is, h⟶ 0 as D increases which is evident from
Figure 4(a). Moreover, with each learning episode, the
Q-agent has improved its decision-making capability. As it
is evident from Figure 4 that during initial episodes for
most of the cases, the download is incomplete, that is, h> 0.
However, with each passing episode, h has been reduced
and it ultimately approaches to zero. It is important to note
here that for larger ψ like in Figures 4(b) and 4(c), the
successful download is possible only for higher D. Tat is
why, even after learning for a quite large number of epi-
sodes, the agent is unable to successfully complete the
download for certain cases. Nevertheless, given the net-
work availability and higher D, the agent has learned to
successfully download larger fles by taking a correct se-
quence of actions.

Te accumulated payment for downloading ψ bits of
data in Dmint is shown in Figure 5 for a few randomly
selected episodes at the end of the training period of the
Q-agent. Te minimum payment for downloading ψ bits of
data, by using Wi-Fi RATonly, is shown by a double-dashed
line in Figure 5. Te maximum payment for downloading
ψ bits of data, by using cellular RAT only, is shown by
a dashed-dotted line in Figure 5. Tis minimum and
maximum payment limits serve as a reference for evaluating
the performance of the data ofoading policy learned by the
Q-agent. Te average payment for downloading of a fle, as
a result of actions taken by the Q-agent, has been repre-
sented by a solid line. For ψ � 200Mbits, the fle can be
successfully downloaded for D≥ 4mints. Tat is why, for
ψ � 200Mbits in Figure 5, the Q-agent has taken the se-
quence of steps, for most of the episodes, which has resulted
in the minimal payment. However, the average payment for
downloading of the fle, as a result of the actions taken by the
Q-agent, is above the minimum threshold. Tis is due to the
stochastic nature of the wireless network becauseWi-Fi RAT
may not be available at certain locations and the Q-agent
must download data through cellular RAT to complete the
download in such situations. As a result, the average pay-
ment for download of the fle is slightly higher. However, it
must be interesting to note that the average payment is much
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smaller than the maximum threshold and closer to the
minimum threshold which implies that the Q-agent has
mostly ofoaded data through Wi-Fi RAT.

It must be evident from Figure 5(a) that for ψ ≥ 500Mbits,
the average payment for downloading the fle is approximately
equal or smaller than the minimum threshold. Tis is possible
only in those situations in which the fle download has not been
completed successfully within the defned D. Since D in
Figure 5(a) is only 4mints, larger fles cannot be successfully
downloaded even if the Q-agent chooses the RAT which
supports maximum data rate always. On the other hand, in
Figure 5(b),D � 8mints. As a result, the average payment for

the fle download is above the minimum threshold because for
most of the episodes, the Q-agent has successfully downloaded
the fles with larger size as well.

We have evaluated the performance of the developed
data ofoading policy learned by the Q-agent and compared
it with the standard policies and analytical (Ana.) approach
presented in [4]. Te evaluation results are reported in
Figure 6. In always ofoad (AO) policy, the data are
downloaded by using Wi-Fi RAT only. In no ofoad (NO)
policy, the data are downloaded using cellular RAT only. In
on-the-spot ofoad (OTSO) policy, the data are ofoaded
through Wi-Fi RATwhenever it is available. Otherwise, it is
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Figure 3: Te actions learned by the Q-agent, a � π∗(s), as a function of states s(k � (cz, wz), h, d). Here, denotes remain idle,△ denotes
download data through cellular RAT, and ∗ denotes download data through Wi-Fi RAT.
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Figure 2: Te number of visits by the Q-agent to selected states s(k � (cz, wz), h, d) accumulated over all actions.
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Figure 4: Remaining fle size (h) at the end of each episode as a function D.
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Figure 5: Continued.
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downloaded using cellular RAT. Te data ofoading policy
presented in [4] is obtained by using a policy iteration al-
gorithm which is the model-based RL algorithm. In
Figure 6(a), we report the average payment a user has to pay
for downloading ψ � 500Mbits as a function ofD. Similarly,
in Figure 6(b), we report the remaining fle size (h) after the
given delay timer (D) expires. Tese average results have
been obtained after executing each existing policy and the
one learned by the Q-agent for 1000 iterations.

Te NO approach has resulted maximum payment, which
is evident from Figure 6(a), because the cost of using cellular
RAT is larger as compared to theWi-Fi RAT.Moreover, due to
users’ mobility and unavailability of cellular RAT at certain
locations, the NO approach could not successfully download
the fle even for largerD> 7mint, as evident from Figure 6(b).
Similarly, the AO approach has resulted in minimum payment,
as evident from Figure 6(a), because the cost of using Wi-Fi
RAT is smaller as compared to the cellular RAT. However, due
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Figure 5: Accumulated payment at the end of a few randomly selected episode as a function D. (a) D � 4mint. (b) D � 8mint.
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Figure 6: Performance evaluation of the data ofoading policy learned by the Q-agent developed in this work and existing ofoading
policies, as a function of users’ request μ(ψ � 500Mbits,D): (a) the payment in ($) for entertaining a given user request and (b) remaining
fle size (h) after the defned delay timer (D) expires.
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to users’ mobility and unavailability of Wi-Fi RAT at certain
locations, it sufers from the same issue of incomplete data
download even for larger D> 7mint, as evident from
Figure 6(b). Since OTSO exploits both the RATs given their
availability and prefers Wi-Fi RAT over cellular RAT, the cost
for downloading data is smaller than NO and is slightly larger
than AOwhich is evident from Figure 6(a). Moreover, since the
OTSO approach is using both the RATs, it has successfully
completed the download request for larger D> 7mint, as
evident from Figure 6(b). Te Ana. approach presented in [4]
uses both the RATs for data download; however, for lower delay
limits, it prefers the RATwhich ofers a higher data rate so that
the data download can be completed. Tat is why, in
Figure 6(a), the payment for Ana. approach is slightly larger and
the remaining fle size in Figure 6(b) is slightly smaller than the
OTSO approach.

As evident from the results reported in Figure 6, for delay
limits D< 7mint, the performance of data ofoading policy
learned by the Q-agent is comparable to the model-based
analytical approach. Although the payment of the Ana.
approach and Q-agent is slightly higher compared to the
OTSO and AO policies, h is much smaller as evident from
Figure 6(b). Tis implies that these approaches have tried to
complete the download without waiting for the availability
of Wi-Fi RAT because D is short. On the other hand, for
D> 7mint, the OTSO, Ana., and Q-agent have successfully
completed the download of the fle. However, for larger D,
the payment of the Ana. approach is slightly higher because
it has downloaded data through cellular RAT without
waiting much for the availability of Wi-Fi RAT. Since D is
large, the Q-agent has waited for the the availability of Wi-Fi
RAT in this case and tried to minimize the payment as well.
Te AO policy has obtained minimal payment because it
always downloads data through Wi-Fi RAT. Tus, it is clear
that close to the best and stable performance has been of-
fered by the Q-agent for diferentD. For lowerD, it tried to
complete the download at the cost of slightly larger payment.
On the other hand, for higher D, it tried to minimize the
payment while successfully completing the download.

6. Conclusion and Future Work

In this work, we developed an AI-enabled Q-agent for
making data ofoading decisions in a multi-RAT wireless
network by using a model-free Q-learning algorithm. Al-
though model-free learning algorithms ofer quite a good set
of features, their successful implementation poses various
challenges. Terefore, we also discussed a few of the chal-
lenges along with their possible solutions. For speeding up
the learning process, we initialized the Q(s, a) values of the
Q-learning algorithm by employing a single back-up sweep.
Moreover, we exploited an inherit feature ofered by the Q-
learning algorithm, by redefning it in terms of expectation
minimization problem, to balance the trade-of between
exploration and exploitation modes. We evaluated the
performance of the trained Q-agent and also compared
against an existing analytical data ofoading approach [4]
and other ofoading policies like always ofoad, no ofoad,
and on-the-spot ofoad. Te results showed that the

performance of the Q-agent developed in this work is near
optimal for diferent data download requests. For lower
delay limits, the performance of the Q-agent for making data
ofoading decisions is close to the model-based approach
presented in [4] which tries to complete the download at the
cost of a higher payment. For higher delay limits, its per-
formance is close to the on-the-spot ofoading policy which
tries to minimize the payment. Tus, the Q-agent has
learned to make intelligent and near optimal decisions under
diferent situations. Te future work includes the develop-
ment of such adaptive and optimal agents for 6G wireless
networks by using advanced AI techniques such as DQN or
double DQN.
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