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Data offloading is considered as a potential candidate for alleviating congestion on wireless networks and for improving user
experience. However, due to the stochastic nature of the wireless networks, it is important to take optimal actions under different
conditions such that the user experience is enhanced and congestion on heavy-loaded radio access technologies (RATs) is reduced
by oftloading data through lower loaded RATs. Since artificial intelligence (AI)-based techniques can learn optimal actions and
adapt to different conditions, in this work, we develop an Al-enabled Q-agent for making data offloading decisions in a multi-RAT
wireless network. We employ a model-free Q-learning algorithm for training of the Q-agent. We use stochastic geometry as a tool
for estimating the average data rate offered by the network in a given region by considering the effect of interference. We use the
Markov process for modeling users’ mobility, that is, estimating the probability that a user is currently located in a region given its
previous location. The user equipment (UE) plays the role of a Q-agent responsible for taking sequence of actions such that the
long-term discounted cost for using network service is minimized. Q-agent performance has been evaluated and compared with
the existing data offloading policies. The results suggest that the existing policies offer the best performance under specific
situations. However, the Q-agent has learned to take near-optimal actions under different conditions. Thus, the Q-agent offers
performance which is close to the best under different conditions.

1. Introduction

The remarkable surge in mobile data usage resulting from
technological advancements in various domains like In-
ternet-of-Things, online gaming, social networks, aug-
mented/virtual reality, and more has significantly amplified
the burden on wireless networks and introduced a wide
variety of applications with varying characteristics. In order
to meet such intensive and highly heterogeneous demands,
the 5th generation (5G) wireless networks are expected to be
ultradense, autonomous, or intelligent, operate on multiple
higher frequency bands, and with multiple radio access
technologies (multi-RATs). The deployment of ultradense

networks increases the spatial reuse factor of the resources.
The use of multiple RATs and multiple bands enables ef-
fective use of spectral bands and resources of the wireless
network. Moreover, it also helps in alleviating congestion on
cellular RAT by offloading data to underloaded RATs like
wireless fidelity (Wi-Fi) [1].The concept of oftloading across
multiple RATs extends beyond data transfer; it has also been
harnessed for the sharing of computational [2] and power
resources [3].

The 5G networks are expected to be intelligent to meet
the quality-of-service (QoS) requirements imposed by the
users with heterogeneous demands. That is why, artificial
intelligence (AI) has an important role to play in the
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development of intelligent and autonomous algorithms for
5G networks. The efficient allocation and utilization of re-
sources among users with different demands in a 5G multi-
RAT wireless network is a challenging problem. The network
densification further complicates this problem by in-
troducing interference and coverage issues, often mani-
festing in terms of degraded network performance and user
experience. Therefore, it becomes challenging to satisfy the
QoS requirements imposed by the user. Various algorithms
have been presented in the literature, as discussed in Section
2, for alleviating congestion on wireless networks and for
efficient utilization of the resources by employing the
concept of data offloading and AI techniques. However,
some of these have been developed without taking into
account the effect of interference caused due to the de-
ployment of ultradense wireless networks [1], and others
have been developed without using Al techniques.

Therefore, the main objective of this work is to develop
an Al-enabled Q-agent for making data offloading decisions
in a multi-RAT wireless network by taking into account the
effect of interference caused by an ultradense network and by
making use of a model-free reinforcement learning (RL)
technique. Here, the term “model-free” means that an ac-
curate or approximate mathematical representation of the
system under consideration is not required; thus, the Al
agent can learn through trial-and-error approach. A high-
level diagram of the proposed work is shown in Figure 1. A
multi-RAT wireless network scenario has been assumed
which includes a cellular and a Wi-Fi RAT. The coverage
provided by both the RATs has been divided into different
zones based on the signal-to-interference (SIR) experienced
by the user in a given region. Initially, the user is under
coverage of cellular RAT only, and it has generated a request
for downloading of a file. We use the Q-learning algorithm
which is a model-free RL algorithm for training of the agent;
that is why, we have named it as a Q-agent. It is responsible
for taking a sequence of actions by observing states such that
the long-term discounted cost of using a network service is
minimized.

We formulate the problem of data offloading by as-
suming that the user equipment (UE) plays the role of the Q-
agent as depicted in Figure 1. The users’ request for
downloading a file of certain size in a given duration and at
a given location is used for defining states. The Q-agent can
take three actions, that is, download data through cellular
RAT, offload data through Wi-Fi RAT, and remain idle. We
define a cost function for using network services which is
a function of the actions taken by the Q-agent. We also
define a penalty function for missing the defined delay limit.
The task of the Q-learning algorithm is to minimize this cost
function by learning an optimal data offloading policy that
takes best action in a given state. We have evaluated the
performance of the developed Q-agent for making data
offloading decisions and also compared the results with
existing model-based analytical offloading approach [4] and
some other standard data offloading policies. In the end, we
have also discussed about the issues and challenges imposed
by the Q-learning algorithm and how we can tackle these for
developing efficient agents that offer near to optimal
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performance. Advanced AI techniques based on deep
learning such as the deep Q-network (DQN) or double DQN
can also be adopted for tackling the issues imposed by the
Q-learning algorithm. However, the data offloading problem
considered in this work is user-centric. Therefore, its state
and action space is small, and a simple algorithm such as Q-
learning, with slight modifications, offers satisfactory per-
formance. Moreover, according to the authors in [5], ad-
vanced Al techniques are not yet been considered for
deployment in wireless networks because of the resource-
constrained nature of these networks.

The rest of the paper has been organized as follows. The
details of the related are covered in Section 2. The problem
formulation and the assumptions are discussed in Section 3.
The development of Al-enabled Q-agent is discussed in
Section 4. Performance evaluation of the developed Q-agent
and comparison with existing data offloading policies is in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we provide details of the studies presented in
the existing literature and are related to this work in one or
another way. A concise summary of these studies and our
work is presented in Table 1.

A dynamic offloading algorithm has been presented in
[11] for UEs by assuming a multi-RAT wireless network. An
autonomous resource allocation policy has also been de-
veloped for multiaccess edge servers. The authors used
a penalty-based genetic algorithm for learning offloading
decisions and deep Q-neural network (DQN) for efficient
allocation of resources by the edge servers. The authors
assumed multiple RATs which include cellular and Wi-Fi
RATSs by defining different frequency bands. However, they
did not take into account the effect of the channel-accessing
scheme employed by Wi-Fi RAT which is different from
cellular RAT. Moreover, the authors also did not consider
the effect of interference due to ultradense deployment of
base stations (BSs) while modeling the data rate experienced
by a user. In another paper [8], a near to optimal policy for
users’ association in a heterogeneous wireless network has
been obtained by employing DQN. Instead of assuming
a multi-RAT wireless network scenario, they assumed a dual
connectivity scenario wherein a user can associate with the
BSs of different tiers under the same network, that is, macro-
and micro-BSs. The authors selected DQN over SARSA or
Q-learning algorithms because they were optimizing a net-
work-centric user association policy which had large state
and action spaces. Since in this work we propose a user-
centric data offloading approach wherein each UE is re-
sponsible to minimize the cost of using a network service by
making automated optimal data offloading decisions, the
state and action spaces are small. That is why, we selected the
Q-learning algorithm instead of DQN.

A multiagent RL-based algorithm for RAT access in
a multi-RAT wireless network has been proposed in [9]. The
authors assumed one cellular and one Wi-Fi RAT operating
in different bands and with different channel accessing
techniques. According to the authors, their proposed
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approach for RAT access offers better performance com-
pared to the traditional data offloading schemes. However,
the system model assumed by the authors did not in-
corporate the effect of dense deployment of the access points
(APs) and the resulting interference, which highly impacts
the data rate experienced by the users. The authors in [12]
presented an incentive-based contract-theoretic approach to
motivate the third-party operators, like Wi-Fi operators, to
share their resources during peak time to overloaded cellular
RAT. However, the main focus of this work was to propose
optimal contracts to third-party operators such that they
agree to accept the offloaded requests while the profit of the
mobile network operators is maximized.

A delay aware offloading and network selection opti-
mization algorithm has been proposed in [6] by assuming
that unlimited cellular RAT coverage and limited Wi-Fi RAT
coverage are available for the users. For solving the opti-
mization problem, the authors used the backward induction
algorithm which is computationally expensive. In another
study [7], the authors proposed a data offloading approach
by dividing the network coverage into various zones where
each zone offers a different data rate to a user. They con-
sidered signal-to-noise ratio (SNR) for estimating the data
rate offered to a user in a zone. However, for highly dense
and heterogeneous wireless networks, SIR is considered as
a better metric for estimating the coverage and data rate
experienced by a user [13]. To better capture the coverage
and data rate offered by Wi-Fi RAT, while estimating the
data offloading gains, the authors in [10] employed sto-
chastic geometry (SG) modeling techniques. However, this
work is limited to estimation of data offloading gains that
can be provided by a Wi-Fi RAT.

The authors in [4] proposed an automated data oft-
loading framework by assuming a multi-RAT wireless
network scenario and developed a model-based data off-
loading policy. Unlike [7], they divided the coverage pro-
vided by each RAT into different zones by using SIR and SG
modeling techniques. They adopted a model-based RL

approach for obtaining an optimal data oftfloading policy. A
model-based RL algorithm requires a transition matrix
which depicts the complete stochastic nature of the assumed
environment. The authors in [4] utilized SG and Markov
decision process (MDP) for modeling stochastic nature of
the assumed wireless network and for obtaining the cor-
responding transition matrix so that it can be used by the
model-based RL algorithm. However, due to various ran-
dom factors in spatial and temporal domains of a wireless
network, the traffic characteristics, load, and various other
parameters are prone to change. Thus, at any point in time,
the practical scenario may deviate widely from the transition
matrix derived for a specific scenario. This problem initiates
the need for the design of model-free data offloading policies
which can learn the network or user behavior in real time
and accordingly take the optimal actions. Nevertheless, such
approaches pose various challenges and issues when it comes
to their convergence and implementation in practical sce-
narios due to their trial-and-error-based learning approach.

3. Network Model and Problem Formulation

In this section, we provide details about the wireless network
scenario assumed in this work. Moreover, we also formulate
the data offloading problem by defining the Markov decision
process (MDP) which includes details regarding Q-agent
and its environment, that is, the set of states, the set of
actions, cost, and penalty functions.

3.1. Multi-RAT Wireless Network Model. Similar to [4, 14],
we make use of SG modeling techniques for simulating
a multi-RAT wireless network which includes a cellular and
a Wi-Fi RAT. We assume that each RAT is under the control
of the same operator [15]. We adopt homogeneous Poisson
point processes (HPPPs) @ and ®,,, with intensity A, and
A, for drawing the locations of APs under cellular and Wi-
Fi RATs, respectively. The users are assumed to be
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distributed according to another HPPP ®,, with intensity A,,.
We assume that all APs belonging to r € {c, w} RAT operate
at the same power level &, over the entire bandwidth 3,.
Furthermore, we assume a saturated downlink channel
wherein the same resources are shared by all the APs of
cellular RAT, and a single channel is shared by all the APs of
Wi-Fi RAT. As a result, the signal-to-interference ratio
experienced by a typical user under RAT r can be ap-
proximated by using the following equation:

Sk~ cya/l<||dy0“> | "
Zye@r/ygéycy/lO'd )

where I (||d||) denotes a free space path lass model, Sy, and Sy
denote small-scale fading from the tagged and other BSs,
respectively, and e, is a medium access indicator function
which represents if an AP of RAT r, located at y, is active or
not. For an AP under cellular RAT (r = ¢), the indicator
function is unity because all the APs are assumed to transmit
simultaneously. For an AP under Wi-Fi RAT (r = w), it can
be either zero or unity because not all the APs are allowed to
transmit simultaneously due to the contention-based nature
of carrier sense multiple access with collision avoidance
(CSMA/CA) channel accessing scheme [16]. The probability
that the network offers a data rate to the user which is greater
than a threshold p, can be defined as

(Dr = P(%r >pr)’ (2)

where

B.P
"~ " log(1 + SIR (3)
i og ( )

r

(gz

r

N, = A,/A, is the average load per AP and &, is the medium
access probability (MAP) for an AP. Based on the data rate
offered to a user under a RAT, we divide the given region
under each RAT into three zones as depicted in Figure 1. The
first zone offers the maximum data rate, the second zone
offers the minimum data rate, and the third zone is like an
outage for a user. The probability that a user is located in
zone z of RAT r has been defined in [4], and it is given as

@, , =1,
P(r,)=4®. -®, , z=2, (4)
1-@, , z=3
where
@, =P(SIR,>7,), (5)
T, = 20l 7,%,) pr is the data rate threshold. Here, (5)

is obtained after substltutmg (3) in (2) and rearranging.
The users can move in a given region with possible

locations denoted by the set & = Uy 53y U jeqio3 (6 w))s

by following a widely used Markovian model [6]. The

probability that a user moves to location k' = (¢;, w;) in the
next time slot given the current location as k = (¢;, w;) can
be defined as follows:

(k = ¢, W |k = w]) P(ci,|c,»)|]3’<wj,|wj), (6)

where

i ﬁrﬂ:D(i’Z), Z, =z
P(rlr) =1 1 TAP() Z#2z=2 ()
1_[31' (z) Z’#ZZIZ

2

r € {c,wh z € {1, 2, 3}, B, is the scaling factor capturing the
speed of mobility, and [P (r,) is defined in (4). For readability
and clarity, we have included details of the assumed network
scenario in this section. For details of the derivation of these
equations which are obtained by using SG modeling tech-
niques, please see [4, 6, 14].

3.2. Markov Decision Process Formulation. An MDP is
a discrete stochastic process which is used for sequential
decision-making. It is defined by a tuple (&, &, P(s'|s,a),
Q,a), where & is the state space, & is the action space,
[P’(s’ls,a) is the state transition probability, Q is the cost
function, and « is the discount factor. Since we employ
a model-free RL algorithm, the transition probability matrix
is not required for the problem formulation. The rest of the
components have been defined in the following subsections.

3.2.1. Q-Learning Agent: States and Actions. The UE has
been defined as a Q-agent in this work which is responsible
for taking sequence of actions after observing states. Assume
that a user generates a request to download y bits of data
within @ units of time. Here, the users’ request is expressed
in terms of a tuple y, (v, 2). We suppose that the time axis is
divided into slots t € T = {1, 2,..., D} of fixed length, and
the Q-agent is required to take action at each time epoch. It is
assumed that the duration of a time slot is so small such that
the state of the system does not change. The state of the user,
s€ &, at a time slot ¢, has been defined as s, = (k, h,d),
where h € y represents the remaining file size in bits, d € @
denotes the remaining time, and k = (c,-,w]-) € K denotes
the location of the user specified by available zones of cellular
and Wi-Fi RATs, respectively. As we assume stationarity, for
simplicity, the notation ¢ is omitted from this point onward.

Three possible actions a € & are available for the Q-
agent to make: remain idle (a = 0), download data through
cellular RAT (a = 1), and offload data through Wi-Fi RAT
(a = 2). However, in any state s, with a given location k and
Vh, d, the number of permitted actions a € & (s) is at most
two as defined in the following:



6
2 P <Py
_ {1, 2}, Pe, >ij >0,
4 (s) = (8)
{0’ 1}’ Pc,' >0’ij = 0)

O p,=0.p, =0.

Equation (8) refers to the decision of offloading through
Wi-Fi RAT if the data rate supported by cellular RAT is
smaller than the Wi-Fi RAT. Equation (8) refers to the
permitted actions when the data rate supported by cellular
RAT is greater than the Wi-Fi RAT. Equation (8) refers to
the permitted actions when Wi-Fi RAT is not available.
Equation (8) refers to the action when none of the RATSs are
available.

3.2.2. Feedback from Environment: Cost and Penalty.
Similar to [6], we assume that the cost for using cellular RAT
for data download is higher than the Wi-Fi RAT. It means,
by making an offloading decision to Wi-Fi RAT, the Q-agent
can minimize the cost of data usage for the user. Moreover,
while waiting for the availability of Wi-Fi RAT, the deadline
limit associated with the generated request cannot be ig-
nored which results, in the end, a huge penalty if exceeded.
Thus, through the offloading process, the Q-agent is required
to minimize the overall cost of downloading the file while
maintaining the given QoS requirement.

We adopt a usage-based cost scheme, where a user is
charged proportional to its data usage. Let ¢ (a) represents
the cost for downloading per unit of data by choosing action
a. Let us assume that p (k, a) denotes the average supported
data rate in bits per second at location k when action a is
chosen. Thus, the total cost during a time slot, when the
Q-agent chooses action a in state s such that the delay timer
is not expired, is given by

Q(s,a) = min{h, 60 * p(k,a)}¢(a), d>0. (9)

The penalty for the Q-agent when it is not able to
complete the download within & units of time has been
defined as follows:

Q(s,Ya)=Y(h), d=0, (10)

where Y (h) is a nondecreasing function of h [6]. Thus, the
objective function can be defined as

mina{ Z Q(s,a)]», (11)

0<d<2

which implies that the Q-agent is responsible to choose
sequence of actions such that the accumulated cost of using
a network service is minimized.

4. Development of a Q-Learning Agent for
Data Offloading

Q-learning is a model-free RL algorithm in which an agent
interacts with its environment and tries to learn optimal
actions for given states through the trial-and-error
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approach. The quality of an action taken in a given state by
the agent is recorded by defining a quality function, which is
denoted by Q,(s,a). It denotes the expected long-term
discounted reward of taking action a in state s by using
policy 7. In this work, the UE plays the role of an agent,
named as Q-agent, and the Q value is defined as the expected
long-term discounted cost for taking action a in state s by
using policy 7. Thus, here the aim of the agent is to find the
best policy 7* (s), that minimizes this quality function for
each (s,a) pair, by choosing the optimal action in a given
state, i.e., 7* (s) = argmin, Q (s, a).

Assume that at the current time epoch, the agent ob-
serves state s and takes action a. As a result, it receives the
cost Q(s,a) from the environment for taking action a in
state s, and it ends in state s at the next time epoch. Thus, the
Q value for (s,a) pair can be defined as follows:

Q(s,a)«—Q(s,a) + y<Q(s, a) + anlin{Q(s,, a,)} -Q(s, a)),
(12)

where « is the discount factor and y is the learning rate, and
it is defined in [7] as

y(s,a) = (\[B(s,a) +3)7", (13)

where 5 (s, a) denotes the number of times action a is taken
in state s. It has been proved that while (s, a) is sufficiently
large and y is reduced to zero over time, Q(s,a) is guar-
anteed to converge to Q. (s,a) [17]. The algorithm for
training of the Q-agent has been defined in Algorithm 1, and
its details are discussed in the following:

4.1. Initialization of Q Values. Poor initialization of Q values,
like Q(s,a)«—0,Q(s,a)«—1 or Q(s,a)«— uniformly
distributed V (s, a) pairs, can badly affect the overall learning
curve of the Q-agent and convergence speed of the Q-
learning algorithm. However, initialization based on con-
text of the problem can greatly help in speeding up the
learning process. Therefore, in this work, as clear from
Algorithm 1, we initialize the Q values by exploiting a single
back-up sweep and using uniform random policy. Since at
the end of each episode, the Q-agent is supposed to observe
a penalty if the deadline is missed, and the single back-up
sweep spreads the influence of penalty throughout the Q
values for all (s, a) pairs, which overall improves the learning
process.

4.2. Q-Learning Algorithm without Employing e—Greedy
Approach. In the Q-learning algorithm, at decision epochs,
the agent decides randomly or based on previously learned Q
values, which action should be taken in a given state. For
minimizing cost, the agent may take low-cost actions it has
tried in the past. This is known as the exploitation mode. The
agent also needs to try actions it has not taken before, which
may play a role in further minimization of the accumulated
cost. Therefore, the agent may take one of the actions
randomly from the set of available actions, to enhance its
future decisions. This is known as the exploration mode.
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= h - min{h, 60 * p (k,a)}, k" randomly generated using (6)

(1) Initialization
(2) m(als) as a random uniform policy
(3) Q(s,a)—Q(s,a) + Yy Yy 1 (@i]5)Q(s, @)
4) f(s,a)—0 VseS,aed
(5) for each download request y, (y, D) - episode do
(6) define state s(k,h,d) - d = D,h = y,k randomly generated using (6)
(7)  while download is not complete (h>0) do
(8) if Q(s,Va) is same then
9) choose action a at random

(10) else

(11) choose a = argmin, Q(s,a)

12) end if

13) take action a

(14) update y (s,a) by using (13)

(15) if d >0 then

(16) obtain Q(s,a) using (9)

a7) obtain s (k,h',d) -d =d -1,k

(18) update Q(s,a) by using (12)

19) se—s

(20) else

(21) obtain Q(s,a) using (10)

(22) update Q(s,a) = Q(s,a)

(23) break

(24) end if

(25) end While

(26) end for

ALGORITHM 1: Training of Q-agent.

Since Q-learning is a model-free iterative learning algo-
rithm, it is important that exploration and exploitation
should be simultaneously performed. The agent must ob-
serve the effect of taking different actions in a given state and
progressively favor ones with the minimal cost [17].

In most of the existing literature [7], the e—greedy method is
utilized, in which an agent explores with probability ¢ and
exploits with probability 1 — €. However, in this work, we did
not employ any method for coping up with this trade-off as the
Q-learning algorithm by default has a feature which causes it to
switch between exploration and exploitation modes, during the
training of the Q-agent. For example, V (s,a) pairs if Q(s, a)
values are initialized to the same value, then random policy can
be executed for breaking the ties; here, the use of random policy
is equivalent to the exploration mode. Moreover, if we carefully
evaluate (12), when an (s,a) pair is visited for a number of
times, its Q value increases. Since, in this work, the agent is
required to find the action in a state with the smallest Q value,
the less visited (s,a) pairs by default get a chance to be ex-
plored. Thus, this insight shows that the Q-learning when
defined in terms of a minimization optimization problem, by
default, has the capability of switching between exploration and
exploitation modes.

5. Results and Discussion

We used Python for creating simulation setup and imple-
mentation of Algorithm 1. Unless otherwise specified, the
parameters used for generating the results, presented in this
section, are mentioned in Table 2.

TaBLE 2: The default parameters used for simulating multi-RAT
wireless network scenario and training of Q-agent.

Parameter(s) Value(s)

PP, 46 dBm, 23 dBm

Ao A Ay 10 AP/km?, 100 AP/km?, 300 users/km’
B, B, 50 MHz, 10 MHz
pc)plcy) 3 Mbps, 1 Mbps

p(wy), p(w,) 3 Mbps, 1 Mbps
9(0),9(1),(2) 0$/GB, 6$/GB, 2$/GB

Y (h) bh2, h is in Mbits and b = 0.001

For training of the Q-agent, we executed 120 x 10* episodes
of Algorithm 1. The numbers of times the Q-agent observed
certain states, irrespective of the actions taken, are reported in
Figure 2. According to [17], the Q-learning algorithm is
guaranteed to find an optimal solution if the number of visits to
each (s,a) pair is sufficiently large. However, in practical
scenarios, it is highly likely that some states are observed more
often as compared to others. We have reported the results in
Figures 2(a)-2(c) for the states when the remaining file size (h)
to download is 200 Mbits, 500 Mbits, and 800 Mbits, re-
spectively, as a function of remaining delay (d) and users’
location (k). It must be evident from the numbers reported in
Figure 2 that some states are visited more often as compared to
the others. One of the main reasons behind such results is users’
mobility; that is, the locations with higher probabilities are
visited more often as compared to the others. Furthermore, the
states with higher d and larger h are visited less often as evident
from Figure 2. Because, if & = 800 Mbits and d = 10 mint at the



current decision epoch, then at the next decision epoch,
h <800 Mbits and d < 10 mint. This implies that the states with
h < 800 Mbits and d <« 10 mint are visited more often.

We have reported the data offloading policy learned by
the Q-agent in Figure 3, that is, the optimal actions taken by
the Q-agent in the same states as mentioned in Figure 2. We
have included data for only three most important locations
wherein the decision-making is challenging just to give
better insights. For example, the decision is simple at the
locations where both the RATs offer the same data rate, that
is, to offload data through Wi-Fi RAT. However, it is
challenging for Q-agent to choose the correct action at the
locations where both the RATs offer different data rates. For
example, at location (c,, w;), the Wi-Fi RAT offers data rate
which is greater than the cellular RAT; therefore, the
Q-agent has learned to oftload data through Wi-Fi RAT only,
as evident from Figure 3(a). At location (c,, ws), the cellular
RAT is available, but Wi-Fi RAT is not available. The
Q-agent has learned to download data through cellular RAT
in this case, as evident from Figure 3(a), although it can wait
for the availability of Wi-Fi RAT for higher d. However, due
to the stochastic nature of the wireless network, it is possible
that the Q-agent observes locations where both the RATs do
not offer any data rate. That is why, the Q-agent has learned
to download data through cellular RAT even for higher d
which is evident from Figure 3(a). Moreover, since
Q-learning is a model-free learning algorithm, minor
fluctuations in the Q-agents’ decisions are possible because
of the stochastic nature of the environment. At location
(c;, w,), the data rate supported by cellular RAT is higher
than the Wi-Fi RAT. Since h = 200 Mbits, it can be easily
downloaded in zone w, of Wi-Fi RAT for d>4mint.
Therefore, except for d = 6 mint, the Q-agent has learned the
optimal actions at this location; that is, it has decided to
download data through cellular RAT for lower d and offload
data through Wi-Fi RAT for higher d, as evident from
Figure 3(a).

All the actions learned by the Q-agent in Figure 3(b) are
optimal. For larger h and d<7mint, it is important to
download data through cellular RAT when Wi-Fi RAT offers
a lower data rate or not available. In Figure 3(c), we have
reported results for & = 800 Mbits as a function of d and k.
The Q-agent has not learned optimal actions for most of the
states in Figure 3(c), because of larger h, most of these states
have not been visited as evident from Figure 2(c) and already
discussed in previous paragraphs. Thus, if observed, the
Q-agent employs random policy for taking actions in such
never visited states. At location (c;,w,), the Q-agent has
learned to download data through cellular RAT only, as
evident from Figure 3(c), because the data rate supported by
¢, is greater than w,. Moreover, since h = 800 Mbits, the
RAT which offers a higher data rate must be selected to
successfully complete the download before d — 0. Thus,
the Q-agent has learned the optimal actions for these states.
Similarly, at location (c,,w,), the Q-agent has learned to
offload data through Wi-Fi RAT because the data rate
supported by zone w, is greater than c,. Thus, we can
conclude that the Q-agent has learned the optimal actions
for almost all the states. Although it looks like it has learned
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a few incorrect decisions as well, such decisions have been
learned due to the stochastic nature of the environment and
can change over time after sufficient experience.

After each learning episode, the remaining file size (h)
after hitting the deadline (d) is reported in Figure 4. We
have reported the results in Figures 4(a)-4(c) for the ep-
isodes in which the users have generated requests for
v = 200 Mbits, 500 Mbits, and 800 Mbits, respectively. The
episodes are denoted in sorted order from left to right as
a function of delay limit &, and the color bar is used to
represent it. The file with y >200 Mbits cannot be suc-
cessfully downloaded within & = 1 mint no matter which
RAT Q-agent choose in the assumed scenario. Because the
maximum data rate supported by both the RATs is 3Mbps
and in 1 mint at maximum 180 Mbits can be downloaded
given that the user is located in the zone which supports the
maximum data rate. That is why, & = 200 Mbits for almost
all the episodes with & = 1 mint. However, for higher 9,
the Q-agent is trying to minimize the remaining file size,
that is, h — 0 as @ increases which is evident from
Figure 4(a). Moreover, with each learning episode, the
Q-agent has improved its decision-making capability. As it
is evident from Figure 4 that during initial episodes for
most of the cases, the download is incomplete, that is, k> 0.
However, with each passing episode, h has been reduced
and it ultimately approaches to zero. It is important to note
here that for larger y like in Figures 4(b) and 4(c), the
successful download is possible only for higher 9. That is
why, even after learning for a quite large number of epi-
sodes, the agent is unable to successfully complete the
download for certain cases. Nevertheless, given the net-
work availability and higher 9, the agent has learned to
successfully download larger files by taking a correct se-
quence of actions.

The accumulated payment for downloading y bits of
data in & mint is shown in Figure 5 for a few randomly
selected episodes at the end of the training period of the
Q-agent. The minimum payment for downloading v bits of
data, by using Wi-Fi RAT only, is shown by a double-dashed
line in Figure 5. The maximum payment for downloading
ybits of data, by using cellular RAT only, is shown by
a dashed-dotted line in Figure 5. This minimum and
maximum payment limits serve as a reference for evaluating
the performance of the data offloading policy learned by the
Q-agent. The average payment for downloading of a file, as
a result of actions taken by the Q-agent, has been repre-
sented by a solid line. For y = 200 Mbits, the file can be
successfully downloaded for & >4 mints. That is why, for
y = 200 Mbits in Figure 5, the Q-agent has taken the se-
quence of steps, for most of the episodes, which has resulted
in the minimal payment. However, the average payment for
downloading of the file, as a result of the actions taken by the
Q-agent, is above the minimum threshold. This is due to the
stochastic nature of the wireless network because Wi-Fi RAT
may not be available at certain locations and the Q-agent
must download data through cellular RAT to complete the
download in such situations. As a result, the average pay-
ment for download of the file is slightly higher. However, it
must be interesting to note that the average payment is much
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B (s,va) - h = 200 Mbits

B (s, Va) - h = 500 Mbits

B (s, Va) - h = 800 Mbits

10 0 27697 0 10 4 0 27313 0 10 0 27467 0
9 0 27478 0 9 0 27513 0 9 0 27649 0
8 29461 27533 0 8 { 29538 27715 0 8 0 27566 0
7 36305 33059 4840 7 1 36092 32720 4869 7 0 27020 0
g 6 40622 37690 6584 "g 6 1 37336 34193 5999 ’“-g\ 6 0 27577 0
§/ 5 41217 38147 7512 §/ 541 37866 34300 6836 :i’ 5 0 27549 0
4 44739 41643 10267 41 37982 34650 7082 4 0 27377 0
3 46265 43218 11589 34 3839 35133 7325 3 0 27305 0
2 47473 43422 12363 2 4 38407 35043 7202 2 0 27619 0
1 47022 43565 12673 14 38096 34485 6734 1 29468 27513 0
(¢, w,) (¢, w) (c, w,) (¢, w,) (c,, w) (c,, w,) (¢, w,) (c, w) (c, w,)

Location (k)

()

Location (k)
(b) (c)

Location (k)

FIGURE 2: The number of visits by the Q-agent to selected states s(k = (c,, w,), h,d) accumulated over all actions.

m* (s) - h =200 Mbits

* (s) = h = 500 Mbits

7* (s) - h = 800 Mbits

10 * 10 * 10 *
9 1 * 9 * 9 1 *
8 A * * 8 * * 8 - *
7 1 * * A 7 A * A 7 A *
§ 6 A * A ’§ 6 A * A %\ 6 *
£ = £
= 54 * * A = 5 A * A = 5 1 *
4 * * A 4 A * A 4 A *
3 A * A 3 A * A 3 A *
2 A A * A 2 A * A 2 A *
1 1 A * A 1 A * A 1 A *
(cpw,) (c, w) (c, w,) (cpw,) (c,w) (c, w,) (cpw,) (c,w) (c,, w,)
Location (k) Location (k) Location (k)
e a=0 e a=0 e a=
a=1 Aa=1 Aa=1
*x a=2 *x a=2 *x a=

(a)

(b) (c)

FIGURE 3: The actions learned by the Q-agent, a = 7* (s), as a function of states s (k = (c,, w,), h, d). Here, O denotes remain idle, A denotes
download data through cellular RAT, and * denotes download data through Wi-Fi RAT.

smaller than the maximum threshold and closer to the
minimum threshold which implies that the Q-agent has
mostly offloaded data through Wi-Fi RAT.

It must be evident from Figure 5(a) that for y > 500 Mbits,
the average payment for downloading the file is approximately
equal or smaller than the minimum threshold. This is possible
only in those situations in which the file download has not been
completed successfully within the defined &. Since 2 in
Figure 5(a) is only 4 mints, larger files cannot be successfully
downloaded even if the Q-agent chooses the RAT which
supports maximum data rate always. On the other hand, in
Figure 5(b), 2 = 8 mints. As a result, the average payment for

the file download is above the minimum threshold because for
most of the episodes, the Q-agent has successfully downloaded
the files with larger size as well.

We have evaluated the performance of the developed
data offloading policy learned by the Q-agent and compared
it with the standard policies and analytical (Ana.) approach
presented in [4]. The evaluation results are reported in
Figure 6. In always oftfload (AO) policy, the data are
downloaded by using Wi-Fi RAT only. In no oftfload (NO)
policy, the data are downloaded using cellular RAT only. In
on-the-spot offload (OTSO) policy, the data are offloaded
through Wi-Fi RAT whenever it is available. Otherwise, it is
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FiGgure 5: Continued.
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FIGURE 5: Accumulated payment at the end of a few randomly selected episode as a function 9. (a) @ = 4mint. (b) & = 8 mint.
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FIGURE 6: Performance evaluation of the data offloading policy learned by the Q-agent developed in this work and existing offloading

policies, as a function of users’ request y (y = 500 Mbits, &
file size (h) after the defined delay timer () expires.

downloaded using cellular RAT. The data offloading policy

presented in [4] is obtained by using a policy iteration al-
gorithm which is the model-based RL algorithm. In
Figure 6(a), we report the average payment a user has to pay
for downloading y = 500 Mbits as a function of &. Similarly,
in Figure 6(b), we report the remaining file size (h) after the
given delay timer () expires. These average results have
been obtained after executing each existing policy and the
one learned by the Q-agent for 1000 iterations.

): (a) the payment in ($) for entertaining a given user request and (b) remaining

The NO approach has resulted maximum payment, which

is evident from Figure 6(a), because the cost of using cellular
RAT is larger as compared to the Wi-Fi RAT. Moreover, due to
users’ mobility and unavailability of cellular RAT at certain
locations, the NO approach could not successfully download
the file even for larger & > 7 mint, as evident from Figure 6(b).
Similarly, the AO approach has resulted in minimum payment,
as evident from Figure 6(a), because the cost of using Wi-Fi

RAT is smaller as compared to the cellular RAT. However, due
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to users’ mobility and unavailability of Wi-Fi RAT at certain
locations, it suffers from the same issue of incomplete data
download even for larger 2 >7mint, as evident from
Figure 6(b). Since OTSO exploits both the RATs given their
availability and prefers Wi-Fi RAT over cellular RAT, the cost
for downloading data is smaller than NO and is slightly larger
than AO which is evident from Figure 6(a). Moreover, since the
OTSO approach is using both the RATSs, it has successfully
completed the download request for larger & >7 mint, as
evident from Figure 6(b). The Ana. approach presented in [4]
uses both the RATs for data download; however, for lower delay
limits, it prefers the RAT which offers a higher data rate so that
the data download can be completed. That is why, in
Figure 6(a), the payment for Ana. approach is slightly larger and
the remaining file size in Figure 6(b) is slightly smaller than the
OTSO approach.

As evident from the results reported in Figure 6, for delay
limits & < 7 mint, the performance of data offloading policy
learned by the Q-agent is comparable to the model-based
analytical approach. Although the payment of the Ana.
approach and Q-agent is slightly higher compared to the
OTSO and AO policies, k is much smaller as evident from
Figure 6(b). This implies that these approaches have tried to
complete the download without waiting for the availability
of Wi-Fi RAT because 9 is short. On the other hand, for
2 >7 mint, the OTSO, Ana., and Q-agent have successfully
completed the download of the file. However, for larger 9,
the payment of the Ana. approach is slightly higher because
it has downloaded data through cellular RAT without
waiting much for the availability of Wi-Fi RAT. Since & is
large, the Q-agent has waited for the the availability of Wi-Fi
RAT in this case and tried to minimize the payment as well.
The AO policy has obtained minimal payment because it
always downloads data through Wi-Fi RAT. Thus, it is clear
that close to the best and stable performance has been of-
fered by the Q-agent for different 2. For lower 9, it tried to
complete the download at the cost of slightly larger payment.
On the other hand, for higher &, it tried to minimize the
payment while successfully completing the download.

6. Conclusion and Future Work

In this work, we developed an Al-enabled Q-agent for
making data oftloading decisions in a multi-RAT wireless
network by using a model-free Q-learning algorithm. Al-
though model-free learning algorithms offer quite a good set
of features, their successful implementation poses various
challenges. Therefore, we also discussed a few of the chal-
lenges along with their possible solutions. For speeding up
the learning process, we initialized the Q(s, a) values of the
Q-learning algorithm by employing a single back-up sweep.
Moreover, we exploited an inherit feature offered by the Q-
learning algorithm, by redefining it in terms of expectation
minimization problem, to balance the trade-off between
exploration and exploitation modes. We evaluated the
performance of the trained Q-agent and also compared
against an existing analytical data offloading approach [4]
and other offloading policies like always offload, no oftload,
and on-the-spot offload. The results showed that the
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performance of the Q-agent developed in this work is near
optimal for different data download requests. For lower
delay limits, the performance of the Q-agent for making data
offloading decisions is close to the model-based approach
presented in [4] which tries to complete the download at the
cost of a higher payment. For higher delay limits, its per-
formance is close to the on-the-spot oftloading policy which
tries to minimize the payment. Thus, the Q-agent has
learned to make intelligent and near optimal decisions under
different situations. The future work includes the develop-
ment of such adaptive and optimal agents for 6G wireless
networks by using advanced AI techniques such as DQN or
double DQN.
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