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1. INTRODUCTION

In order to meet high reliability requirement of safety-critical
processes, major progress has been made in fault toler-
ant control systems (FTCSs). FTCSs usually employ fault
detection and isolation (FDI) schemes and reconfigurable
controllers to accommodate fault effects, also known as ac-
tive FTCSs. Most work on reconfigurable controller design
is performed under the assumption of perfect FDI detec-
tions. However, imperfect FDI results are inevitable owing
to disturbances or modeling uncertainties and may corrupt
designated reliability requirement. Therefore, it is necessary
to validate the design of FTCSs from a reliability perspec-
tive.

The reliability of FTCSs has been investigated using var-
ious methods. The key problem is to set up appropriate
reliability models with control objectives and safety require-
ments incorporated. As fault occurrences and system failures
are rare events, dynamic models are usually not suitable
for reliability analysis. For example, Wu used serial-parallel
block diagrams and Markov models for evaluation purpose,
and defined a coverage concept to relate reliability and con-
trol actions [1]. Walker proposed Markov and semi-Markov
models to describe the transitions of fault and FDI modes,
but control actions are not considered [2]. In previous work,

we considered static model-based control objectives and
built a semi-Makov model from imperfect FDI and hard-
deadline concepts [3, 4]. However, in many practical sys-
tems, the safety and reliability of operation are often assessed
based on dynamic system responses. For instance, reliability
in structural control is defined as the probability of system
outputs outcrossing safety boundaries and evaluated by us-
ing Gaussian approximation [5]. Also, an online available re-
liability monitoring scheme using updated information may
aid maintenance scheduling, provide prealarming, and avoid
emergent overhauls. How to evaluate reliability when it is de-
fined based on system trajectory and how to implement an
online-monitoring scheme are the main motivations of this
paper.

The objectives of this paper are threefold. First of all,
a steady-state test (SST) is proposed to reduce false alarms
of FDI decisions. The stochastic modeling of such an FDI
scheme is studied based on which the transition character-
istics of FDI modes can be described. The second objective
is to develop a reliability evaluation scheme for FTCSs based
on system dynamic responses and safety boundary. At last,
online monitoring features are considered, such as estima-
tion of FDI transition parameters based on history data and
timely update of reliability index to reflect up-to-date system
behavior.

mailto:qingzhao@ece.ualberta.ca


2 Journal of Control Science and Engineering

The remainder of this paper is organized as follows: the
assumptions and system structure are given in Section 2; FDI
scheme, modeling, and parameter estimation are discussed
in Section 3; the determination of outcrossing failure rates
and hard-deadlines are discussed in Section 4; the reliabil-
ity model construction is discussed in Section 5 followed
by a demonstration example of an F-14 aircraft model in
Section 6.

2. ASSUMPTIONS AND SYSTEM STRUCTURE

Assumption 1. The considered plant is assumed to have fi-
nite fault modes, and dynamics under each fault mode can
be effectively represented by a linear system model.

Fault modes are represented by a set S with N integers;
{Mi : i ∈ S} represents the set of dynamical plant models
under various fault modes; {K j : j ∈ S} denotes a set of
reconfigurable controllers in a switching structure. K j is de-
signed for fault mode j based on M j , j ∈ S. However, true
fault modes are usually not directly known, so an FDI scheme
is used to generate estimates of fault modes, which may de-
viate from true fault modes with error probabilities.

Assumption 2. FDI scheme is assumed to generate a fault es-
timate based on a batch of measurements and calculations
for every fixed period Tc.

This assumption states a cyclic feature of FDI, such as sta-
tistical tests and interactive multiple model (IMM) Kalman
filters [6]. FDI modes are represented by a discrete-time
stochastic process ηn ∈ S, where n ∈ N, the set of nonnega-
tive integers. The time duration between consecutive discrete
indices is equal to FDI detection period Tc. K j is put in use
when ηn = j, j ∈ S. Corresponding to ηn, a discrete-time
stochastic process ζn denotes true fault mode. In reliability
engineering, constant failure rates are usually assumed for
the main part of component life cycle. In such a case, ζn can
be described as a Markov chain [7], and its transition proba-
bilities are denoted as Gij = Pr{ζn+1 = j | ζn = i}, i, j ∈ S.

Remark 1. The semi-Markov process can be used as a gen-
eral FDI model. It can describe any type of sojourn time
distribution; in contrast, the Markov process model accepts
exponential sojourn time distributions only. More discus-
sions can be found in [4].

Assumption 3. System performance is assumed to be repre-
sented by a vector signal z(t). Safety region, denoted as Ω,
is assumed to be a fixed region in the space of z(t) bounded
by its safety threshold. Failure is assumed to occur when z(t)
exceeds a safety region for the first time.

This assumption intends to define an appropriate relia-
bility index based on system dynamical response. It is com-
mon in control systems to use a signal z(t) to represent
performance, and z(t) is usually to be kept at small values
against influences from exogenous disturbances, modeling
uncertainties, and dynamical characteristic changes caused
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Figure 1: Transitions among regime models.

by faults. Safety region Ω is assumed to be fixed and known
a priori. The scenario that z(t) exceeds Ω represents lost
of control and system failures. More discussions on this as-
sumption can be found in [8].

Definition 1. For a time interval from 0 to t, the reliability
function R(t) is defined as the following probability:

R(t) = Pr
{∀0 ≤ τ ≤ t, z(τ) ∈ Ω

}
. (1)

Mean time to failure (MTTF) is defined as the expected time
of satisfactory operation:

MTTF =
∫∞

0
R(t)dt. (2)

Remark 2. Different from repairs relying on human inter-
vention when system operation is stopped, control actions
are executed automatically and can be deemed as an inter-
nal actions of FTCSs. Therefore, MTTF represents the mean
operational time without human intervention before failure.

Compared with ζn and ηn, z(t) is typically a fast chang-
ing function determined by both continuous and discrete
dynamics. As shown in Figure 1, ζn and ηn are two regime
modes and determine the transitions among regime models.
When ζn = i and ηn = j are fixed, z(t) evolves according to
plant model Mi and controller K j . As a result of this hybrid
dynamics, directly evaluating R(t) and MTTF is a difficult
problem. Therefore, a discrete-time semi-Markov chain Xn
is constructed for reliability evaluation purpose. The main
idea is that the hybrid system is decomposed into various
regime models; each regime model is then evaluated for re-
lated safety characteristics, and Xn is constructed to integrate
these characteristics with transition parameters of regime
modes and to solve its transition probabilities for reliability
evaluation. The structure and main components of reliability
monitoring scheme are illustrated in Figure 2.

Semi-Markov reliability model Xn is the kernel compo-
nent for calculating MTTF. It is constructed based on the fol-
lowing parameters: (1) the transition rates of ζn, called plant
failure rates, (2) the estimates of ζn from FDI and confirma-
tion test, called confirmed fault modes, (3) the parameters of
ηn estimated from history data, called FDI transition charac-
teristics, (4) the probability of z(t) crossing safety boundary
during an FDI cycle Tc when ζn = ηn, called failure outcross-
ing rates, (5) the average number of periods before crossing
safety boundary when ζn �=ηn, called hard deadlines. Among
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Figure 2: System structure.

these parameters, the second and third ones can be updated
online.

3. FDI SCHEME AND ITS CHARACTERIZATION

3.1. Steady-state tests

It is well known that false alarm and missing detection rates
are two conflicting quality criteria of FDI. One is usually im-
proved at the cost of degrading the other. What is worse, the
general rules of adjusting FDI to improve these two crite-
ria simultaneously are often not known. For example, in a
scheme based on IMM Kalman filters, it is not clear how to
determine Markov interaction parameters. Considering that
most false alarms last for short time only, an SST strategy is
adopted for postprocessing FDI decisions.

SST requires that, when FDI decision changes, new
decision is accepted only when it stays the same for a min-
imum number of detection cycles. Let TSST j denote the re-
quired number of consistent cycles for FDI mode j, j ∈ S.
The effectiveness of this SST strategy relies on the distribu-
tion of false alarm durations. For example, if a nonnegative
discrete random variable λ0 denotes the false alarm duration
when system fault mode ζn = 0, TSST0 can be taken as (1−α)-
quantile of λ0, 0 < α < 1, meaning

Pr
{
λ0 > TSST0

} ≤ α, (3)

which implies that false alarm probability can be reduced by
ratio α when accepting FDI decisions after TSST0. The weak-
ness of this method is additional detection time delay of
TSST j when fault occurs. However, this happens only under
rare occurrences of faults. Compared with the improvement
on relatively more frequently transitions of FDI modes, this
weakness is acceptable.

Detection decisions from SST are represented by ηn and
used for controller reconfigurations. In Figure 2, the confir-
mation test is an SST with large test period to further reduce
false alarm probability to a negligible level. It generates con-
firmed fault modes, which are used with FDI trajectories for
updating transition parameters of ηn and reliability index.
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Figure 3: A sample path of ηn.

3.2. Stochastic models

A sample path of ηn is given in Figure 3. Let θm ∈ S and Tm ∈
N denote the FDI mode and cycle index, respectively, after
the mth transition of ηn, m ∈ N. For example, in Figure 3,
θ1 = η5 and T2 = 5. θm and Tm together determine FDI
trajectory, and ηn = θSn , where Sn = sup{m ∈ N : Tm ≤ n}
is the discrete-time counting process of the number of jumps
in [1,n]. (θ,T) � {θm,Tm : m ∈ N} is called a discrete-time
Markov renewal process if

Pr
{
θm+1 = j,Tm+1 − Tm = l | θ0, . . . , θm;T0, . . . ,Tm

}

= Pr
{
θm+1 = j,Tm+1 − Tm = l | θm

} (4)

holds for fixed ζTm = ζTm+1 = · · · = ζTm+1 = k, k, j ∈ S,
l,m ∈ N. ηn = θm is then called the associated discrete-
time semi-Markov chain of (θ,T). It can be shown that θm
is a Markov chain, and its transition probability matrix is de-
noted by Pk.

Given ζTm = ζTm+1 = · · · = ζTm+1 = k, let τki j = Tm+1 −
Tm if θm = i and θm+1 = j, i, j, k ∈ S. τki j is the sojourn time
of ηn between its transition to state i at Tm and the consecu-
tive transition to j at Tm+1. If the transition destination state
is not specified, let τki denote the sojourn time at state i.

As shown in Figure 3, τki j is the sum of two variables: a

constant TSSTi for SST period and a random sojourn time σki j .

Let hki j(l) and gki j(l) denote the discrete distribution functions

of τki j and σki j respectively, which have the following relations:

hki j(l) = Pr
{
τki j = l

} =
{

0, l ≤ TSSTi,

gki j
(
l − TSSTi

)
, l > TSSTi.

(5)

This semi-Markov description provides a general model on
FDI mode transitions, but it involves a large number of pa-
rameters. The transition characteristics of ηn are jointly de-
termined by Pk and hki j (or gki j). If S contains N fault modes,

there are N transition probability matrices Pk and N3 distri-
bution functions hki j . If each hki follows geometric distribu-
tion, the description of ηn may degenerate to a hypothetical
Markov model η′n.

All Markov chains can be considered as a special type of
semi-Markov chains. If ηn can be modeled as a Markov chain
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with transition probability matrix denoted by Hk for ζn = k,
the following relations hold:

Pki j =
Hk
i j

1−Hk
ii

, (6)

hki j(l) =
(
Hk
ii

)l−1
Hk
i j , (7)

hki (l) = (Hk
ii

)l−1(
1−Hk

ii

)
. (8)

It is obvious that hki is a geometric distribution. In fact, this
is an essential property of Markov chain, as shown in the fol-
lowing lemma.

Lemma 1. A discrete-time semi-Markov chain degenerates to a
Markov chain if and only if the sojourn time at each state (when
subsequent state is not specified) follows geometric distribution.

The proof is given in the appendix. WhenTSST is nonzero,
the sojourn time of ηn does not follow geometric distribution
owing to this deterministic constant, and Lemma 1 cannot
be directly applied. However, as TSST is known, a hypotheti-
cal process η′n can be constructed by setting TSST to zeros; if
the sojourn time of η′n is geometrically distributed, it can be
described as a Markov chain; the original sojourn time of ηn
can be recovered by adding TSST to that of η′n. This method
may greatly reduce the number of parameters for character-
izing FDI results.

3.3. Transition parameter estimation

FDI transition parameters can be estimated as an offline test
on FDI when both fault mode and FDI detection results are
known. This estimation can also be carried out online using
FDI history data and confirmed fault modes.

When ηn is modeled as a semi-Markov chain, Pk and hki j
(or gki j) are parameters to be estimated. Pk can be estimated
from the transition history of ηn. For example, when ζn is
kept as a constant k, if there are Mij transitions from i to j
among all M transitions leaving i, the i jth element of Pk can
be estimated as P̂ki j =Mij/M.

The estimation of sojourn time distribution gki j can be
completed in two steps: the histogram of sojourn time is
firstly examined to select a standard distribution such that
nonparametric estimation is converted to a parametric one;
ĝki j is then obtained by estimating unknown parameters in
distribution functions.

If ĝki j follows geometric distribution for all i, j, k ∈ S, ηn
can be described as a hypothetical Markov chain η′n under the
hypothesis that TSSTi = 0. As a result, transition probability
Hk
i j from i to j and sojourn time τki at i have the following

relation:

Pr
{
τki = n

} = (Hk
ii

)n−1(
1−Hk

ii

)
. (9)

Therefore, E(τki ) = 1/(1−Hk
ii), and Hk

ii can be estimated by

Ĥk
ii =

⎧
⎪⎪⎨

⎪⎪⎩

1− 1
∑M

l=1τ
k
i (l)/M

,

∑M
l=1τ

k
i (l)

M
�=0,

1, otherwise,
(10)

where τki (l) denote M sojourn time samples at state i, l =
1, . . . ,M. Hk

i j can be estimated based on the transition fre-
quency from state i to j:

Ĥk
i j =

(
1− Ĥk

ii

)
wk
i j

M
, (11)

where 1−Ĥk
ii is a normalization coefficient andwk

i j represents
the number of FDI transitions from i to j.

4. OUTCROSSING FAILURE RATES
AND HARD-DEADLINES

Owing to FDI delays or incorrect decisions, controller Ki

may be used for its designated regime model Mi (namely,
matched cases) and other model M j , i�= j (namely, mis-
matched cases). Matched cases usually account for major
operation time, while mismatched cases often appear as tem-
porary operation.

Definition 2. The outcrossing failure rate in matched cases is
defined as

vii � Pr
{∃τ, nTc < τ ≤ (n + 1)Tc,

z(τ) �∈ Ω | z(nTc
) ∈ Ω, ζn = ηn = i

}
, i ∈ S.

(12)

Monte Carlo simulation can be used for estimating vii:
sample simulations are performed by using generated sam-
ple uncertain plant model and sample disturbance input; the
simulation time when system fails is called a sample time-
to-failure. With a large number of time-to-failure samples
obtained, vii can be estimated as the ratio between Tc and
sample mean of time-to-failure.

Mismatched cases are usually temporary operation
caused by FDI false alarms or delays, and system may return
to matched cases if z(t) does not diverge to unsafe region.
So, it is important to find out the average tolerable time be-
fore system failure. This time limit is called hard-deadline,
denoted by Thdi j for ζn = i and ηn = j. It can also be esti-
mated by sample mean of time-to-failure using Monte Carlo
simulations.

5. RELIABILITY MODEL CONSTRUCTION

The states of semi-Markov chain Xn for reliability evaluation
are classified into two groups: one unique failure state, de-
noted by sF, and multiple functional states, defined as state
combinations of ζn = i and ηn = j, denoted as si j , i, j ∈ S.
For example, if two types of faults are considered in the plant,
ζn includes states of fault-free, fault type 1, fault type 2, and
both fault 1 and fault 2, represented by S = {0, 1, 2, 3}, and
Xn contains 17 states.

The semi-Markov kernel of Xn is denoted as Q(·, ·,m),
representing the one-time transition probability in m cycles.
It is determined by the following parameters: (1) transition
characteristics of fault and FDI modes, (2) outcrossing failure
rate in state sii denoted by vii, (3) hard-deadline in state si j
denoted by Thdi j , (4) FDI SST period denoted by TSST j for
FDI mode j.
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Let us begin with the case that FDI mode can be de-
scribed as a hypothetical Markov chain η′n with transition
probability denoted by Hk

i j . The calculation of Q is classified
into the following cases.

Case 1. The transitions from functional states to themselves
are not defined and the corresponding elements are assigned
as zeros:

Q
(
sii, sii,m

) = 0, Q
(
si j , si j ,m

) = 0, i, j ∈ S. (13)

Case 2. Failure state sF is absorbing:

Q
(
sF, sF,m

) =
{

1, m = 1,

0, m > 1.
(14)

Case 3. Initial states are matched states sii:

Q
(
sii, sF,m

)

=
⎧
⎨

⎩

(
1− vii

)m−1
Gm−1
ii vii, m ≤ TSSTi,

pii
[(

1− vii
)
GiiH

i
ii

](m−TSSTi−1)
vii, m > TSSTi,

Q
(
sii, s ji,m

)

=
⎧
⎨

⎩

(
1− vii

)m−1
Gm−1
ii

(
1− vii

)
Gij , m≤TSSTi,

pii
[(

1−vii
)
GiiH

i
ii

](m−TSSTi−1)(
1−vii

)
GijH

i
ii, m>TSSTi,

Q
(
sii, si j ,m

)

=
⎧
⎨

⎩

0, m≤TSSTi,

pii
[(

1−vii
)
GiiH

i
ii

](m−TSSTi−1)(
1−vii

)
GiiH

i
i j , m>TSSTi,

Q
(
sii, sk j ,m

)

=
⎧
⎨

⎩

0, m≤TSSTi,

pii
[(

1−vii
)
GiiH

k
j j

](m−TSSTi−1)(
1−vii

)
GikH

i
i j , m>TSSTi,

(15)

where pii = Pr{X1 = X2 = · · · = XTSSTi = sii | X0 = sii} =
(1− vii)TSSTiGTSSTi

ii , i�= j, k �=i, i, j, k ∈ S.
The derivation of these equations are based on Markov

transition probabilities and the decomposition of each event.
For example,

Q
(
sii, sF,m

)

= Pr
{
X1 = X2 = · · · = Xm−1 = sii, Xm = sF | X0 = sii

}

= Pr
{
X1 = X2 = · · · = Xm−1 = sii | X0 = sii

}

× Pr
{
X1 = sF | X0 = sii

}
.

(16)

Considering the SST of FDI, if m ≤ TSSTi,

Pr
{
X1 = X2 = · · · = Xm−1 = sii | X0 = sii

}

= (1− vii
)m−1

Gm−1
ii .

(17)

If m > TSSTi,

Pr{X1 = X2 = · · · = Xm−1 = sii | X0 = sii}
= Pr{X1 = X2 = · · · = XTSSTi = sii | X0 = sii}
× [(1− vii

)
GiiH

i
ii

](m−TSSTi−1)
.

(18)

Q(sii, sF,m) can be obtained by combining these two proba-
bilities with Pr{X1 = sF | X0 = sii} = vii.

Case 4. Mismatched states, si j , i�= j. When m ≤ TSST j , the
transition probability of X(t) to any other state is zero be-
cause of SST period. When TSST j < m ≤ Thdi j , the proba-
bility of X(t) transiting to any other state is zero except to
sii. The above reasoning is based on the facts that FDI rarely
jumps to other false modes when current mode is incorrect,
and mean fault occurrence time is in a much higher order
compared with a short false FDI detection period. Therefore,
when TSST j < m ≤ Thdi j ,

Q
(
si j , sF,m

) = 0,

Q
(
si j , sii,m

) = (Hi
j j

)m−TSST j−1
Hi
ji, j �=l, j, l ∈ S.

(19)

When m > Thdi j + 1, Xn jumps to sF at the earliest time m =
Thdi j + 1 only:

Q
(
si j , sF,TSSTi + 1

) = 1−
Thdi j∑

k=TSSTi+1

Q
(
si j , sii,m

)

= 1−
1− (Hi

j j

)Tij−TSST j+1

1−Hi
j j

Hi
ji.

(20)

In the general cases, ηn is modeled as a semi-Markov
chain, and the competition probabilities methods discussed
in [4] can be utilized.

Definition 3. Given ζn = i and ηn = j, the combinational
mode is denoted as (i, j), i, j ∈ S. Suppose (ζn+1,ηn+1) =
· · · = (ζn+m−1,ηn+m−1) = (i, j) and the next combinational
mode after the consequent transition of ζn or/and ηn at n+m
is (ζn+m,ηn+m) = (k, l), where k �=i or/and l �= j, k, j ∈ S. The
probability of this event is called the competition probability,
denoted by ρ(i, j)�(k,l)(m).

The calculation formulas of ρ(i, j)�(k,l)(m) were derived in
[4, Section 3] and are omitted here for brevity. As the states
of Xn are mainly defined as the state combinations of ζn and
ηn, the calculation of the semi-Markov kernel of Xn is simpli-
fied when ρ(i, j)�(k,l)(m) is available, as shown in the follow-
ing listed formulas:

Q
(
sii, skl,m

) = (1− vii
)m
ρ(i,i)�(k,l)(m),

Q
(
sii, sF,m

) = (1− vii
)m−1

vii,

Q
(
sii, sii,m

) = 0,

Q
(
si j , skl,m

) =
⎧
⎨

⎩
ρ(i, j)�(k,l)(m), m ≤ Thdi j , k = l = i,

0, otherwise,

Q
(
si j , sF,m

) =

⎧
⎪⎪⎨

⎪⎪⎩

0, m ≤ Thdi j ,

1−
Thdi j∑

m=1
Q
(
si j , sii,m

)
, m > Thdi j ,

Q
(
sF, sF,m

) =
{

1, m = 1,

0, m > 1.
(21)
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Figure 4: Control design diagram for F-14 lateral axis (Courtesy of The MathWorks, Inc.).

Although these formulas appear to be simpler, both the pa-
rameter estimation and competition probability calculations
need much more calculation burden than the first case when
FDI decision is modeled as a hypothetical Markov chain.
Once Xn is constructed, calculation of reliability function
and MTTF are straightforward using available formulas [9].

6. DEMONSTRATION ON AN F-14 AIRCRAFT MODEL

6.1. Model description

A control problem of F-14 aircraft was presented in [10], and
also used as a demonstration example in MATLAB Robust
Control Toolbox.1 This problem considers the design of a
lateral-directional axis controller during powered approach
to a carrier landing with two command inputs from the pilot:
lateral stick and rudder pedal. At an angle-of-attack of 10.5
degrees and airspeed of 140 knots, the nominal linearized F-
14 model has four states: lateral velocity, yaw rate, roll rate,
and roll angle, denoted by v, r, p, and φ, respectively, two
control inputs: differential stabilizer deflection and rudder
deflection, denoted by δdstab and δrud, respectively, and four
outputs: roll rate, yaw rate, lateral acceleration, and side-slip
angle, denoted by p, r, yac, and β, respectively. The system
dynamics equations are ignored here, and can be loaded in
MATLAB 7.1 using command “load F14nominal.” An addi-
tional disturbance input is added to represent the wind gust
effects.

The control objective is to have desired handling qual-
ity (HQ) responses from lateral stick to roll rate p and from
rudder pedal to side-slip angle β. Under fault-free modes, the

1 MATLAB and Robust Control Toolbox are the trademarks of The Math-
Works, Inc.

HQ models are 5(2/(s+2)) and−2.5(1.252/(s+2.5s+1.252));
when fault occurs, HQ models degrade to 5(1/(s + 1)) and
−2.5(0.752/(s + 1.5s + 0.752)), respectively.

The system block diagram is shown in Figure 4, where F-
14nom represents the nominal linearized F-14 model, and AS
andAR the actuator models. ep and eβ represent the weighted
model matching errors. Actuator energy is described by eact,
and noise is added to the measured output after antialiasing
filters.

The considered fault occurs in two actuators. Under
fault-free mode, their transfer functions are

AS = AR = 25
s + 25

. (22)

Two types of actuator faults are considered here, each has
mean occurrence time 105 of FDI periods or its failure rate
is 10−5. Under fault type 1, the transfer function of AS be-
comes

A′S = 0.5
15

s + 15
. (23)

Under fault type 2, the transfer function of AR becomes

A′R = 0.5
10

s + 10
. (24)

These fault modes are described as the change of actuator
gains and time constants. The set of fault modes is denoted
by S = {0, 1, 2, 3}, representing fault-free, fault type 1, type
2, and simultaneous occurrence of both.

6.2. Performance characterization of
controller and FDI

Four H∞ controllers are designed for each fault mode to
achieve nominal HQ control objectives under fault-free
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Figure 5: Output trajectories.

mode and degraded HQ performance under fault modes.
Typical output trajectories under fault-free mode are shown
in Figure 5, where the curves labeled with “Real” represent
the measured outputs, “Ideal” the outputs under nominal
HQ performance, and “Degraded” the outputs under de-
graded HQ performance. The absolute minimal matching
errors between the real responses and the expected outputs
under ideal HQ performance are shown in Figure 6, which
are assumed to represent system safety behaviors. When
these matching errors go over the safety limits, 30% of ex-
pected output, aircraft is considered as failed.

An IMM FDI is constructed to detect fault occurrences.
To reduce false alarms, a steady-state test strategy is applied
on FDI decisions with TSST j = 6 for any FDI mode j. A typ-
ical FDI trajectory is shown in Figure 7. It is clear that the
steady FDI mode is free of false alarms in the shown time
period. But detection time delays are introduced when fault
occurs at 20 and 50 seconds, respectively.

To represent FDI detection characteristics, a batch of
fault and FDI history data is collected for statistical estima-
tion. First, histograms of FDI delays are generated to check
its distribution type. When there is no fault, the histogram
of FDI sojourn time at fault-free mode is shown in Figure 8.
It clearly resembles a geometric distribution. Equations (10)-
(11) are then used to estimate Markov transition probabili-
ties, and those under fault-free mode are obtained as

H0 =

⎡

⎢
⎢
⎢
⎣

0.9990 0 0.0010 0.0000
1.0000 0 0 0
0.1330 0 0.8670 0
0.5000 0 0 0.5000

⎤

⎥
⎥
⎥
⎦
. (25)
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Figure 6: The trajectories of matching errors.
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Figure 7: FDI trajectory.

Note that H0(2, 1) = 1 and H0(2, 2) = 0 represent the tran-
sition probabilities of FDI from a false alarm state. Estimated
based on the given history data, these values imply that the
FDI leaves false alarm state in one transition cycle. But there
may exist estimation error, and the true value ofH0(2, 2) may
be close to but not exact zero.
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Figure 9: Reliability functions comparison.

As a result of FDI false alarms, missing detections, and
detection delays, controllers may be engaged for various fault
modes for which they are not designed. So, it is necessary
to evaluate system behavior under all possible combinations
of FDI and fault modes. Here, Monte Carlo simulations are
adopted with the following settings: (1) command stick in-
puts are square waves with frequency as a random vari-
able ranging from 0.2 to 2 Hertz, (2) wind gust disturbances
and sensor measurement noises are assumed to be Gaus-
sian processes, (3) actuator saturation effects limit control
inputs to 20 and 30, respectively, (4) system failure is as-
sumed to occur when model matching errors go over 30%
of stick commands. For example, with fault mode 2 occurred
and K2 engaged, mean time to system failure is 57 403 sec-
onds when controller K2 is used, and 6 seconds when K1 is
used. Considering the sampling period to be 0.1 second for
IMM FDI, the outcrossing failure rate and hard-deadline are
v22 = 1/574030, Thd21 = 60.

6.3. Reliability evaluation

Reliability semi-Markov model can be constructed based on
fault transition rates, FDI transition parameters, outcrossing
failure rate, and hard-deadlines. Predicted reliability func-
tion and MTTF can be thereby calculated. By using MTTF
as an objective, an optimization is performed on TSST. It is
found that MTTF will be improved from 27 727 to 32 605
seconds if TSST j is reduced from 6 to 1. A comparison of reli-
ability functions before and after this optimization is shown
in Figure 9. It is clearly shown that reliability index is im-
proved.

Comparisons on the transition probabilities between
these two SST periods are shown in Figure 10, in which each
subfigure gives the transition probability curves from s00 to
other states. For example, the subfigure at the first row and
second column shows that the transition probabilities to s01

are increased from 0 to about 0.008. This is a natural result
of increased false alarms when reducing TSST j . In fact, when
TSST j = 1, new Markov transition parameters H′0 become

H′0 =

⎡

⎢
⎢
⎢
⎣

0.9822 0.0017 0.0122 0.0038
0.2634 0.7366 0 0
0.1989 0 0.8011 0
0.3530 0 0 0.6470

⎤

⎥
⎥
⎥
⎦
. (26)

Compared with H0, the element on the first row and sec-
ond column is increased from 0 to 0.0017, a confirmation of
increased false alarms. On the other hand, detection delays
are reduced approximately from 6 to 1, and system stays less
time under mismatched fault and FDI cases. Overall, MTTF
is improved.

This evaluation procedure can be completed in an online
manner. Estimated FDI transition parameters H and current
mode of ζn provided by confirmed test on FDI can be used
to provide updated MTTF based on this most recent infor-
mation.

7. CONCLUSIONS

A reliability monitoring scheme for FTCSs is reported in this
paper. The scheme contains two postprocessing strategies on
FDI results to provide estimated fault mode for control re-
configuration and confirmed mode for updating reliability.
The stochastic transitions of FDI mode is represented by a
semi-Markov chain with parameters estimated from history
data. Under geometric sojourn time distributions, FDI mode
can be described by an equivalent hypothetical Markov chain
that simplifies its model and reliability analysis. Safety and
satisfactory operation of system is defined by system trajec-
tories and safety boundaries; the probability of violating this
safety criterion under fixed fault and FDI modes is estimated
using Monte Carlo simulations. Overall reliability evaluation
is obtained through a semi-Markov model constructed by
integrating FDI transition characteristics and failure prob-
abilities under each regime model. This scheme provides
timely monitoring on the reliability index of FTCSs, and was
demonstrated on an F-14 aircraft model.
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Figure 10: Comparison of transition probabilities.

APPENDIX

Proof of Lemma 1. The “only if” part is trivial as shown in
(8). Let ηn denote a semi-Markov chain; the associated
Markov renewal processes are denoted as θm and Tm, and
the sojourn time distribution hki when subsequent state is not
specified is in geometric distribution:

Pr
{
ηn+1 = j | η1, . . . ,ηn

}

= Pr
{
ηn+1 = j | θ1, . . . , θSn ,T1, . . . ,TSn

}
.

(A.1)

If θSn = j,

Pr
{
ηn+1 = j | η1, . . . ,ηn

}

= Pr
{
TSn+1 > n + 1 | θ1, . . . , θSn ,T1, . . . ,TSn ,TSn+1 > n

}

= Pr
{
TSn+1 > n + 1 | θSn ,TSn ,TSn+1 > n

}

= Pr
{
TSn+1−TSn >n+1−TSn | θSn ,TSn+1−TSn >n−TSn

}

= Pr
{
TSn+1 − TSn > 1 | θSn

}

= Pr
{
ηn+1 = j | ηn

}
;

(A.2)

otherwise, θSn �= j, and we have

Pr
{
ηn+1 = j | η1, . . . ,ηn

}

= Pr
{
θSn+1 = j,TSn+1 = n + 1 | θ1, . . . , θSn ,

T1, . . . ,TSn ,TSn+1 > n
}

= Pr
{
θSn+1 = j,TSn+1 = n + 1 | θSn ,TSn ,TSn+1 > n

}

= Pr
{
θSn+1 = j,TSn+1 − TSn = n + 1− TSn | θSn ,

TSn+1 − TSn > n− TSn
}

= Pr
{
θSn+1 = j,TSn+1 − TSn = 1 | θSn

}

= Pr
{
ηn+1 = j | ηn

}
.

(A.3)

In the above derivations, the memoryless property of geo-
metric distributions has been used:

Pr
{
TSn+1 − TSn > n + 1− TSn | TSn+1 − TSn > n− TSn

}

= Pr
{
TSn+1 − TSn > 1

}
,

Pr
{
TSn+1 − TSn = n + 1− TSn | TSn+1 − TSn > n− TSn

}

= Pr
{
TSn+1 − TSn = 1

}
.

(A.4)

The Markov property of ηn is proved, so ηn is a Markov chain.
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