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Onjisaponin B (OB) is the main active ingredient of Radix Polygalae with various bioactivities. However, the protective efect of
OB in Parkinson’s disease (PD) has not been fully studied. Liposomes are ideal nanocarriers for drugs targeting the brain. In this
study, we investigated the therapeutic efect of OB-loaded liposomes (lip OB) on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-
(MPTP-) inducedmousemodel of PD and 1-methyl-4-phenylpyridinium- (MPP+-) induced cell model of PD. Our results showed
that lip OB signifcantly ameliorated MPTP-induced motor defcits and dopaminergic neuron loss in vivo and prevented MPP+-
triggered cell viability reduction and apoptosis in vitro. Lip OB also improved mitochondrial dysfunction in PDmodels by driving
PINK1/Parkin-mediated mitophagy. Furthermore, silencing PINK1 compromised the benefcial efects of lip OB on MPP+-
treated PC12 cells. Tese fndings suggested lip OB mitigates Parkinsonism in vivo and in vitro by enhancing mitochondrial
dysfunction through the PINK1/Parkin pathway of mitophagy, which provides a new possibility for treating PD.

1. Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder that aficts millions of people
worldwide [1]. α-synuclein accumulation and Lewy body
formation are the pathological hallmarks of PD and even-
tually cause severe dopamine depletion in the substantia
nigra pars compact (SNpc) as well as motor defects, such as
bradykinesia and motor rigidity [2]. To date, there is no cure
for PD, and current therapy is limited to supportive care that
partially relives the symptoms [3].

Mitochondria are considered as the “powerhouse” of the
cell, and their main function is to generate adenosine 5′
triphosphate (ATP) at the mitochondrial electron transport
chain (ETC) [4]. Mitochondria also mediate calcium

homeostasis, oxidative stress response, and programmed cell
death [5]. Although the precise mechanism of PD patho-
genesis remains elusive, mitochondrial dysfunction has been
identifed to have a vital role in the neurodegenerative
process of PD [6]. Previous evidence suggests that high levels
of mitochondrial DNA deletion occurred in the substantia
nigra neurons from PD patients [7]. In addition, mito-
chondrial ETC inhibitors such as trichloroethylene and 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) in-
duced parkinsonism in humans and experimental animals
[5, 8].

Autophagy is a highly conserved cellular recycling
process that serves to deliver cytoplasmic constituents to
lysosomes for degradation, and plays important roles in cell
survival and maintenance [9]. Te selective degradation of
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mitochondria by autophagy is termed as mitophagy, which
eliminates dysfunctional mitochondria and prevents ATP
defciency and ROS accumulation resulting in oxidative
stress and cell death [10]. PINK1 is a serine/threonine kinase
localized at mitochondria, and Parkin is an E3 ubiquitin
ligase resides in the cytosol [11]. Te PINK1/Parkin-
mediated mitophagy is the most studied mitophagy path-
way. PINK1 detects damaged mitochondria and then re-
cruits Parkin to ubiquitinate the dysfunctional mitochondria
for their degradation by autophagy [12]. Previous studies
have provided clear evidence to support the involvement of
the PINK1/Parkin pathway of mitophagy in the patho-
genesis and treatment of PD [13, 14].

Liposomes, fabricated from the self-assembly of phos-
pholipids, have been widely used as a drug delivery system to
the brain [15]. Depocyt is a cytarabine liposomal injection
that is F.D.A. approved for the treatment of neoplastic
meningitis through spinal injection [16]. Depocyt could treat
neoplastic meningitis with the controlled release of Ara-C.
Kasenda et al. carried out evaluation of targeted immuno-
liposomes for the treatment of epidermal growth factor
receptor- (EGFR-) positive glioblastoma by clinical trial.
Tey found that anti-EGFR immunoliposomes can target
EGFR-amplifed glioblastoma [17]. As an ideal nanocarriers
for the central nervous system, liposomes improve the
bioavailability of drugs and minimize systemic efects of
drugs by enhancing BBB penetration, targeting a specifc
group of cells, and avoiding premature metabolism [18].
Onjisaponin B (OB) is an active compound derived from
Radix Polygalae, which exerts neuroprotective efects in
neurodegenerative disorders, such as AD and PD [19, 20].
Existing evidence shows that OB successfully ameliorated
DA neurons degeneration and motor defcits by enhancing
autophagy and decreasing oxidative stress in a mouse model
of PD [19, 21]. OB was also demonstrated to promote the
clearance of α-synuclein mutants (a central component to
the pathogenesis of PD) in PC12 cells via autophagy acti-
vation [22]. However, the therapeutic efect of OB-loaded
liposomes has not been studied.

Liposomes as drug carriers have the following three
main advantages: (1) simplifed manufacturing method, (2)
ability to encapsulate a wide range of drugs and molecules
and are not limited by other physicochemical properties
such as hydrophobicity and charge, and (3) bio-
compatibility. In the aqueous environment, the hydro-
phobic tail forms a spherical structure composed of an
aqueous core, which is surrounded by a lipophilic bilayer
membrane. Liposomes can be controlled by changing the
lipid composition because they are biocompatible and
biodegradable. In addition, liposomes can be subjected to
various modifcations to enhance their efcacy as drug
delivery carriers.

To address this issue, the present study explored the
efects of lip OB in cell and mouse models of PD. We found
that lip OB rescued motor defects, dopaminergic neurons
degeneration in vivo, and improved cell survival in vitro.
Furthermore, these efects are related to the restoration of
mitochondria dysfunction by activating the PINK1/Parkin
signaling of mitophagy.

2. Results

2.1. Lip OB Rescues MPTP-Induced Motor Defcits and Do-
paminergic Neurons Degeneration In Vivo. MPTP is a neu-
rotoxin that can induce PD symptoms in humans and rodent
animals by metabolizing into 1-methyl-4-phenylpyridinium
(MPP+) that enters dopaminergic neurons, where it inhibits
respiratory chain complexes [23]. To evaluate the protective
efects of lip OB on PD, an MPTP-induced PDmouse model
was employed. Following administration with free or lip OB,
the latency to fall (MPTP: 158.9± 21.12 s, MPTP+ free OB:
183.0± 18.79 s, MPTP+ lip OB: 212.5± 10.98 s, Control:
222.0± 9.506 s) in the rotarod test was signifcantly in-
creased, and the time spent turning around (MPTP:
3.489± 0.3951 s, MPTP+ free OB: 2.800± 0.4183 s,
MPTP+ lip OB: 2.133± 0.4924 s, Control: 2.078± 0.4381 s)
and climbing down (MPTP: 13.01± 1.101 s, MPTP+ free OB:
11.14± 1.467 s, MPTP+ lip OB: 9.078± 1.287 s, Control:
7.078± 1.039 s) in the pole test were evidently decreased
relative to the MPTP group (Figures 1(a)–1(c)).

Next, we examined lip OB-induced efects on dopami-
nergic degeneration in the SNpc (Figure 1(d)). As expected,
TH-positive cells in theMPTP group were greatly reduced as
compared to those in the controls. However, free or lip OB
treatment greatly inhibited the death of TH-positive neurons
(MPTP: 4522± 1181, MPTP+ free OB: 7553± 447.2,
MPTP+ lip OB: 8397± 1024, Control: 11107± 1530). It is
noteworthy, that lip OB showed better efects than free OB
on mitigating MPTP-induced behavioral dysfunction and
dopaminergic neurons loss. Collectively, these results sug-
gest that lip OB could ameliorate PD-related motor im-
pairments and dopaminergic neurons degeneration.

2.2. Lip OB Remedies MPTP-Induced Mitochondrial Dys-
function In Vivo. Mitochondrial dysfunction is tightly
linked to PD pathogenesis [24]. Mitochondrial Complex I is
the largest multimeric enzyme complex of the mitochondrial
respiratory chain, the inhibition of which leads to ATP
depletion and ROS generation responsible for oxidative
stress [25]. Complex I defciency has been reported in PD
patients [24, 26]. To explore the role of OB in mitochondrial
function, we detected the levels of Complex I, ATP, and
oxidative stress. As shown in Figure 2, MPTP treatment
reduced the activities of Complex I and ATP and elevated
the generation of MDA and SOD. Nonetheless, the afore-
mentioned efects were all successfully reversed by lip OB
administration. In contrast, free OB only signifcantly res-
cued the SOD levels. Tese results indicated that lip OB
restores MPTP-induced mitochondria dysfunction.

2.3. Lip OB Induces Mitophagy by Activating PINK1/Parkin
Pathway. Mitophagy is a selective form of autophagy, which
controls mitochondrial quality by removing damaged mi-
tochondria and is involved in the pathology of Parkinson’s
disease [13, 27]. Te PINK1/Parkin pathway is reported to
play an essential role in triggering mitophagy [28]. We thus
investigated whether OB-induced improvement in mito-
chondria function is associated with PINK1/Parkin-
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Figure 1: Lip OB reduces motor impairments and dopaminergic neuronal loss in mice exposed to MPTP. (a) Latency to fall in the rotarod
test (n� 9). (b, c) Time of turning downward and reach the bottom in the pole test (n� 9). (d) Representative pictures and quantifcation of
TH+ neurons in the SNpc of mice exposed to MPTP (n� 3). Scale bar: 100 μm. Data were expressed as means± SD. ∗P< 0.05, ∗∗P< 0.01
compared with MPTP group.
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Figure 2: Continued.
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dependent mitophagy. During autophagy, ATG5 and LC3-I
to LC3-II conversion are involved in autophagosome for-
mation [29]. LAMP2A locates in the lysosomal membrane
and is responsible for the protein translocation from the
cytosol to the lysosomal lumen [30]. P62 is an autophago-
some cargo protein that is critical for the clearance of
ubiquitinated proteins [30]. In the western blotting, MPTP-
induced a notable decrease in PINK1 and Parkin expression,
accompanied by a signifcant reduction in ATG5 expression,
LC3-II/LC3-I ratio and LAMP2A levels, and an increase in
P62 expression (Figure 3). Interestingly, these efects were all
reversed after treatment with lip OB, while free OB only
rescued the protein levels of ATG5 and P62. Together, these
data suggest that lip OB activates PINK1/Parkin-mediated
mitophagy in the PD mouse model.

2.4. Lip OB Improves Cell Survival and Mitochondrial
Function inMPP+-Treated PC12 Cells through PINK1/Parkin
PathwayofMitophagy. To explore the benefcial efects of lip
OB on Parkinson’s disease in vitro, PC12 cells were pre-
treated with lip OB for 6 h, followed by exposure toMPP+ for
24 h. Given that the maximum concentration that had no
efect on decreasing cell viability was 0.8 μM for lip OB, this
dose was chose as the high dose in in vitro experiments
(Figure 4(a)). As shown in Figures 4(b)–4(d), lip OB alle-
viated MPP+-induced cell viability reduction (MPP+:
61.56± 7.751%, MPP+ + 0.2 μM: 74.60± 4.947%, MPP+
+ 0.4 μM: 79.26± 9.155%, MPP+ + 0.8 μM: 86.89± 4.902%,
Control: 100.0± 6.738%) and apoptosis (MPP+: 17.49±
0.5838%, MPP+ + 0.2 μM: 13.82± 0.6817%, MPP++ 0.4 μM:
13.09± 0.5565%, MPP+ + 0.8 μM: 10.53± 0.5216%, Control:
7.770± 0.5963%) in a dose-dependent manner in PC12 cells.

Te mitochondrial function was assessed by evaluating
the mitochondrial respiration, mitochondrial membrane
potential, and ROS generation. Te oxygen consumption
rate (OCR) data demonstrated that MPP+ suppressed

basal respiration, ATP production, maximal respiration,
and spare capacity in PC12 cells (Figures 5(a) and 5(b)).
However, lip OB ameliorated the results. Also, weakened
mitochondrial membrane potential (reduced JC-1 ag-
gregate/monomer percentage; Figure 5(c)) and increased
ROS production (Figure 5(d)) were detected following
MPP+ treatment, which were recovered by lip OB
administration.

We next tested whether PINK1/Parkin-mediated
mitophagy was involved in lip OB-generated benefcial ef-
fects in Parkinson’s disease in vitro. In line with in vivo
results, lip OB successfully blocked MPP+-induced increase
in P62 expression and a decrease in PINK1, Parkin, ATG5,
and LAMP2A levels, as well as LC3-II/LC3-I ratio
(Figures 6(a) and 6(b)). Te GFP-LC3-mitochondria
colocalization showed that lip OB attenuatedMPP+-induced
loss in the colocalization of GFP-LC3 and mitochondria
(Figure 6(c)).

Overall, these fndings suggested that the damaging
efects of MPP+ on neuronal survival and mitochondrial
function were well restored with lip OB administration by
afecting the PINK1/Parkin pathway of mitophagy.

2.5. Silencing PINK1Abrogated the Protective Efects of LipOB
on MPP+-Treated PC12 Cells. To investigate whether the
PINK1 pathway was required in the protective efect of lip
OB against Parkinson’s disease, PINK1 siRNA knockdown
was performed in PC12 cells. As illustrated in Figures 7(a)
and 7(b), PINK1 knockdown successfully abolished lip OB-
induced efects on Parkin and autophagic protein levels in
MPP+-treated PC12 cells. In addition, the benefcial efects
of lip OB on cell viability reduction (scramble siR-
NA+ vehicle: 59.44± 3.290%, scramble siRNA+OB:
84.68± 6.005%, PINK1 siRNA+ vehicle: 47.74± 3.005%,
PINK1 siRNA+OB: 55.95± 6.631%), apoptosis (scramble
siRNA+ vehicle: 18.71± 1.690%, scramble siRNA+OB:
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Figure 2: Lip OB improves mitochondrial dysfunctions in mice exposed to MPTP. Te levels of Complex I, ATP, MDA, and SOD in the
SNpc were determined using the commercial kits. Data were expressed as means± SD (n� 6). ∗∗P< 0.01 compared with the MPTP group.

4 Journal of Clinical Pharmacy andTerapeutics



PINK1 63 kD

52 kD
32 kD

55 kD

16 kD
14 KD

62 kD

100 kD

42 kD

Parkin
VDAC1

ATG5

LC3 I
LC3 II

P62

LAMP2A

β-Actin

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

(a)

**

**

**

**

**
**

**

** **
*

*

****
*

0.0
0.5
1.0
1.5
2.0
2.5

PI
N

K1
/V

D
AC

1
0.0

0.5

1.0

1.5

2.0

LC
3 

II
/L

C3
 I

0.0

0.5

1.0

1.5

P6
2/

β-
Ac

tin

0.0
0.5
1.0
1.5
2.0
2.5

LA
M

P2
A

/β
-A

ct
in

0.0
0.5
1.0
1.5
2.0
2.5

AT
G

5/
β-

Ac
tin

0

1

2

3

Pa
rk

in
/V

D
AC

1

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

M
PT

P

M
PT

P+
Fr

ee
 O

B

M
PT

P+
Li

p 
O

B

C
on

tro
l

(b)

Figure 3: Lip OB enhances PINK1/Parkin pathway of mitophagy in mice exposed to MPTP. (a) Representative images of mitophagy in the
western blot analysis. (b) Quantitation of PINK1, Parkin, ATG5, LC3, P62, and LAMP2 levels in the SNpc. Data were expressed as
means± SD (n� 3). ∗P< 0.05, ∗∗P< 0.01 compared with the MPTP group.
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Figure 5: Lip OB improves mitochondrial defects in MPP+-treated PC12 cells. (a, b) Te infuence of lip OB on mitochondrial respiration,
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7.920± 0.9560%, PINK1 siRNA+ vehicle: 18.23± 2.640%,
PINK1 siRNA+OB: 14.27± 3.172%), and mitochondrial
functions (mitochondrial membrane potential and ROS
production) in MPP+-treated PC12 cells were also dis-
appeared after silencing PINK1 (Figures 7(c)–7(g)). Tese
data indicated that the PINK1 pathway is required in lip OB-
induced protective efects in Parkinson disease.

3. Discussion

PD is a common neurodegenerative disorder that is clini-
cally characterized by tremor, gait rigidity, and hypokinesia
[31]. Te morbidity of PD presents signifcant healthcare,
social, and economic issues [32]. However, there is no
available treatment that can halt the progression of the
disease. In the present study, we investigated the therapeutic
efect of OB-loaded liposomes on PD. We found that lip OB
signifcantly reduced the motor impairment and dopami-
nergic neuron loss in PD models. In addition, enhancement
of mitochondrial function was observed following lip OB
treatment, which was associated with PINK1/Parkin
signaling-mediated mitophagy.

OB is a major component from the herbal medicine
Radix Polygalae. OB possesses strong biological activities
and has displayed therapeutic efects in several disease
models, including PD [21, 33, 34]. In our work, OB rescued
MPTP-induced motor dysfunction and dopaminergic
neuron death in a mouse model of PD, confrming the
protective role of OB in PD. Furthermore, lip OB displayed
a better efect on ameliorating Parkinson-like syndrome
relative to free OB, supporting the strength of liposomes
served as a drug delivery system to the brain.

Mitochondria are the main sites of biological energy
generation in eukaryotes and regulate a wide variety of
cellular functions, including ATP production, calcium
bufering, ROS production, and scavenging [35]. Mounting
evidence suggests that mitochondria play an important role
in PD [36, 37]. For example, mitochondrial respiratory chain
defciency such as reduced Complex I activities was seen in
the skeletal muscle, platelets, and substantia nigra of patients
with PD [38]. Postmortem studies have shown high levels of
oxidation of lipids and proteins in the substantia nigra of PD
brains [39]. Andrographolide restored mitochondrial
functions by inhibiting mitochondrial excessive division,
which ultimately mitigated Parkinsonism inMPTP-PDmice
[40]. Consistent with these studies, we found that MPTP or
MPP+ modeling impaired mitochondrial respiration and
mitochondrial membrane potential and aggravated ROS
accumulation and oxidative stress response, suggesting the
involvement of mitochondrial dysfunction in PD. While
treatment with lip OB attenuated PD symptoms by en-
hancing mitochondrial functions, it highlighted the critical
role of mitochondria restoration in the treatment of PD.

Mitochondria selective autophagy, termed as mitophagy,
is a mechanism of elimination of mitochondria via auto-
phagy, and mediates mitochondrial quality control and
homeostasis [41]. In mammalian cells, the mitochondrial
kinase PINK1 and the E3 ubiquitin ligase Parkin act in
coordination in monitoring mitochondrial functional state

and tags damaged mitochondria for autophagic clearance
[42]. Te alternation of PINK1/Parkin-mediated mitophagy
in PD has been documented in previous studies [12, 43].
Mutations in the PINK1 and Parkin result in autosomal
recessive and juvenile parkinsonism [44, 45]. δ-opioid re-
ceptor (DOR) activation rescued PD-related mitochondrial
damage by driving the PINK1/Parkin pathway of mitoph-
agy. While knockdown of PINK1 aggravated mitochondrial
dysfunction and compromised DOR-induced cytopro-
tection against MPP+ [46]. Huang et al. found that vasici-
none suppressed ROS production, improved mitochondrial
membrane potential, and prevented paraquat-induced PD
through enhancing mitophagy; however, inhibition of
mitophagy abolished the ameliorating efect of vasicinone in
PD [47]. In our study, the PINK1/Parkin pathway of
mitophagy was suppressed in the cell and mouse models of
PD and was successfully activated following lip OB treat-
ment. Furthermore, PINK1 siRNA knockdown blocked lip
OB-generated therapeutic efects in PD. Tese fndings
supported the importance of PINK1/Parkin-mediated
mitophagy in the etiology and treatment of PD.

In conclusion, this study demonstrated that lip OB plays
a protective role in PD by enhancing mitochondria function
via PINK1/Parkin-mediated mitophagy. Our study shows
the potential of lip OB in treating PD.

4. Materials and Methods

4.1. Preparation and Characterization of OB-Loaded
Liposomes. OB-loaded PEG/cyclic Arg-Gly-Asp (cRGD)
dual-modifed liposomes were prepared using the thin-flm
dispersion method [48]. Briefy, SPC, cholesterol, PEG-
DSPE, and SH-PEG-DSPE were dissolved at a molar ratio of
80 :15 : 3:2 in chloroform. Tis mixture was rotated in
a rotary evaporator at 37± 5°C for 10min. Te thin flm was
dissolved in chloroform and mixed with a 120mmoL/L
calcium acetate solution (pH 7.3). Liposomes were sonicated
at 300W, 5min in an ice bath, and then fltered through
a 220 nM pore size polycarbonate membrane. Liposomes
preformed in calcium acetate solution (inside pH 7.3) were
rinsed twice in 120mmoL/L sodium sulfate solution (outside
pH 5.9) by ultracentrifugation at 100 000 × g and 4°C for
60min. Afterwards, onjisaponin B (>98% purity; MUST
Bio-technology) in 120mmoL/L sodium sulfate solution was
added. Liposomes were then ultracentrifugated at 100 000 ×

g and 4°C for 60min. Finally, the liposomes were incubated
with the Mal-cRGDyk peptide at an equimolar amount of
SH-PEG-DSPE at 37°C for 2 h.

Temorphology of the prepared liposomes was observed
under a transmission electron microscopy (HT7700,
HITACHI; Figure S1A). Te size distribution and zeta
potential of liposomes were determined using a Nano ZS90
Zetasizer (Figures S1B and S1C).

To determine the body biodistribution profle of lip OB,
C57BL/6J mice were injected with MPTP (30mg/kg) twice
a week for 3weeks. At 6 h post the last MPTP treatment,
DiR-labeled liposomes including Lip, Lip-PEG, Lip-cRGD,
and Lip-PEG-cRGD were given to mice by intravenous
injection. At 12 h postliposome administration, the images
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Figure 7: PINK1 inhibition compromised the protective efects of lip OB in MPP+-treated PC12 cells. (a, b) Representative gels of
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of the mice were derived using the fuorescence imaging
system IVIS Lumina II (IVIS; Figure S1D). Hereafter, mice
were euthanized, and the brains were harvested and imaged
using the IVIS.

4.2. Animals Experiments. C57BL/6 mice at 3months of age
were purchased from Shanghai Sipper-BK Laboratory An-
imal Co. Ltd (Shanghai, China). Te animals were group-
housed and maintained under a 12-hour light/dark cycle
with free access to food and water. Te animals were
managed according to procedures approved by Jiangsu
University.

After a week of acclimatization, mice were divided into
four groups at random (n� 9 per group): control, MPTP,
MPTP+ free OB, andMPTP+ lip OB groups. MPTP (30mg/
kg/day; Sigma) was given by intraperitoneal (i.p.) injection
twice a week for 3weeks. At 6 h post the last MPTP treat-
ment, free and lip OB were administered (i.v.) at a dose of
5mg/kg.Te control group received i.v. and i.p. injections of
the same dose of normal saline. Te MPTP group received
i.p. injection of MPTP and i.v. administration of the same
dose of normal saline. Twelve hours after OB treatment, the
rotarod test and pole test were performed subsequently.
Afterwards, mice were euthanized by cervical dislocation for
tissues sampling.

4.3. Cell Culture and Treatment. Te PC12 cell line was
obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China) and cultured in Dulbecco’s
modifed Eagle medium containing 10% fetal bovine se-
rum (FBS; Gibco) and 1% antibiotic at 37°C in a humid-
ifed atmosphere containing 5% CO2. Cells were treated
with 0.2–0.8 μM of free or lip OB for 6 h, followed by
exposure to 5 μM MPP+ (Sigma) for 24 h. For gene
knockdown, the cells were transfected with PINK1 siRNA
prior to OB administration as described below. Te MPP+
concentration and OB treatment time window were de-
termined by the MTT and western blotting assays, re-
spectively (Figure S2).

4.4. RNA Interference of PINK1. To inhibit of PINK1 ex-
pression, PC12 cells seeded in 6-well plates were transfected
with specifc PINK1 siRNA for 12 h using the Lipofectamine
3000 according to the manufacturer’s instructions. Te
transfection efciency was evaluated by the western blot
analysis (Figure S3).

4.5. Rotarod Test. Motor balance and coordination were
evaluated using a rotarod apparatus as previously described
[49]. Mice underwent two trails (6min per trail, with an
accelerated speed of 12–20 rpm) per day for 2 consecutive
days prior to the assessment. Ten, the animals were tested
for 5min (constant 20 rpm). Te latency to fall of the ro-
tating rod was recorded as latency time. A decreased latency
time is associated with a motor defcit.

4.6. Pole Test. Te pole test was conducted to measure
bradykinesia as reported previously [49]. Te apparatus
consisted of a rough-surfaced wooden pole (50 cm in height,
1 cm in diameter) with a ball placed on top. Te base of the
pole was covered with bedding to protect mice from injury.
Mice were positioned upward at the top of the pole.Te time
required for the mice to completely turn downward and
reach the bottom was recorded. All mice were pretrained
with the pole three times prior to the assessment.

4.7. Immunohistochemical Analysis. Te technique we used
was performed as reported previously [50]. Sections were
washed in PBS, permeabilized in 0.5% Triton X-100 for
10min, followed by incubation in 3%H2O2 for 20min. After
that, brain slices were blocked with a 5% bovine serum
albumin (BSA) solution for 1 h and incubated with an an-
tibody against TH overnight at 4°C. Te following day,
sections were incubated with the corresponding secondary
antibodies at room temperature for 2 h. Ten, the slices were
stained with 3,3′-diamino-benzidine (DAB), mounted on
glass slides, and coverslipped. Digital images of TH neurons
in SNpc were captured using an Olympus BX52 microscope.

4.8. Measurement of Complex I, ATP, MDA, and SOD.
Te levels of Complex I (ab109721, Abcam), ATP (S0026,
Beyotime), MDA (A003-1-2; Nanjing Jiancheng Bio-
engineering Institute), and SOD (A001-3-2; Nanjing Jian-
cheng Bioengineering Institute) in mice were determined
using the corresponding kits following the manufacturer’s
protocol.

4.9. Western Blotting. Te western blotting analysis was
performed according to a previously described protocol [51].
Briefy, brain tissues and cells were lysed in RIPA bufer
containing protease and phosphatase inhibitors. Te concen-
trations of proteins were determined by a BCA protein assay
kit. Equal amounts of proteins were separated by sodium
dodecylsulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidenedifuoride (PVDF)
membranes. After blocking with 5% BSA for 1h, the blots were
incubated with primary antibodies against PINK1 (DF7742,
Afnity), Parkin (AF0235, Afnity), ATG5 (DF6010, Afnity),
LC3 A/B (ab128025, Abcam), P62 (39749, CST), and LAMP2A
(ab125068, Abcam) overnight at 4°C. Antibodies to VDAC1
(DF6140, Afnity) and β-Actin (AF7018, Afnity) were used as
loading control for mitochondrial and total proteins, re-
spectively. Te next day, the appropriate horseradish peroxi-
dase (HRP)-conjugated secondary antibody (ab7090, Abcam)
was added for further incubation for 90min at room tem-
perature. Te protein bands were visualized with enhanced
chemiluminescence reagents (ECL), and their densities were
quantifed using ImageJ (NIH). Tissue and cell mitochondrial
extraction was performed using the mitochondrial isolation kit
(C3606, C3601, and Beyotime) following the manufacturer’s
protocols.
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4.10. MTT. Cell viability was evaluated by the 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide the
(MTT) assay. Cells were plated in 96-well plates at a density
of 5×103 cells per well. After pretreatments with MPP+, OB,
or MPP+ plus OB, MTT was added and cultured at 37°C for
4 h, followed by exposure to DMSO. Te optical density
(OD) was analyzed at 570 nm on a Microplate Reader
(Termo Scientifc, USA).

4.11. Flow Cytometric Detection of Apoptotic Cells. Te
Annexin V-FITC apoptosis detection kit (C1062S, Beyo-
time) was used to assess cell apoptosis in accordance with the
manufacturer’s instruction. Briefy, after treatment, cells
were harvested, washed with ice-cold PBS, and resuspended
with binding bufer. Next, cells were incubated with Annexin
V-FITC (5 μL) and PI (5 μL) at room temperature for
15min. Finally, the cell apoptotic rate was measured by
a BD-LSR fow cytometer using the CellQuest software.

4.12. Seahorse Respiration Assay. Te mitochondrial oxygen
consumption rate was measured using a Seahorse XFe96
extracellular fux analyzer as previously described. Briefy,
cells were seeded at 5×103 cells/well in the XFe96-well cell
culture microplate till they reached 80% confuency. Ten,
OB was added to the media for 6 h, followed by MPP+
exposure for 24 h. Basal respiration was measured before the
sequential injection of the following inhibitors: oligomycin
(1 μM), FCCP (1 μM), and rotenone and antimycin A (1 μM).

4.13. Mitochondrial Membrane Potential (MMP) Assay. A
JC-1 kit (Invitrogen) was used to observe the mitochondrial
potential. Cells were incubated with a diluted JC-1 reagent
(1 :1000) at 37°C for 20min. After rinsing with PBS, cells
were observed under a fuorescence microscope. At a high
MMP, JC-1 forms aggregates (red fuorescence; 550 nm
excitation/600 nm emission) inside mitochondria, whereas
in a low MMP state, JC-1 remains as a monomer (green
fuorescence; 485 nm excitation/535 nm emission). Te ratio
of fuorescence red/green fuorescence intensity was quan-
tifed using the ImageJ software (NIH).

4.14. Determination of ROS Production. Te ROS probe dye
2′,7′-dichlorofuorescein diacetate (DCF-DA) was used to
determine intracellular ROS generation. Cells were loaded
with 10 μM DCF-DA for 30min and then rinsed in PBS
twice. Fluorescent signal detection of cells was performed
using a fow cytometry.

4.15. LC3B-GFP-Adenoviral Transfection. LC3B-GFP-
adenoviral transfection and MitoTracker Red staining were
performed to visualize mitophagy as previously documented
[52]. PC12 cells were transfected with GFP-LC3B adenovirus
for 24 h, treated with OB (0.2, 0.4, and 0.8 μM) for 6 h, and
then exposed to 5 μMMPP+ for another 24 h. After washing
in PBS, cells were stained with MitoTracker Red (500 nM,
CST) at 37°C for 30min to visualize mitochondria. Ten,

cells were washed with PBS and fxed in 4% para-
formaldehyde for 15min. Images were captured using
a Leica confocal microscope.

4.16. Statistical Analysis. Data were presented as the
mean± standard deviation (SD). Comparison between two
groups was analyzed using an unpaired two-tailed t test.
Diferences among multiple groups were determined using
one- or two-way analysis of variance (ANOVA), followed by
a post hoc test (Dunnett’s or Sidak’s multiple comparisons
tests). Statistics were conducted using the GraphPad Prism 8
software. Te criterion of signifcance was set at P < 0.05.
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Supplementary Materials

Figure S1. Characterizations of OB-loaded liposomes. (A)
Morphological analysis of OB-loaded liposomes by trans-
mission electron microscope (scale bar: 200 nm). (B-C) Size
distribution and of Zeta potential distribution of OB-loaded
liposomes determined by a Nano ZS90 Zetasizer. (D)
Fluorescence imaging of MPTP-modeled C57BL/6J mice at
12 hours after intravenous injection of Lip, Lip-PEG, Lip-
cRGD, or Lip-PEG-cRGD. Figure S2. Screening of MPP+
concentration and lip OB administration time window used
in in vitro studies. (A) PC12 cells were exposed to diferent
concentrations of MPP+. Twenty-four hours later, 5 μM
MPP+ reduced the cell viability to 60% (n= 5). (B-D) PC12
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cells were pretreated with lip OB for the indicative time and
then exposed to 5 μM MPP+ for another 24 h. Te LC3-II/
LC3-I ratio and P62 expression were quantifed using the
western blotting.Te OB (6 h) group displayed a better efect
on activating autophagy (n= 3). Data were expressed as
means± SD. ∗P< 0.05, ∗∗P< 0.01 compared with the control
group. Figure S3. Transfection efciency of PINK1 siRNA.
PC12 cells were transfected with PINK1 siRNA for 12 h, and
then the western blot assay was performed. PINK1 siRNA
caused a signifcant decrease in PINK1 expression. Data
were expressed as means± SD. ∗∗P< 0.01 compared with
Scramble siRNA group. (Supplementary Materials)
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