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This paper presents the state identification study of 3D partial differential equations (PDEs) using the differential neural networks
(DNNs) approximation. There are so many physical situations in applied mathematics and engineering that can be described by
PDEs; these models possess the disadvantage of having many sources of uncertainties around their mathematical representation.
Moreover, to find the exact solutions of those uncertain PDEs is not a trivial task especially if the PDE is described in two or more
dimensions. Given the continuous nature and the temporal evolution of these systems, differential neural networks are an attrac-
tive option as nonparametric identifiers capable of estimating a 3D distributed model. The adaptive laws for weights ensure the
“practical stability” of the DNN trajectories to the parabolic three-dimensional (3D) PDE states. To verify the qualitative behavior
of the suggested methodology, here a nonparametric modeling problem for a distributed parameter plant is analyzed.

1. Introduction

1.1. 3D Partial Differential Equations. Partial differential
equations (PDEs) are of vast importance in applied mathe-
matics, physics, and engineering since so many real physical
situations can be modelled by them. The dynamic descrip-
tion of natural phenomenons are usually described by a set
of differential equations using mathematical modeling rules
[1]. Almost every system described in PDE has already ap-
peared in the one- and two-dimensional situations. Append-
ing a third dimension ascends the dimensional ladder to its
ultimate rung, in physical space at least. For instance, lin-
ear second-order 3D partial differential equations appear in
many problems modeling equilibrium configurations of
solid bodies, the three-dimensional wave equation governing
vibrations of solids, liquids, gases, and electromagnetic
waves, and the three-dimensional heat equation modeling
basic spatial diffusion processes. These equations define a
state representing rectangular coordinates on R3. There are
some basic underlying solution techniques to solve 3D PDEs:
separation of variables and Green’s functions or fundamental
solutions. Unfortunately, the most powerful of the planar

tools, conformal mapping, does not carry over to higher di-
mensions. In this way, many numerical techniques solving
such PDE, for example, the finite difference method (FDM)
and the finite element method (FEM), have been developed
(see [2, 3]). The principal disadvantage of these methods is
that they require the complete mathematical knowledge of
the system to define a mesh (domain discretization), where
the functions are approximated locally. The construction of a
mesh in two or more dimensions is a nontrivial task. Usually,
in practice, only low-order approximations are employed re-
sulting in a continuous approximation of the function across
the mesh but not in its partial derivatives. The approximation
discontinuities of the derivative can adversely affect the stab-
ility of the solution. However, all those methods are well de-
fined if the PDE structure is perfectly known. Actually, the
most of suitable numerical solutions could be achieved only
if the PDE is linear. Nevertheless, there are not so many
methods to solve or approximate the PDE solution when its
structure (even in a linear case) is uncertain. This paper sug-
gests a different numerical solution for uncertain systems
(given by a 3D PDE) based on the Neural Network approach
[4].
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1.2. Application of Neural Networks to Model PDEs. Recent
results show that neural networks techniques seem to be very
effective to identify a wide class or systems when we have no
complete model information, or even when the plant is con-
sidered as a gray box. It is well known that radial basis func-
tion neural networks (RBFNNs) and MultiLayer Perceptrons
(MLPs) are considered as a powerful tool to approximate
nonlinear uncertain functions (see [5]): any continuous fun-
ction defined on a compact set can be approximated to arbit-
rary accuracy by such class of neural networks [6]. Since the
solutions of interesting PDEs are uniformly continuous and
the viable sets that arise in common problems are often com-
pact, neural networks seem like ideal candidates for approxi-
mating viability problems (see [7, 8]). Neural networks may
provide exact approximation for PDE solutions; however,
numerical constraints avoid this possible exactness because it
is almost impossible to simulate NN structures with infinite
number of nodes (see [7, 9, 10]). The Differential Neural
Network (DNN) approach avoids many problems related to
global extremum search converting the learning process to
an adequate feedback design (see [11, 12]). Lyapunov’s stabi-
lity theory has been used within the neural networks frame-
work (see [4, 11, 13]). The contributions given in this paper
regard the development of a nonparametric identifier for 3D
uncertain systems described by partial differential equations.
The method produces an artificial mathematical model in
three dimensions that is able to describe the PDEs dynamics.
The required numerical algorithm to solve the non-para-
metric identifier was also developed.

2. 3D Finite Differences Approximation

The problem requires the proposal of a non-parametric iden-
tifier based on DNN in three dimensions. The problem here
may be treated within the PDEs framework. Therefore, this
section introduces the DNN approximation characteristics to
reconstruct the trajectories profiles for a family of 3D PDEs.

Consider the set of uncertain second-order PDEs

ut = f
(
u,ux,uxx,uy ,uyy ,uz,uzz,uxy ,uyx,uxz,uyz

)
+ ξ, (1)

here uh = uh(x, y, z, t), where h represents t, x, y, z, xx, yy,
zz, xy, xz, yx, yz and u = u(x, y, z, t) has n components
(u(x, y, z, t) ∈ Rn) defined in a domain given by [x, y, z) ∈
[0, 1]×[0, 1]×[0, 1], t ≥ 0, ξ = ξ(x, y, z, t) ∈ Rn is a noise in
the state dynamics. This PDE has a set of initial and boundary
conditions given by

ux
(
0, y, z, t

) = 0 ∈ Rn, u(x, 0, z, t) = u0 ∈ Rn,

u
(
x, y, 0, t

) = u0 ∈ Rn, u
(
x, y, z, 0

) = c ∈ Rn.
(2)

In (1), ut(x, y, z, t) stands for ∂u(x, y, z, t)/∂t.
System (1) armed with boundary and initial conditions

(2) is driven in a Hilbert spaceH equipped with an inner pro-
duct (·, ·). Let us consider a vector function g(t) ∈ H to be
a piecewise continuous in t. By L∞(a, b;H) we denote the
set of H-valued functions g such that (g(·),u) is Lebesgue
measurable for all u ∈ H and essmaxt∈[a,b]‖g(γ, t)‖ < ∞,

γ ∈ Rn. Suppose that the nonlinear function g(γ, t) satisfies
the Lipschitz condition ‖g(γ, t)− g(η, t)‖ ≤ L‖γ − η‖,

∀γ,η ∈ Br
(
γ0
)

:= {γ ∈ Rn | ∥∥γ − γ0
∥∥ ≤ r, ∀t ∈ [t0, t1]

}
,

(3)

where L is positive constant and ‖g‖2 = (g, g) is used just to
ensure that there exists some δ > 0 such that the state equa-
tion γ̇ = g(γ, t) with γ(t0) = γ0 has a unique solution over
[t0, t0 + δ] (see [14]). The norm defined above stands for the
Sobolev space defined in [15] as follows.

Definition 1. Let Ω be an open set in Rn, and let ν ∈ Cm(Ω).
Define the norm of ν(γ) as

‖ν‖m,p :=
∑

0≤|α|≤m

(∫

Ω

∣∣Dαν
(
γ
)∣∣pdγ

)1/p

(4)

(1 ≤ p < ∞, Dαν(γ) := (∂α/∂γα)ν(γ)). This is the Sobolev
norm in which the integration is performed in the Lebesgue
sense. The completion of the space of function ν(γ) ∈
Cm(Ω): ‖ν‖m,p < ∞ with respect to ‖ · ‖m,p is the Sobolev
space Hm,p(Ω). For p = 2, the Sobolev space is a Hilbert
space (see [14, 15]).

Below we will use the norm (4) for the functions u(·, t)
for each fixed t.

2.1. Numerical Approximation for Uncertain Functions. Now
consider a function h0(·) in Hm,2(Ω). By [16], h0(·) can be
rewritten as

h0
(
γ, θ∗

) =
∑

i

∑

j

∑

k

θ∗i jkΨi jk
(
γ
)
,

θi jk =
∫ +∞

−∞
h0
(
γ
)
Ψi jk

(
γ
)
dγ, ∀i, j, k ∈ Z,

(5)

where {Ψi jk(γ)} are functions constituting a basis in
Hm,2(Ω). Last expression is referred to as a vector function
series expansion of h0(γ, θ∗). Based on this series expansion,
an NN takes the following mathematical structure:

h0
(
γ, θ
)

:=
L2∑

i=L1

M2∑

j=M1

N2∑

k=N1

θi jkΨi jk
(
γ
) = ΘTW

(
γ
)

(6)

that can be used to approximate a nonlinear function
h0(γ, θ∗) ∈ S with an adequate selection of integers L1, L2,
M1, M2, N1, N2 ∈ Z+, where

Θ = [θL1M1N1 , . . . , θL1M1N2 , . . . θL2M1N1 , . . . θL2M2N2

]ᵀ,

W
(
γ
) = [ΨL1M1N1 , . . . ,ΨL1M1N2 , . . .ΨL2M1N1 , . . .ΨL2M2N2

]ᵀ
.

(7)

Following the Stone-Weierstrass Theorem [17], if

ε(L1,L2,M1,M2,N1,N2) = h0
(
γ, θ∗

)− h0
(
γ, θ
)

(8)

is the NN approximation error, then for any arbitrary posi-
tive constant ε there are some constants L1,L2,M1,M2,N1,
N2 ∈ Z such that for all x ∈ X ⊂ R

‖ε(L1,L2,M1,M2,N1,N2)‖2 ≤ ε. (9)
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Figure 1: Constructed grid for 3 dimensions.

The main idea behind the application of DNN [11] to appro-
ximate the 3D PDEs solution is to use a class of finite-dif-
ference methods but for uncertain nonlinear functions. So,
it is necessary to construct an interior set (commonly called
grid or mesh) that divides the subdomain x ∈ [0, 1] in L
equidistant sections, y ∈ [0, 1] in M, and z ∈ [0, 1] in N
equidistant sections, each one of them (Figure 1) defined as
(xi, y j , zk) in such a way that x0 = y0 = z0 = 0 and xL =
yM = zN = 1.

Using the mesh description, one can use the next defini-
tions:

ui, j,k(t) := u
(
xi, y j , zk, t

)
,

u
i, j,k
t (t) := ∂u

(
x, y, z, t

)

∂t

∣∣∣∣∣
x=xi,y=y j ,z=zk

,

u
i, j,k
x (t) := ux

(
x, y, z, t

)∣∣
x=xi,y=y j ,z=zk ,

u
i, j,k
xx (t) := uxx

(
x, y, z, t

)∣∣
x=xi,y=y j ,z=zk .

(10)

Analogously, we may consider the other cases (uxx, uy ,
uyy , uz, uzz, uxy ,uxz,uyz). Using the mesh description and
applying the finite-difference representation, one gets

u
i, j,k
x (t) 
 ui, j,k(t)− ui−1, j,k(t)

Δx
,

u
i, j,k
xx (t) 
 u

i, j,k
x (t)− ui−1, j,k

x (t)
Δ2x

,

(11)

and it follows for all cases such that the (Δx,Δy,Δz)-ap-
proximation of the nonlinear PDE (1) can be represented as

u̇i, j,k(t) = u
i, j,k
t (t)


 Φ
(
ui, j,k,ui−1, j,k,ui−2, j,k,ui, j−1,k,

ui, j−2,k,ui, j,k−1,ui, j,k−2,ui−1, j−1,k,

ui−1, j,k−1,ui, j−1,k−1,ui−1, j−1,k−1
)

(
i = 0, . . . ,L; j = 0, . . . ,M, k = 0, . . . ,N

)
.

(12)

2.2. 3D Approximation for Uncertain PDE. By simple adding
and subtracting the corresponding terms, one can describe
(1) as

ut = Au +
◦
V 1σu +

◦
V 2ϕ

1ux +
◦
V 3γ

1uxx
◦
V 4ϕ

2uy +
◦
V 5γ

2uyy

+
◦
V 6ϕ

3uz +
◦
V 7γ

3uzz +
◦
V 8ψ

1uxy

+
◦
V 9ψ

2uyz
◦
V 10ψ

3uxz +
◦
V 11σ

2uxyz + f̃ ,
(13)

where ut = ut(x, y, z, t), u = u(x, y, z, t), σ = σ(x, y, z), ux =
ux(x, y, z, t), uxx = uxx(x, y, z, t), the same for σ2, ϕi, γi, ψi,
uy , uyy , uz, uzz, uxy , uyz, uxz, and uxyz (i = 1, 3), A ∈ Rn×n,
◦
V 1 ∈ Rn×s1 ,

◦
V 2 ∈ Rn×s2 ,

◦
V 3 ∈ Rn×s3 , f̃ = f̃ (x, y, z, t),

◦
V 4 ∈

Rn×s4 ,
◦
V 5 ∈ Rn×s5 ,

◦
V 6 ∈ Rn×s6 ,

◦
V 7 ∈ Rn×s7 ,

◦
V 8 ∈ Rn×s8 ,

◦
V 9 ∈ Rn×s9 ,

◦
V 10 ∈ Rn×s10 .

Here f̃ (x, t) ∈ Rn represents the modelling error term, A

and
◦
Vk (k = 1, 6) any constant matrices and the set of sig-

moidal functions have the corresponding size (σ(x, y, z) ∈
Rs1 , ϕ1(x, y, z) ∈ Rs2 , γ1(x, y, z) ∈ Rs3 , ϕ2(x, y, z) ∈ Rs4 ,
γ2(x, y, z) ∈ Rs5 , ψ1(x, y, z) ∈ Rs6 , ϕ3(x, y, z) ∈ Rs7 ,
γ3(x, y, z) ∈ Rs8 , ψ2(x, y, z) ∈ Rs9 , ψ3(x, y, z) ∈ Rs10 , and
σ2(x, y, z) ∈ Rs11 ) and are known as the neural network set
of activation functions. These functions obey the following
sector conditions:

∥∥σ1(x, y, z)− σ1(x′, y′, z′)
∥∥2

≤ Lσ1

(∥∥x − x′∥∥2 +
∥∥y − y′

∥∥2 +
∥∥z − z′∥∥2

)
,

∥∥σ2(x, y, z)− σ2(x′, y′, z′)
∥∥2

≤ Lσ2

(∥∥x − x′∥∥2 +
∥∥y − y′

∥∥2 +
∥∥z − z′∥∥2

)
,

∥∥φs(x, y, z)− φs(x′, y′, z′)∥∥2

≤ Lφs
(∥∥x − x′∥∥2 +

∥∥y − y′
∥∥2 +

∥∥z − z′∥∥2
)

(14)
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which are bounded in x, y, and z, that is,

‖σ(·)‖2 ≤ σ (l−1)+,
∥∥∥ϕl(·)

∥∥∥2 ≤ ϕl+,

∥∥∥γl(·)
∥∥∥2 ≤ γl+,

∥∥∥ψl(·)
∥∥∥ ≤ ψl+, l = 1, 3.

(15)

Following the methodology of DNN [11] and applying the
same representation to (12), we get for each i ∈ (1, . . . ,L),
j ∈ (1, . . . ,M), k ∈ (1, . . . ,N) the following robust adaptive
non-parametric identifier:

u
i, j,k
t (t) = Ai, j,kui, j,k(t) +

11∑

p=1

◦
W

i, j,k

p φsU(t) + f̃ i, j,k(t). (16)

In the sum we have that s = 1, 3, φ represents functions σ , ϕ,
γ, ψ, and U can be taken as the corresponding ui, j,k, ui−1, j,k,
ui−2, j,k, ui, j−1,k, ui, j−2,k, ui, j,k−1, ui, j,k−2, ui−1, j−1,k, ui, j−1,k−1,
ui−1, j,k−1, ui−1, j−1,k−1. In this equation the term f̃ i, j,k(t),
which is usually recognized as the modeling error, satisfies
the following identify, and here, it has been omitted the de-
pendence to xi, y j , zk of each sigmoidal function:

f̃ i, j,k(t)

:= Φ
(
ui, j,k,ui−1, j,k,ui−2, j,k,ui, j−1,k,ui, j−2,k,ui, j,k−1,ui, j,k−2,

ui−1, j−1,k,ui−1, j,k−1,ui, j−1,k−1,ui−1, j−1,k−1
)

− Ai, j,kui, j,k(t)−
11∑

p=1

◦
W

i, j,k

p φsU(t),
(17)

where
◦
W

i

p ∈ Rn×sp , p = 1, 11,φs, φ represents functions σ ,

ϕ, γ,ψ and s = 1, 3,U(t) represents the corresponding (ui, j,k,
ui−1, j,k, ui−2, j,k, ui, j−1,k, ui, j−2,k, ui, j,k−1, ui, j,k−2, ui−1, j−1,k,
ui−1, j,k−1, ui, j−1,k−1, ui−1, j−1,k−1).

We will assume that the modeling error terms satisfy the
following.

Assumption 2. The modeling error is absolutely bounded in
Ω:

∥∥∥ f̃ i, j,k
∥∥∥2 ≤ f

i, j,k
1 . (18)

Assumption 3. The error modeling gradient

∇s f̃
(
x, y, z, t

)∣∣∣
s=si

:= ∇s f̃
i, j,k (19)

is bounded as ‖∇s f̃ i, j,k‖
2 ≤ f

i, j,k
r , where s = x, y, z and

f
i, j,k
r (r = 1, 3) are constants.

3. DNN Identification for Distributed
Parameters Systems

3.1. DNN Identifier Structure. Based on the DNN methodol-
ogy [11], consider the DNN identifier

d

dt
ûi, j,k = Ai, j,kûi, j,k +

11∑

p=1

W
i, j,k
p (t)φsÛ (20)

for all i = 0, . . . ,L; û−1(t) = û−2(t) = 0, where φ represents
activation functions σ , ϕ, γ, and ψ, s = 1, 3, Û is each one of
the states ûi, j,k, ûi−1, j,k, ûi−2, j,k, ûi, j−1,k, ûi, j−2,k, ûi, j,k−1, ûi, j,k−1,
ûi, j,k−2, ûi−1, j−1,k, ûi−1, j,k−1, ûi−1, j−1,k−1, and Ai, j,k ∈ Rn×n is
a constant matrix to be selected, ûi, j,k(t) is the estimate of
ui, j,k(t). Obviously that proposed methodology implies the
designing of individual DNN identifier for each point xi, yj ,
zk. The collection of such identifiers will constitute a DNN
net containing N × M connected DNN identifiers working
in parallel. Here σ1(xi, y j , zk), ϕ1(xi, y j , zk), ϕ2(xi, y j , zk),
ϕ3(xi, y j , zk), γ1(xi, y j , zk), γ2(xi, y j , zk), γ3(xi, y j , zk), ψ1(xi,
y j , zk), ψ2(xi, y j , zk), ψ3(xi, y j , zk), and σ2(xi, y j , zk) are the
NN activation vectors. This means that the applied DNN-ap-
proximation significantly simplifies the specification of
σ1(·, ·), ϕ1(·, ·), ϕ2(·, ·), ϕ3(·, ·), γ1(·, ·), γ2(·, ·), γ3(·, ·)
and ψ1(·, ·), ψ2(·, ·), ψ3(·, ·), σ2(·, ·) which now are con-
stant for any xi, y j , zk fixed.

3.2. Learning Laws for Identifier’s Weights. For each i = 0,
. . . ,L, j = 0, . . . ,M, k = 0, . . . ,N , define the vector-functions
defining the error between the trajectories produced by the
model and the DNN-identifier as well as their derivatives
with respect to x, y, and z for each i, j, k:

ũi, j,k(t) := ûi, j,k(t)− ui, j,k(t),

ũ
i, j,k
s (t) := û

i, j,k
s (t)− ui, j,ks (t),

s = x, y, z.

(21)

Let W
i, j,k
r (t) ∈ Rn, r = 1, 11 be time-variant matrices. These

matrices satisfy the following nonlinear matrix differential
equations:

Ẇ
i, j,k
r (t) := d

dt
W

i, j,k
r (t) = −αW̃i, j,k

r (t)

− K−1
r Pi, j,kûi, j,k

(
Û (i, j,k),r

)ᵀ(
Ωr(xi, y j , z j)

)ᵀ

− K−1
r S

i, j,k
1 ũ

i, j,k
x

(
Û (i, j,k),r

)ᵀ(
Ωr
x(xi, y j , z j)

)ᵀ

− K−1
r S

i, j,k
2 ũ

i, j,k
y

(
Û (i, j,k),r

)ᵀ(
Ωr
y(x

i, y j , z j)
)ᵀ

− K−1
r S

i, j,k
3 ũ

i, j,k
z

(
Û (i, j,k),r

)ᵀ(
Ωr
z(x

i, y j , z j)
)ᵀ

,

(22)

where Ωh(xi, y j , z j) = Sl(xi, y j , z j) (h = 1, 10, l = 1, 3) rep-
resents the corresponding sigmoidal functions σl(xi, y j , z j),
ϕl(xi, y j , z j), γl(xi, y j , z j), and ψl(xi, y j , z j). Here

Û (i, j,k),1(t) = ûi, j,k(t), Ũ (i, j,k),2(t) = ûi−1, j,k(t),

Ũ (i, j,k),3(t) = ûi−2, j,k(t), Ũ (i, j,k),4(t) = ûi, j−1,k(t),

Ũ (i, j,k),5(t) = ûi, j−2,k(t), Ũ (i, j,k),6(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),7(t) = ûi−1, j−1,k(t), Ũ (i, j,k),8(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),9(t) = ûi−1, j−1,k(t), Ũ (i, j,k),10(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),11(t) = ûi−1, j−1,k−1(t)
(23)
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with positive matrices Kr(r = 1, 11) and Pi, j,k, S
i, j,k
1 , and S

i, j,k
2

(i = 0,N ; j = 0,M) which are positive definite solutions

(Pi, j > 0, S
i, j
1 > 0, S

i, j
2 > 0) and S

i, j,k
3 (i = 0,N ; j = 0,M, k =

0,L) of the algebraic Riccati equations defined as follows:

Ric
(
Pi, j,k

)
:= Pi, j,kAi, j,k +

[
Ai, j,k

]ᵀ
Pi, j,k

+ Pi, j,kR
i, j,k
P Pi, j,k +Q

i, j,k
P = 0,

Ric
(
S
i, j,k
1

)
:= S

i, j,k
1 Ai, j,k +

[
Ai, j
]ᵀ
S
i, j,k
1

+ S
i, j,k
1 R

i, j,k
S1

S
i, j,k
1 +Q

i, j,k
S1

= 0,

Ric
(
S
i, j,k
2

)
:= S

i, j,k
2 Ai, j,k +

[
Ai, j,k

]ᵀ
S
i, j,k
2

+ S
i, j,k
2 R

i, j,k
S2

S
i, j,k
2 +Q

i, j,k
S2

= 0,

Ric
(
S
i, j,k
3

)
:= S

i, j,k
3 Ai, j,k +

[
Ai, j,k

]ᵀ
S
i, j,k
3

+ S
i, j,k
3 R

i, j,k
S3

S
i, j,k
3 +Q

i, j,k
S3

= 0,

(24)

where each R
i, j,k
B has the form

R
i, j,k
B :=

11∑

r=1

◦
W

i, j,k

r Λr+b

(
◦
W

i, j,k

r

)ᵀ
+ Λb, (25)

where B can be P, S1, S2, and S3 and b = (7, 14, 21, 28).

Matrices Q
i, j,k
B have the form

Q
i, j,k
B :=

∥∥∥Ω1
m(xi, y j , zk)

∥∥∥2

Λ−1
1

+
∥∥∥Ω2

m(xi−1, y j , zk)
∥∥∥2

Λ−1
2

+
∥∥∥Ω3

m(xi−2, y j , zk)
∥∥∥2

Λ−1
3

+
∥∥∥Ω4

m(xi, y j−1, zk)
∥∥∥2

Λ−1
4

+
∥∥∥Ω5

m(xi, y j−2, zk)
∥∥∥2

Λ−1
5

+
∥∥∥Ω6

m(xi, y j , zk−1)
∥∥∥2

Λ−1
6

+
∥∥∥Ω7

m(xi, y j , zk−2)
∥∥∥2

Λ−1
7

+
∥∥∥Ω8

m(xi−1, y j−1, zk)
∥∥∥2

Λ−1
8

+
∥∥∥Ω9

m(xi, y j−1, zk−1)
∥∥∥2

Λ−1
9

+
∥∥∥Ω10

m (xi−1, y j , zk−1)
∥∥∥2

Λ−1
10

+
∥∥∥Ω11

m (xi−1, y j−1, zk−1)
∥∥∥2

Λ−1
11

+Q
i, j,k
B ,

(26)

where B can be P, S1, S2, or S3, representing the partial deri-
vative; for S1 it is with respect to x, for S2 with respect to y,
and for S3 with respect to z, and Λ−1

l (l = 1, 46), where

Ωr
x

(
xi, yj , zj

)
:= d

dx
Ωr
(
x, y, z

)∣∣∣∣
x=xi,y=yj ,z=zk

,

Ωr
y

(
xi, yj , zj

)
:= d

dy
Ωr
(
x, y, z

)
∣∣∣∣∣
x=xi,y=yj ,z=zk

,

Ωr
z

(
xi, yj , zj

)
:= d

dz
Ωr
(
x, y, z

)∣∣∣∣
x=xi,y=yj ,z=zk

.

(27)

Here, W̃
i, j,k
k (t) :=W

i, j,k
k (t)−

◦
W

i, j,k

k , k = 1, 11.
The special class of Riccati equation

PA + ATP + PRP +Q = 0 (28)

has a unique positive solution P if and only if the four con-
ditions given in [11] (page 65, chapter 2 Nonlinear System
Identification: Differential Learning) are fulfilled (see [11]):
(1) matrix A is stable, (2) pair (A,R1/2) is controllable, (3)
pair (Q1/2,A) is observable, and (4) matrices (A,Q,R) should
be selected in such a way to satisfy the following inequality:

1
4

(
AᵀR−1 − R−1A

)
R
(
AᵀR−1 − R−1A

)ᵀ
+Q ≤ AᵀR−1A

(29)

which restricts the largest eigenvalue of R guarantying the
existence of a unique positive solution. The main result ob-
tained in this part is in the practical stability framework.

4. Practical Stability and Stabilization

The following definition and proposition are needed for the
main results of the paper. Consider the following ODE non-
linear system:

żt = g(zt, vt) + �t (30)

with zt ∈ Rn, and vt ∈ Rm, and �t an external perturbation
or uncertainty such that ‖�t‖2 ≤ �+.

Definition 4 (Practical Stability). Assume that a time interval
T and a fixed function v∗t ∈ Rm over T are given. Given
ε > 0, the nonlinear system (30) is said to be ε-practically
stable over T under the presence of �t if there exists a δ > 0
(δ depends on ε and the interval T) such that zt ∈ B[0, ε], for
all 0 ≤ t, whenever zt0 ∈ B[0, δ].

Similarly to the Lyapunov stability theory for nonlinear
systems, it was applied the aforementioned direct method for
the ε-practical stability of nonlinear systems using-practical
Lyapunov-like functions under the presence of external per-
turbations and model uncertainties. Note that these func-
tions have properties differing significantly from the usual
Lyapunov functions in classic stability theory.

The subsequent proposition requires the following lem-
ma.

Lemma 5. Let a nonnegative function V(t) satisfying the fol-
lowing differential inequality:

V̇(t) ≤ −αV(t) + β, (31)

where α > 0 and β ≥ 0. Then
[

1− μ√
V(t)

]

+

−→ 0, (32)

with μ =
√
β/α and the function [·]+ defined as

[z]+ :=
⎧⎨
⎩
z if z ≥ 0,

0 if z < 0.
(33)
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Proof. The proof of this lemma can be obtained directly by
the application of the Gronwall-Bellman Lemma.

Proposition 6. Given a time interval T and a function v(·)
over a continuously differentiable real-valued function V(z, t)
satisfying V(0, t) = 0, for all tεT , is said to be ε-practical Lya-
punov-like function over T under v if there exists a constant
α > 0 such that

V̇(z, t) ≤ −αV(z, t) +H(�+), (34)

with H a bounded nonnegative nonlinear function with upper
bound H+. Moreover, the trajectories of zt belong to the zone
ε := H+/α when t → ∞. In this proposition V̇(zt, t) denotes
the derivative of V(z, t) along zt, that is, V̇(z, t) = Vz(z, t) ·
(g(zt, vt) + �t) +Vt(x, t).

Proof. The proof follows directly from Lemma 5.

Definition 7. Given a time interval T and a function v(·) over
T , nonlinear system (30) is ε-practically stable, T under v
if there exists an ε-practical Lyapunov-like function V(x, t)
over T under v.

5. Identification Problem Formulation

The state identification problem for nonlinear systems (13)
analyzed in this study, could be now stated as follows.

Problem. For the nonlinear system, given by the vector PDE
(20), to study the quality of the DNN identifier supplied with
the adjustment (learning) laws (22), estimate the upper
bound of the identification error δ given by

δ := lim
t→∞

L∑

i=0

M∑

j=0

N∑

k=0

∥∥∥ûi, j,k(t)− ui, j,k(t)
∥∥∥2

Pi, j,k
(35)

(with Pi, j,k from (24)) and, if it is possible, to reduce to its
lowest possible value, selecting free parameters participating
into the DNN identifier (A,Kr , r = 1, 11).

This implicates that the reduction of the identification
error δ means that the differential neural network has con-
verged to the solution of the 3D PDE; this can be observed in
the matching of the DNN to the PDE state.

6. Main Result

The main result of this paper is presented in the following
theorem.

Theorem 8. Consider the nonlinear model (1) (i = 0, . . . ,L;
j = 0, . . . ,M, k = 0, . . . ,N), given by the system of PDEs with
uncertainties (perturbations) in the states, under the border
conditions (2). Let us also suppose that the DNN-identifier is
given by (20) which parameters are adjusted by the learning

laws (22) with parameters α
i, j,k
m (i = 0, . . . ,L; j = 0, . . . ,M; k =

0, . . . ,N). If positive definite matrices Q
i, j,k
1 , Q

i, j,k
2 , and Q

i, j,k
3

provide the existence of positive solutions Pi, j , S
i, j,k
1 , S

i, j,k
2 , and

0
2

4
6

8

0
2

4
6

8

Solution of 3D partial differential equation at time

10

10

10

Coordinate yt

0

10

20

30

40

50

60

Coordinate xt

u
(x

,y
,z

,t
)

Figure 2: Numerical trajectory produced by the mathematical
model described by 3D partial differential equation at time 10 s
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S
i, j,k
3 (i = 0, . . . ,L) to the Riccati equations (24), then for all
i = 0, . . . ,L; j = 0, . . . ,M; k = 0, . . . ,N the following ρ-upper
bound:

lim
t→∞

L∑

i=0

M∑

j=0

×
N∑

k=0

[∥∥∥ûi, j,k(t)− ui, j,k(t)
∥∥∥2

Pi, j,k
+
∥∥∥ûi, j,kx (t)− ui, j,kx (t)

∥∥∥
S
i, j,k
1

+
∥∥∥ûi, j,ky (t)− ui, j,ky (t)

∥∥∥
S
i, j,k
2

+
∥∥∥ûi, j,kz (t)− ui, j,kz (t)

∥∥∥
S
i, j,k
3

]

≤ μ
(36)

is ensured with μ0 := √LMNα−1/2 and

μ := μ0

√
max
i, j,k

Ψ,

Ψ := �
3∑

s=1

f
i, j,k
s

≥
(
f̃ i, j,k(t)

)T
Λ−1

7 f̃ i, j,k(t) +
(
f̃
i, j,k
x (t)

)T
Λ−1

14 f̃
i, j,k
x (t)

+
(
f̃
i, j,k
y (t)

)T
Λ−1

21 f̃
i, j,k
y (t) +

(
f̃
i, j,k
z (t)

)T
Λ−1

28 f̃
i, j,k
z (t),

� := max
{
λmax

(
Λ−1

7

)
, λmax

(
Λ−1

14

)
, λmax

(
Λ−1

21

)
, λmax

(
Λ−1

28

)}
.

(37)

Moreover, the weights Wr,tr = 1, 11 remain bounded being
proportional to μ, that is, ‖Wr,t‖ ≤ Krμ, r = 1, 11.

Proof. The proof is given in the appendix.

7. Simulation Results

7.1. Numerical Example. Below, the numerical smulation
shows the qualitative illustration for a benchmark system.
Therefore, consider the following three-dimensional PDE
described as follows:

ut
(
x, y, z, t

) = −c1uxx
(
x, y, z, t

)− c2uyy
(
x, y, z, t

)

− c3uzz
(
x, y, z, t

)
+ ξ
(
x, y, z, t

)
,

(38)

where c1 = c2 = c3 = 0.15. It is assumed that there is access
to discrete measurements of the state u(x, y, z, t) along the
whole domain, which is feasible in practice. ξ(x, y, z, t) is a
noise in the state dynamics. This model will be used just to
generate the data to test the 3D identifier based on DNN.
Boundary conditions and initial conditions were selected as
follows:

u(0, 0, 0, t) = rand(1), ux(0, 0, 0, t) = 0,

uy(0, 0, 0, t) = 0, uz(0, 0, 0, t) = 0.
(39)

The trajectories of the model can be seen in Figure 3 as well
as the estimated state, produced by the DNN identifier. The
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efficiency of the identification process provided by the sug-
gested DNN algorithm shown in Figure 4.

In Figures 5 and 6 there are shown the trajectories of the
PDE and the DNN for the coordinate z and the index error
of the PDE and the DNN at 10 seconds for coordinates x, z,
respectively Figure 2.

7.2. Tumour Growth Example. The mathematical model of
the brain tumour growth is presented in this section based on
the results of [18]. Here the diffusion coefficient is considered
as a constant. Let consider the following three-dimensional
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Figure 7: Numerical trajectory produced by the mathematical model described by 3D partial differential equation at time 46 days along the
whole domain.

parabolic equation of the tumour growth described as fol-
lows:

ut
(
x, y, z, t

) = −Pux
(
x, y, z, t

)− Ruy
(
x, y, z, t

)

− Suz
(
x, y, z, t

)
+Quxx

(
x, y, z, t

)

+Quyy
(
x, y, z, t

)
+Quzz

(
x, y, z, t

)

+ Γ− Lu(x, y, z, t
)
,

(40)

where u(x, y, z, t) is the growth rate of a brain tumour, Q is
the diffusion coefficient, W = (P,R, S) is the drift velocity
field, Γ = Γ(u) is the proliferation coefficient, and L = L(u)
is the decay coefficient of cells. It is assumed that there is
access to discrete measurements of the state u(x, y, z, t) along
the whole domain, which is feasible in practice by PET-
CT (Positron emission tomography-computed tomography)
technology. The domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1
This model will be used just to generate the data to test the 3D
identifier based on DNN. Boundary conditions and initial
conditions were selected as follows:

u(0, 0, 0, t) = 200± 20μ, ux(0, 0, 0, t) = 0,

uy(0, 0, 0, t) = 0, uz(0, 0, 0, t) = 0.
(41)

The trajectories of the model and the estimate state produced
by the DNN identifier can be seen in Figure 7. The dis-
similarity between both trajectories depends on the learning
period required for adjusting the DNN identifier. The error
between trajectories produced by the model and the pro-
posed identifier is close to zero almost for all x, y, z and all
t that shows the efficiency of the identification process pro-
vided by the suggested DNN algorithm is shown in Figure 8.

In Figures 9 and 10 there are shown the trajectories of
the PDE and the DNN for the coordinate z and the index
error of the PDE and the DNN at 46 days for coordinates x,
z, respectively.

8. Conclusions

The adaptive DNN method proposed here solves the prob-
lem of non-parametric identification of nonlinear systems
(with uncertainties) given by 3D uncertain PDE. Practical
stability for the identification process is demonstrated based
on the Lyapunov-like analysis. The upper bound of the iden-
tification error is explicitly constructed. Numerical examples
demonstrate the estimation efficiency of the suggested meth-
odology.
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Appendix

Consider the Lyapunov-like function defined as the compo-
sition of NML individual Lyapunov functions Vi, j,k(t) along
the whole space:

V(t) :=
L∑

i=0

M∑

j=0

N∑

k=0

⎡
⎣Vi, j,k

(t) +
11∑

r=1

tr
{[
W̃i

r(t)
]T
KrW̃

i
r(t)
}⎤
⎦,

V
i, j,k

(t) :=
∥∥∥ũi, j,k(t)

∥∥∥2

Pi, j,k
+
∥∥∥ũi, j,kx (t)

∥∥∥
2

S
i, j,k
1

+
∥∥∥ũi, j,ky (t)

∥∥∥
2

S
i, j,k
2

+
∥∥∥ũi, j,kz (t)

∥∥∥
2

S
i, j,k
3
.

(A.1)
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Figure 10: Index quadratic error for the whole time with coordi-
nates x, y, and z fixed.

The time derivative V̇(t) of V(t) can be obtained so that

V̇(t) = 2
N∑

i=0

M∑

j=0

L∑

k=0

(
ũi, j,k(t)

)T
(t)Pi· j,k

d

dt
ũi, j,k(t)

+ 2
N∑

i=0

M∑

j=0

L∑

k=0

[
ũ
i, j,k
x (t)

]T
S
i· j,k
1

d

dt
ũ
i. j,k
x (t)

+ 2
N∑

i=0

M∑

j=0

L∑

k=0

[
ũ
i, j,k
y (t)

]T
S
i· j,k
2

d

dt
ũ
i. j,k
y (t)

+ 2
N∑

i=0

M∑

j=0

L∑

k=0

[
ũ
i, j,k
z (t)

]T
S
i· j,k
3

d

dt
ũ
i. j,k
z (t)

+ 2
N∑

i=0

M∑

j=0

L∑

k=0

3∑

r=1

tr
{[
W̃

i, j,k
r (t)

]T
KrẆ

i, j,k
r (t)

}
.

(A.2)

Applying the matrix inequality given in [19]

XYT + YXT ≤ XΛXT + YΛ−1YT (A.3)

valid for any X ,Y ∈ Rr×s and for any 0 < Λ = ΛT ∈ Rs×s

to the terms containing f̃ i(t) and their derivatives. We obtain

V̇(t) ≤ I1(t) + I2(t) + I3(t) + I4(t)

− 2α
11∑

r=1

N∑

i=0

M∑

j=0

L∑

k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ 2α
11∑

r=1

N∑

i=0

M∑

j=0

L∑

k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ 2
11∑

r=1

N∑

i=0

M∑

j=0

L∑

k=0

tr
{(
W̃

i, j
r (t)

)T
K2
r Ẇ

i, j,k
1 (t)

}

−
N∑

i=0

M∑

j=0

L∑

k=0

αV
i, j,k

(t) + �
N∑

i=0

M∑

j=0

L∑

k=0

3∑

s=1

f
i, j,k
s ,

(A.4)
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where

I1(t) :=
N∑

i=0

M∑

j=0

L∑

k=0

(
ũi. j,k(t)

)T
Ric
(
Pi, j
)
ũi, j,k(t),

I2(t) :=
N∑

i=0

M∑

j=0

L∑

k=0

(
ũ
i. j,k
x (t)

)T
Ric
(
S
i, j,k
1

)
ũ
i, j,k
x (t),

I3(t) :=
N∑

i=0

M∑

j=0

L∑

k=0

(
ũ
i. j,k
y (t)

)T
Ric
(
S
i, j
2

)
ũ
i, j,k
y (t),

I4(t) :=
N∑

i=0

M∑

j=0

L∑

k=0

(
ũ
i. j,k
z (t)

)T
Ric
(
S
i, j
3

)
ũ
i, j,k
z (t).

(A.5)

By the Riccati equations, defined in (24), I1(t) = I2(t) =
I3(t) = I4(t) = 0, and in view of the adjust equations of the
weights (22), the previous inequality is simplified to

V̇(t) ≤ −α
N∑

i=0

M∑

j=0

L∑

k=0

V
i, j,k

(t)

+ 2α
11∑

r=1

N∑

i=0

M∑

j=0

L∑

k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ ΨV̇(t) ≤ −α
N∑

i=0

M∑

j=0

L∑

k=0

Vi, j,k(t) + Ψ.

(A.6)

Applying Lemma 5, one has [1− (μ/
√
V(t))]+ → 0,

which completes the proof.
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