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Some new and simple Gramian-based model order reduction algorithms are presented on second-order linear dynamical
systems, namely, SVD methods. Compared to existing Gramian-based algorithms, that is, balanced truncation methods, they
are competitive and more favorable for large-scale systems. Numerical examples show the validity of the algorithms. Error bounds
on error systems are discussed. Some observations are given on structures of Gramians of second order linear systems.

1. Introduction

Models of linear dynamical systems are often given in
second-order form

Mq̈(t) + Gq̇(t) + Kq(t) = B0u(t)

y(t) = C0q(t) + D0q̇(t),
(1)

where M,G,K ∈ Rn×n, B0 ∈ Rn×m, C0, and D0 ∈ Rp×n

are given matrices, u(t) ∈ Rm is the given vector of inputs,
y(t) ∈ Rp is the unknown vector of outputs, q(t) ∈ Rn is the
unknown vector of internal variables, n is the dimension of
the system, and M is assumed to be invertible.

Models of mechanical systems in particular are usually of
second-order form (1). For such a system, M = MT , G and
K = KT are respectively the mass, damping, and stiffness
matrices, u(t) ∈ Rm is the input, B0u(t) = f (t) ∈ Rn is
the vector of external forces, and q(t) ∈ Rn is the vector of
internal variables.

Many applications lead to very large models where n is
very large, while m, p � n. Due to limitations on time and
computer storage, it is often difficult or impossible to directly
simulate or control these large-scale systems. Therefore, it
is often desirable to reduce the system to a smaller-order
model:

̂Mq̈(t) + ̂Gq̇(t) + ̂Kq(t) = ̂B0u(t)

ŷ(t) = ̂C0q(t) + ̂D0q̇(t),
(2)

such that

(1) ‖y− ŷ‖/‖u‖ < tol, that is, outputs corresponding to
the same inputs are close.

(2) The reduced system preserves important system
properties such as stability and passivity.

(3) The procedure is computationally efficient.

By letting x =
[

q
q̇

]

, second-order system (1) is then
transformed to a corresponding 2n-dimensional first-order
system

Σ :

⎧

⎨

⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(3)

where

A =
⎡

⎣

0 I

−M−1K −M−1G

⎤

⎦ =
⎡

⎣

0 I

−KM −GM

⎤

⎦

B =
⎡

⎣

0

M−1B0

⎤

⎦ =
⎡

⎣

0

BM

⎤

⎦

C =
[

C0 D0

]

D = 0.

(4)

Since algorithms and theory are well developed for first-
order model reduction, it is natural to use these techniques
to develop algorithms for second-order systems.
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Closely related to first-order system are the two Lyapunov
equations

AP + PA∗ + BB∗ = 0,

A∗Q + QA + C∗C = 0.
(5)

Under assumption that first-order system is stable, it is well
known that the reachability and observability Gramians P
and Q are the unique solutions to Lyapunov equation (5),
where both P and Q are symmetric positive definite. This
Gramian P has also the following variational interpretation
proposed in [1]. Let J(u, t1, t2) = ∫ t2

t1 u
∗(t)u(t) dt =

∫ t2
t1 ‖u(t)‖2 dt. The optimal value to optimization problem

min
u

J(u,−∞, 0)

s.t. ẋ = Ax + Bu, x(0) = x0

(6)

is x∗0 P −1x0, that is, the minimal energy required to steer the
state of the system from t = −∞ to state x0 at time t = 0
is x∗0 P −1x0. Similarly, the optimal value to its dual system is
x∗0 Q−1x0.

Partition P and Q into four equal blocks:

P =
⎛

⎝

P11 P12

P21 P22

⎞

⎠, Q =
⎛

⎝

Q11 Q12

Q21 Q22

⎞

⎠. (7)

In [2–4], it is shown that the optimal value to optimiza-
tion problem

min
q̇0∈Rn

min
u

J(u,−∞, 0)

s.t. Mq̈(t) + Gq̇(t) + Kq(t) = Bu(t), q(0) = q0

(8)

is q∗0 P −1
11 q0, that is, the minimal energy required to reach the

given position q0 over all past inputs and initial velocities.
And the optimal value to optimization problem

min
q0∈Rn

min
u

J(u,−∞, 0)

s.t. Mq̈(t) + Gq̇(t) + Kq(t) = Bu(t), q̇(0) = q̇0

(9)

is q̇∗0 P −1
22 q̇0, that is, the minimal energy required to reach the

given velocity q̇0 over all past inputs and initial positions.
In [3, 4], P11 and P22 are defined to be position Gramian
and velocity Gramian, respectively. By duality, Q11 and Q22

are position Gramian and velocity Gramian, respectively
corresponding to Q.

It is well known that

P =
∫∞

0
eAτBBTeA

Tτ dτ,

Q =
∫∞

0
eA

TτCTCeAτ dτ.

(10)

Suppose x(t) is the solution of first-order system for impulse
input u(t) = δ(t). Then

P =
∫∞

0
x(t)x∗(t)dt. (11)

For second-order system and its corresponding first-order
system,

P =
∫∞

0
x(t)x∗(t)dt

=
∫∞

0

⎛

⎝

q(t)

q̇(t)

⎞

⎠

(

q∗(t) q̇∗(t)
)

dt

=
∫∞

0

⎛

⎝

q(t)q∗(t) q(t)q̇∗(t)

q̇(t)q∗(t) q̇(t)q̇∗(t)

⎞

⎠dt.

(12)

Therefore,

P11 =
∫∞

0
q(t)q∗(t)dt,

P22 =
∫∞

0
q̇(t)q̇∗(t)dt,

(13)

where P11 and P22 are position and velocity Gramians,
respectively. Similar results can be applied to Q, Q11, and Q22

through dual systems.
For Gramian based structure preserving mode order

reduction of second-order systems, in [3, 5], some balanced
truncation methods were derived. In this paper, we present
two new algorithms based on SVD rather than balanced
truncation. The algorithms are derived from second-order
Gramians and system H2-norm. Compared to existing
techniques, they are simple and more suitable for large-
scale settings. In Section 4, we apply these methods to three
numerical examples, the computational results show the
validity of our algorithms. Error bounds and structures of
Gramians on second-order systems are also discussed.

2. Balanced Truncation Method

For first-order system

Σ :

⎧

⎨

⎩

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(14)

balanced truncation method is to transform the system to
another coordinate system such that both P and Q are equal
and diagonal:

P = Q = diag(σ1, σ2, . . . , σN ), (15)

where σ1 ≥ σ2 ≥ · · · ≥ σN . It then truncates the model by
keeping the states corresponding to k largest eigenvalues of
the product PQ, that is, k largest Hankel singular values of
the system.

The main problem is to find balancing projection matri-
ces. A numerically stable way to get the balancing truncated
system is given in [6]: suppose the Cholesky factorization of
P and Q are is

P = UCU
T
C , Q = LOL

T
O, (16)



Journal of Control Science and Engineering 3

where UC is upper triangular and LO is lower triangular
matrices. Take SVD of UT

C LO,

UT
C LO = UΣVT. (17)

Let Σk be the first k by k principle submatrix of Σ, Uk, and Vk

consist of the first k columns of U and V , respectively. Then
the balanced projection matrices are

W = LOVkΣ
−1/2
k , V = UCUkΣ

−1/2
k . (18)

The reduced system is obtained in:

̂A =WTAV , ̂B =WTB, ̂C = CV. (19)

Balanced truncation method has a global error bound [1]:

‖Σerr‖H∞ = ‖Σ− Σred‖H∞ ≤ 2(σk+1 + · · · + σn). (20)

For second-order system

Mq̈(t) + Gq̇(t) + Kq(t) = B0u(t)

y(t) = C0q(t) + D0q̇(t),
(21)

there are two balanced truncation methods. One was given
in [5] which is to balance both P11 and Q11 to form the
projection matrices W1r and V1r and then get the reduced
system by keeping r largest eigenvalues of P11Q11. It is
equivalent to performing projections to its corresponding
first-order system as following:

̂A =WTAV

=
⎛

⎝

WT
1r

WT
1r

⎞

⎠

⎛

⎝

0 I

−M−1K −M−1G

⎞

⎠

⎛

⎝

V1r

V1r

⎞

⎠

=
⎛

⎝

0 I

−W−1
1r M

−1KV1r −W−1
1r M

−1GV1r

⎞

⎠,

̂B =WB =
⎛

⎝

WT
1r

WT
1r

⎞

⎠

⎡

⎣

0

M−1B0

⎤

⎦

=
⎡

⎣

0

WT
1rM

−1B0

⎤

⎦

̂C = CV =
[

C0 D0

]

⎛

⎝

V1r

V1r

⎞

⎠ =
[

C0V1r D0V1r

]

.

(22)

The reduction rules are then

̂M = Ir , ̂K =WT
1rM

−1KV1r ,

̂G =WT
1rM

−1GV1r , ̂B0=WT
1r M

−1B0,

̂C0 = C0V1r , ̂D0 = D0V1r .

(23)

Similar results can be applied to P22 and Q22. This gives the
following algorithm.

Algorithm 1 (Balanced truncation method based on P11 and
Q11 (or P22 and Q22, resp.) [5]).

(1) Compute P11 and Q11.

(2) Compute the balanced truncation matrices W1r ,
V1r ∈ Rn×r such that WT

1r V1r = Ir and WT
1rP11W1r =

VT
1rQ11V1r = diag(σ1, σ2, . . . , σr), where σ2

1 , σ2
2 , . . . , σ2

r

are the r largest eigenvalues of P11Q11.

(3) Perform projection to (M,G,K ,B0,C0,D0) and
get (̂M, ̂G, ̂K , ̂B0, ̂C0, ̂D0):

̂M = Ir , ̂K =WT
1rM

−1KV1r ,

̂G =WT
1rM

−1GV1r ,

̂B0 =WT
1rM

−1B0, ̂C0 = C0V1r ,

̂D0 = D0V1r .

(24)

In [5], it also gave two other similar methods. One is to
balance P11 and Q22 to get the projection matrices, the other
is to balance P22 and Q11 to get the projection matrices.

Another second-order balanced truncation method is
given in [3] which is to balance both P11 and Q11 to
get the projection matrices W1r and V1r by keeping r
largest eigenvalues of P11Q11, balance both P22 and Q22 to
get the projection matrices W2r and V2r , then use W =
(

W1r
W2r

)

and V =
(

V1r
V2r

)

as projection matrices for the
corresponding first-order system:

̂A =WTAV

=
⎛

⎝

WT
1r

WT
2r

⎞

⎠

⎛

⎝

0 I

−M−1K −M−1G

⎞

⎠

⎛

⎝

V1r

V2r

⎞

⎠

=
⎛

⎝

0 WT
1r V2r

−WT
2rM

−1KV1r −WT
2rM

−1GV2r

⎞

⎠,

̂B =WTB =
⎛

⎝

WT
1r

WT
2r

⎞

⎠

⎡

⎣

0

M−1B0

⎤

⎦

=
⎡

⎣

0

WT
2rM

−1B0

⎤

⎦

̂C = CV =
[

C0 D0

]

⎛

⎝

V1r

V2r

⎞

⎠ =
[

C0V1r D0V2r

]

.

(25)
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In order to let reduced system have the companion form of
second-order system, it then takes the following transforma-
tion by letting H−1 =WT

1r V2r ,

˜A =
⎛

⎝

I

H−1

⎞

⎠ ̂A

⎛

⎝

I

H

⎞

⎠

=
⎛

⎝

I

H−1

⎞

⎠

⎛

⎝

0 WT
1r V2r

−WT
2rM

−1KV1r −WT
2rM

−1GV2r

⎞

⎠

⎛

⎝

I

H

⎞

⎠

=
⎛

⎝

0 I

−H−1WT
2rM

−1KV1r −H−1WT
2rM

−1GV2rH

⎞

⎠,

˜B =
⎛

⎝

I

H−1

⎞

⎠̂B =
⎛

⎝

I

H−1

⎞

⎠

⎡

⎣

0

WT
2rM

−1B0

⎤

⎦

=
⎡

⎣

0

H−1WT
2rM

−1B0

⎤

⎦,

˜C = ̂C
⎛

⎝

I

H

⎞

⎠ =
[

C0V1r D0V2r

]

⎛

⎝

I

H

⎞

⎠

=
[

C0V1r D0V2rH
]

.

(26)

The corresponding algorithm is as follows:

Algorithm 2 (Balanced truncation method based on
(

P11
P22

)

and
(

Q11
Q22

)

[3]).

(1) Compute P11, P22, Q11, and Q22.

(2) Compute the balanced truncation matrices for
P11 and Q11 to get W1r ,V1r ∈ Rn×r , and balanced
transformation matrices for P22 and Q22 to get
W2r ,V2r ∈ Rn×r .

(3) Perform projection to get reduced system
(̂M, ̂G, ̂K , ̂B0, ̂C0, ̂D0):

̂M = Ir , ̂K = H−1
(

WT
2rM

−1KV1r

)

,

̂G = H−1
(

WT
2rM

−1GV2r

)

H ,

̂B0 = H−1
(

WT
2rM

−1B0

)

, ̂C0 = C0V1r ,

̂D0 =
(

D0V2r

)

H ,

(27)

where H−1 =WT
1r V2r .

3. Some New Algorithms Based on SVD

In this section, we propose some new algorithms based on
SVD method directly.

First, H2 norm is an important quantity for bounding
linear systems.

Lemma 3 (see [7]). Given a first-order system

Σ =
⎛

⎝

A B

C

⎞

⎠, (28)

suppose P and Q are reachability and observability Gramians.
Then, H2 norm of the system can be expressed as

‖Σ‖2
H2
= trace

{

CPCT
}

= trace
{

BTQB
}

. (29)

H2 norm for second-order system (1) with D0 = 0 can
then be stated as in the following proposition.

Proposition 4. Given a second-order system (1) with D0 = 0,
suppose

Σ =
⎛

⎝

A B

C

⎞

⎠ (30)

is the transformed first-order system, where

A =
⎡

⎣

0 I

−M−1K −M−1G

⎤

⎦,

B =
⎡

⎣

0

M−1B0

⎤

⎦,

C =
[

C0 0
]

.

(31)

Assume reachability and observability Gramians P and Q are

divided into four equal blocks, and P =
[

P11 P12

P T
12 P22

]

, Q =
[

Q11 Q12

QT
12 Q22

]

. Then the following holds:

‖Σ‖2
H2
= trace

{

BT
0 M

−TQ22M
−1B0

}

= trace
{

C0P11C
T
0

}

.
(32)

Proof. From Lemma 3,

‖Σ‖2
H2
= trace

{

BTQB
}

= trace

⎧

⎨

⎩

[

0
(

M−1B0
)T
]

⎡

⎣

Q11 Q12

QT
12 Q22

⎤

⎦

⎡

⎣

0

M−1B0

⎤

⎦

⎫

⎬

⎭

= trace
{

BT
0 M

−TQ22M
−1B0

}

,

(33)

‖Σ‖2
H2
= trace

⎧

⎨

⎩

[

C0 0
]

⎡

⎣

P11 P12

P T
12 P22

⎤

⎦

⎡

⎣

CT
0

0

⎤

⎦

⎫

⎬

⎭

= trace
{

C0P11C
T
0

}

.

(34)

From (8), we know the positions which are difficult
to reach are spanned by the eigenvectors corresponding
to small eigenvalues of P11. We would like to eliminate
those positions in reduced systems. Proposition 4 shows
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that P11 can independently decide the system H2 norm.
Therefore, we may get the reduced system by keeping the
positions corresponding to r largest eigenvalues of P11.
This motivates the following procedure for model order
reduction. Suppose SVD of P11 is P11 = W1SV

T
1 , where

S = diag(σ1, σ2, . . . , σn), and σ1 ≥ σ2 ≥ · · · ≥ σn > 0. So
W1,V1 are orthogonal matrices and W1 = V1 since P11 is
symmetric positive definite. Let the transformation matrices
for the corresponding first-order system be

W =
⎛

⎝

W1

W1

⎞

⎠, V =W , (35)

and the projection matrices be

Wk =
⎛

⎝

W1r

W1r

⎞

⎠, Vk =Wk, (36)

where W1r consists of the first r columns of W1. For simplic-
ity, we denote Wk and Vk by W and V , respectively. Then use
W and V as projection matrices for the corresponding first-
order system, that is, perform projections as in (22) and (23).
Same results can be applied to Q22. From the dual system,
symmetrically Q11 and P22 are also crucial in weighting the
system H2 norms independently. This results in the following
algorithms.

Algorithm 5 (Second-order model reduction—SVD on P11

(or, P22, Q11, and Q22, resp.)).

(1) Compute P11 (or P22, Q11, and Q22, resp.), and
denote it as P for simplicity.

(2) Take SVD on P and get P = W1S1W
T
1 . Form the

orthogonal projection matrices W1r which consists of
the first r columns of W1.

(3) Perform projection to get the reduced system
(̂M, ̂G, ̂K , ̂B0, ̂C0, ̂D0):

̂M = Ir , ̂K =WT
1rM

−1KW1r ,

̂G =WT
1rM

−1GW1r ,

̂B0 =WT
1rM

−1B0, ̂C0 = C0W1r ,

̂D0 = D0W1r .

(37)

Besides eliminating the positions which are difficult to
reach in reduced system, it is also desirable to delete the
velocities that are difficult to reach. From (9), these velocities
are spanned by the eigenvectors of P22 corresponding to
small eigenvalues. This motivates the following procedure
for model order reduction. Suppose SVD of P11 is P11 =
W1S1V

T
1 , where S1 = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥

σn > 0. And SVD of P22 is P22 = W2S2V
T
2 , where S2 =

diag(δ1, δ2, . . . , δn), δ1 ≥ δ2 ≥ · · · ≥ δn > 0. So W1, V1, W2,
and V2 are all orthogonal matrices, and W1 = V1, W2 = V2.

Let the transformation matrices for the corresponding first-
order system be

W =
⎛

⎝

W1

W2

⎞

⎠, V =W , (38)

and the projection matrices be

Wk =
⎛

⎝

W1r

W2r

⎞

⎠, Vk =Wk, (39)

where W1r and W2r consist of the first r columns of W1

and W2, respectively. By using similar idea to Algorithm 2,
in order to let the reduced system ̂A have the companion
form of second-order model, we adopt a matrix H such that
H−1 = WT

1r V2r , and then perform the projections as in (26)
and (27). Similar results can be applied to Q11 and Q22. This
results in the following algorithm.

Algorithm 6 (Second-order model reduction—SVD on P11

and P22 (or Q11 and Q22, resp.)).

(1) Compute P11 and P22.

(2) Take SVD on P11 and P22 to get P11 =W1S1W
T
1

and P22 =W2S2W
T
2 , respectively.

(3) Perform projection to get reduced system
(̂M, ̂G, ̂K , ̂B0, ̂C0, ̂D0):

̂M = Ir , ̂K = H−1
(

WT
2rM

−1KW1r

)

,

̂G = H−1
(

WT
2rM

−1GW2r

)

H ,

̂B0 = H−1
(

WT
2rM

−1B0

)

, ̂C0 = C0W1r ,

̂D0 =
(

D0W2r

)

H ,

(40)

where H−1 =WT
1rW2r .

Now, consider Algorithm 5 and SISO second-order sys-
tems. Note that by taking SVD, P11 = W1S1W

T
1 . Denote

S11 = diag(σ1, σ2, . . . , σr) and S12 = diag(σr+1, σr+2, . . . , σn).
So S1 = diag(S11, S12). Suppose z :=WT

1 C
T
0 , that is,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z1

z2

...

zn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=WT
1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1

c2

...

cn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (41)

Then from Proposition 4,

‖Σ‖2
H2
= C0P11C

T
0

= C0W1SW
T
1 C

T
0 = zTSz

= σ1z
2
1 + σ2z

2
2 + · · · + σnz

2
n.

(42)
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Table 1: Errors of reduced models produced by four different methods.

Model n r m p ‖H‖2 ‖εSVD1‖2/‖H‖2 ‖εSVD12‖2/‖H‖2 ‖εBT1‖2/‖H‖2 ‖εBT12‖2/‖H‖2

Building model 24 4 1 1 4.5e−03 4.1e−01 5.1e−01 3.2e−01 3.2e−01

Clamped beam 174 29 1 1 3.3e+02 3.3e−02 1.3e−01 1.3e−03 5.7e−04

International state space 135 27 3 3 1.0e−04 6.7e−04 1.0e−04 3.2e−06 3.2e−06

In reduced system, ̂C0 = C0W1r ,̂P11 = S1. Therefore,

‖Σred‖2
H2
= ̂C0̂P11 ̂C

T
0

= (C0W1r

)

S1

(

WT
1r C

T
0

)

= σ1z
2
1 + σ2z

2
2 + · · · + σrz

2
r .

(43)

In many cases, the eigenvalues of P11 decay rapidly. There-
fore, the reduced system produced by Algorithm 5 takes the
main part of the system H2 norm. Actually we also have,

‖Σ‖2
H2
− ‖Σred‖2

H2
= σr+1z

2
r+1 + σr+2z

2
r+2 + · · · + σnz

2
n

≤ σr+1‖z‖2
2 = σr+1‖C0‖2

2.
(44)

This is not the H2-norm of error system ‖Σ− Σred‖H2
,

but it gives some information to support Algorithm 5. This
result for SISO second-order systems can easily extends to
MIMO systems. Similar results can be applied to methods in
Algorithm 6.

Now, consider complexity of the algorithms. In our SVD
method on P11 in Algorithm 5, after computing P11 which
takes O(n3) time, it then uses one-time O(n3) operation
which is SVD on P11 to get the projection matrices. In our
Algorithm 6, after computing P11 and P22 each of which
takes O(n3) time, it then uses twice O(n3) operations which
are SVD on P11 and SVD on P22 to get the projection
matrices. In balanced truncation method in Algorithm 1,
after computing P11 and Q11, it also has one-time SVD.
Besides this, it uses two Cholesky factorizations P11 = UCU

T
C

and Q11 = LOL
T
O which all take time O(n3) in order to

get the projection matrices. Note that Algorithm 2 has more
flops than Algorithm 1. Therefore, our SVD algorithms are
simpler in time cost than existing balanced truncation meth-
ods. There are some other techniques in getting the balanced
truncation systems, for example, balance-free truncation [8].
But it is not hard to see that they are also more complex
than our SVD methods. This makes our SVD methods more
suitable to solve large-scale problems.

4. Computational Results

In this section, we apply the model reduction methods
to three numerical examples: the building model, the
clamped beam model, and international space station model,
see [9] for detailed descriptions. In Table 1, four model
reduction methods are compared: SVD method on P11 in
Algorithm 5 (“SVD1”), SVD method on P11 and P22 in
Algorithm 6 (“SVD12”), balanced truncation on P11 and

Q11 in Algorithm 1 (“BT1”), and balanced truncation on
P11 and Q11, P22 and Q22 in Algorithm 5 (“BT12”). The
comparison is based on the relative error of H2 norm, where

‖ε‖2

‖H‖2
=:

∥

∥

∥Σ− ̂Σ
∥

∥

∥

H2

‖Σ‖H2

, (45)

n is the size ofM, r is the size of ̂M in reduced model, andm is
the size of input vector u(t), p is the size of output vector y(t).
Figures 1 and 2 show the amplitude of frequency response of
original and reduced systems for clamped beam model for
r = 20 and r = 29, respectively.

5. Error Bounds and Discussions

Error bounds for first-order model reduction do not apply
for second-order systems. Consider second-order system (1)
with D0 = 0 :

Σ :

⎧

⎨

⎩

Mq̈(t) + Gq̇(t) + Kq(t) = B0u(t)

y(t) = C0q(t).
(46)

Suppose the reduced system ̂Σ is obtained by keeping r largest
eigenvalues of the orthogonal eigenspace of P11. Sorensen
and Antoulas in [10] provided a priori error bound showing
that the H2 norm of error system is bounded by a constant
times the summation of neglected singular values of P11.

It considers structured systems in [10]. Let Q(s) and P(s)
be polynomial matrices in s:

Q(s) =
r
∑

j=1

Qjs
j , Qj ∈ Rn×n,

P(s) =
r−1
∑

j=1

Pjs
j , sPj ∈ Rn×m,

(47)

where Q is invertible, and Q−1P is a strictly proper rational
matrix. Denote by Q(d/dt), P(d/dt) the differential operators

Q
(

d

dt

)

=
r
∑

j=1

Qj
d j

dt j
, P

(

d

dt

)

=
r−1
∑

j=1

Pj
d j

dt j
. (48)

The structured systems are defined by the following equa-
tions:

Σ :

⎧

⎪

⎨

⎪

⎩

Q
(

d

dt

)

x(t) = P
(

d

dt

)

u(t)

y(t) = Cx(t),
(49)



Journal of Control Science and Engineering 7

Org

SVD1

SVD12

BT1
BT12

104

104

102

102

100

100

10−2

10−2

10−4

10−1 101 103

Figure 1: Frequency response on clamped beam model with size
n = 174 and the reduced model of size r = 20 by four different
methods.

Org

SVD

BT1
BT12

104

104

102

102

100

100

10−2

10−2

10−4

10−1 101 103

SVD12

Figure 2: Frequency response on clamped beam model with size
n = 174 and the reduced model of size r = 29 by four different
methods.

where C ∈ Rp×n. The Gramian is defined as the Gramian of
x(t) when the input is an impulse:

P := ∫∞0 x(t)x(t)∗dt. (50)

Let

P = VSV∗ (51)

be the eigensystem of P , where V is orthogonal, the diagonal
elements of S are in decreasing order:

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ1

σ2

. . .

σn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (52)

where σ1 ≥ σ2 ≥ · · · ≥ σn. Partition V = [V1, V2] where
V1 consists of the first r columns of V . The reduced model is
derived from

̂Qj = V∗
1 QjV1, ̂Pj = V∗

1 Pj , ̂C = CV1, (53)

and the reduced system is then

̂Σ :

⎧

⎪

⎨

⎪

⎩

̂Q
(

d

dt

)

x̂(t) = ̂P
(

d

dt

)

u(t)

ŷ(t) = ̂Cx̂(t).
(54)

Partition accordingly,

[C1,C2] = CV , S =
⎛

⎝

S1

S2

⎞

⎠. (55)

Theorem 7 (see[10]). The reduced model ̂Σ derived from the
dominant eigenspace of the Gramian P for Σ as described
above satisfies

∥

∥

∥Σ− ̂Σ
∥

∥

∥

2

H2
≤ trace

{

C2S2C
∗
2

}

+ Ktrace{S2}, (56)

where K is a modest constant depending on Σ and ̂Σ, and the
diagonal elements of S2 are the neglected smallest eigenvalues of
P .

Specially for second-order system (1) with D0 = 0:

Σ :

⎧

⎨

⎩

Mq̈(t) + Gq̇(t) + Kq(t) = B0u(t)

y(t) = C0q(t),
(57)

it is easy to see that it can be described by (49) with Q(s) =
Ms2+Gs+K and P(s) = B0. So there is the following corollary.

Corollary 8. For second-order system (57), suppose P11 =
(

S1
S2

)

is diagonal, where S1 = diag(σ1, σ2, . . . , σr), S2 =
diag(σr+1, σr+2, . . . , σn), and σ1 ≥ σ2 ≥ · · · ≥ σn. Suppose the
reduced system ̂Σ is obtained by keeping r largest eigenvalues of
P11 as described in (53) and (54). Then

‖Σerr‖2
H2
=
∥

∥

∥Σ− ̂Σ
∥

∥

∥

2

H2
≤ c0 trace{S2}

= c0(σr+1 + σr+2 + . . . + σn),
(58)

where c0 is a modest constant depending on Σ and ̂Σ.
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Now, we explain the corollary and what the constant c0 is.

Note Q(s) = Ms2 + Gs + K ∈ Cn×n and Q(s) =
[

Q11(s) Q12(s)
Q21(s) Q22(s)

]

with Q11(s) ∈ Cr×r . Let W(s) = Q11(s)−1Q12(s). Partition
accordingly C0 = [C01 , C02 ]. Then,

c0 = sup
ω∈R

∥

∥

∥

(

C01W(iω)
)∗(

C01W(iω)− 2C02

)

∥

∥

∥

2
+
∥

∥C02

∥

∥
2
2.

(59)

If the reduced system has no poles on the
imaginary axis, supω∈R‖W(iω)‖2 is finite, and so
supω∈R‖(C01W(iω))∗(C01W(iω)− 2C02 )‖2 is finite. There-
fore, c0 is a constant depending on Σ and ̂Σ. There is a similar
result for Q11 by duality.

Consider Algorithm 5, SVD method on P11. Note that

P11 =
∫∞

0
q(t)q∗(t)dt, (60)

and P11 = VSV∗, [V1,V2] = V . So the reduction rules
in Algorithm 5 are exactly the same as (53). Similar result
applies for Q11. Therefore, the error systems produced by
our Algorithm 5, SVD method on P11 or Q11, all have good
global error bounds. So far, there is no priori error bound for
error systems based on P22 or Q22.

Even though balanced truncation methods in Algorithms
1 and 2, and SVD method on both P11 and P22 (or Q11

and Q22) in Algorithm 6, all have good performance in those
three numerical examples, so far no priori error bounds are
provided for these methods.

For second-order system (1) with D0 = 0, the following
theorem provides some observations on structures of grami-
ans P and Q in corresponding first-order system.

Theorem 9. Given second-order system (1) with D0 = 0, then
in any coordinate system, there is no state space transformation
which gives a block diagonal Q.

Proof. From the observability Lyapunov equation

ATQ + QA + CTC = 0, (61)

one can get
⎛

⎝

0 −KT
M

I −GT
M

⎞

⎠

⎛

⎝

Q11 Q12

QT
12 Q22

⎞

⎠ +

⎛

⎝

Q11 Q12

QT
12 Q22

⎞

⎠

⎛

⎝

0 I

−KM −GM

⎞

⎠

+

⎡

⎣

CT
0

0

⎤

⎦

[

C0 0
]

= 0.

(62)

Equating each block gives

−KT
MQT

12 −Q12KM + CT
0 C0 = 0,

−KT
MQ22 + Q11 −Q12GM = 0,

Q12 −GT
MQ22 + QT

12 −Q22GM = 0.

(63)

From the first equation in (63), one can get Q12 is not zero,
otherwise C0 = 0, and then from (61) the solution for this
Lyapunov equation is Q = ∫∞0 eA

TτCTCeAτ dτ = 0. This
contradicts with Q being symmetric positive definite. So Q
is not block diagonal.

Algorithm 2 [3], that is, balanced truncation method on
(P11, P22) and (Q11, Q22), is to balance both P11 and Q11

to get the projection matrices W1r and V1r by keeping r
largest eigenvalues of P11Q11, balance both P22 and Q22 to
get the projection matrices W2r and V2r , then use W =
(

W1r
W2r

)

and V =
(

V1r
V2r

)

as projection matrices for
the corresponding first-order system. This is equivalent to
assuming both P and Q are block diagonal in corresponding
first-order system, that is,

P =
⎛

⎝

P11

P22

⎞

⎠, Q =
⎛

⎝

Q11

Q22

⎞

⎠, (64)

in order to keep r largest eigenvalues of P11Q11 and P22Q22

in reduced corresponding first-order system. Similar results
also apply for methods in Algorithm 6, SVD method on Q11

and Q22. From Theorem 9, Q can not be block diagonal,
therefore the reduced system obtained from Algorithm 2 or
Algorithm 6 may lose some information. But Algorithm 1
[5] (balanced truncation based on (P11, Q11) (or (P22, Q22)
resp.)) and Algorithm 5 (SVD on P11 (or P22, Q11, Q22

resp.)), avoid this drawback in assuming Q being block
diagonal, but they only work for either position Gramians
or velocity Gramians, while Algorithms 2 and 6 have the
advantage in taking into account both position Gramians
and velocity Gramians.

6. Conclusions

Two Gramian based second-order model reduction methods
are proposed in this paper based on SVD on diagonal blocks
of Gramians. Even though they are the well known SVD
methods, to our knowledge, they are the simplest ways in
Gramian based second-order model reduction. Two existing
balanced truncation methods [3, 5] were presented in 2006
and 2008, respectively. When compared to these two existing
techniques, our SVD methods are competitive in numerical
examples and more suitable for large-scale setting problems.
By using the result given in [10], there is global error bound
for one method, SVD on P11 or Q11. Except this, so far
no priori error bounds are provided for other methods on
second-order model reduction, even through they work good
in numerical examples. Interesting future work would be to
provide global error bounds for these methods.
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