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A method is proposed for stabilization, using static state feedback, of systems subject to time-varying delays in both the states
and their derivatives (i.e., neutral systems), in the presence of saturating actuators. Delay-dependent conditions are given to
determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily
implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution.
These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator
saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

1. Introduction

Systems with time delays constitute basic mathematical mod-
els of many real phenomena in circuits theory, economics,
mechanics, and so forth, so they have been extensively stud-
ied in the literature: see, for example, [1–4] and references
therein for several theoretical studies on this subject. An
aspect that has not been frequently taken into account is the
fact that, in many of these systems, the actuators have strict
limitations. Thus, stabilization of time-delay systems with
actuator saturation is an important issue, already addressed
by several authors [5–9]. From those, we can emphasize [9],
where a delay-independent condition was obtained, but for
systems with no uncertainty and with known time-invariant
delays, situation which is not frequent in practice. Generally
speaking, the delay-independent scheme for control design
does not use any information on the magnitude of the
delay, whereas the delay-dependent approach employs such
information. Moreover, when the delay is not big, delay-
independent criteria tend to be conservative, so a delay-
dependent approach is considered in this paper. In this con-
text, we can cite [6], where a delay-dependent stabilization
problem has been introduced for time-delay systems with
actuators constraints and H∞ control. The methodology
followed in this paper follows the frequent approach of using

Lyapunov-Krasovskii functionals, providing a set of LMIs
that can be easily solved using dedicated solvers [10].

This paper concentrates on the specific class of neutral
systems, that is, delayed systems in which both the state and
its derivative are affected by time delays. Specific examples
of these neutral systems appear in population ecology,
transmission lines, and other practical systems [11]. These
neutral systems are difficult to handle, so although the
control design problem has been studied [12], it is not yet
completely solved [13]. In particular, neutral systems are
particularly sensitive to delays and can be easily destabilized
[14]. Stabilization of neutral systems has already been
studied in the literature [13, 15–17]. For example, in [18],
the stabilizing controller is given for local stability but
without giving the domain of initial condition. In any case,
stabilization is not yet fully explored for the general class
studied in this paper of constrained systems: as it has been
mentioned, this situation appears frequently in practical
applications, including neutral systems [19].

The proposed methodology is developed in this paper
as follows: results are provided that guarantee the local
stability of the closed loop system when the initial states
are taken within a given region of attraction, by using a
method based on the Lyapunov-Krasovskii (L-K) approach.
When the proposed stability conditions are derived, a specific
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method is followed to avoid cross products of the state and
delayed state. Moreover, to reduce conservatism, some free
matrices Pi are used (only one of them restricted to be
positive definite). This introduction of free matrices can be
viewed as an extension of the model description introduced
in [6], or similar to the slack variables used in [1, 3], albeit
in a different context. Finally, a LMI optimization approach
is proposed to design the state feedback gain that maximizes
the size of the estimated domain of attraction. It is shown for
these systems that the proposed results are less conservative
than those in the literature.

Notation. The following notations will be used throughout
the paper: � denotes the set of real numbers, �n denotes
the n dimensional Euclidean space, and �m×n denotes the
set of all m × n real matrices. The notation X ≥ Y
(resp., X > Y), where X and Y are symmetric matrices,
means that X − Y is positive semidefinite (resp., positive
definite). The symbol∗ stands for symmetric block in matrix
inequalities. λ(P) and λ(P) denote, respectively, the maximal
and minimal eigenvalues of a matrix P. ‖ · ‖ refers to
either the Euclidean vector norm, or the induced matrix
2-norm. The symbol C1([−d, 0],�n) denotes the Banach
space of continuous vector functions mapping the interval
[−d, 0] into�n. I denotes the identity matrix of appropriate
dimensions. For a matrix K , the ith row of K is denoted
by ki. For any vector u ∈ �m, the saturation function is
defined by sat(u) = [sat(u1) sat(u2) · · · sat(um)]T , where
sat(ui) = sign(ui) min{|ui|,ui}, with given bounds ui > 0.
The convex hull of a set is the minimal convex set containing
it. Thus, for a set of points x1, x2, . . . , xn ∈ �n, its convex hull
is Co{x1, x2, . . . , xn} = {

∑n
i=1 αixi,

∑n
i=1 αi = 1,αi ≥ 0}.

2. Problem Formulation and Definitions

Consider the following state-space linear system, with time-
varying delays in the state and its derivative:

ẋ(t)− Cẋ(t − τ(t)) = A0x(t) + A1x(t − h(t))

+ B sat(u(t)),
(1)

where x(t) ∈ �n is the state, u(t) ∈ �m is the control input,
C, A0, A1, and B are known real constant matrices.

It must be noticed that throughout the paper, following
[15–17], the delays τ(t) and h(t) are assumed to be unknown
but bounded functions of time, continuously differentiable,
with their respective rates of change bounded as follows:

0 ≤ h(t) ≤ hm, 0 ≤ τ(t) <∞,

ḣ(t) ≤ d1, τ̇(t) ≤ d2,
(2)

where hm > 0, d1 < 1, and d2 < 1 are given positive
constants (these bounds are strictly smaller than one to
ensure causality: see [20]). The initial condition of system
(1) is given by

x(t0 + θ) = φ(θ), θ ∈
[
−h, 0

]
, (3)

where h = maxt≥0{τ(t),h(t)} and φ(·) is a vector of differ-
entiable functions of initial values (i.e., φ ∈ C1[−h, 0]).

Now, suppose that the solution x(t) = 0 is asymptotically
stable, for all delays satisfying (2), then the domain of
attraction of the origin is

Ψ =
{

φ ∈ C1
[
−h, 0

]
: lim
t→∞x(t) = 0

}

. (4)

The exact determination of Ψ is generally difficult. Conse-
quently, it is useful to search for an estimate Ξδ ⊂ Ψ of the
domain of attraction, where

Ξδ =
⎧
⎨

⎩
φ ∈ C1

[
−h, 0

]
: max

[−h, 0]

∥
∥φ
∥
∥ ≤ δ

⎫
⎬

⎭
(5)

and the stability radius δ > 0 is a scalar to be determined.
Throughout this paper, we assume the following.
A1. All the eigenvalues of matrix C are inside the unit

circle.
Controllers in this paper are linear state feedback of the

form

u(t) = Kx(t). (6)

For a given gain matrix K , we define the polyhedron of states
that do not cause saturation as follows:

D(K ,u) = {x ∈ �n; |kix| ≤ ui, i = 1, . . . ,m}. (7)

A similar approach as the one proposed in [5] is used to
represent the saturated system by a polytopic model. Denote
by Θ the set of all diagonal matrices in �m×n with diagonal
elements that are 1 or 0. Thus, there are 2m elements Di in Θ,
and the matrix D−i = I −Di is also an element of Θ.

Lemma 1 (see [5]). Given K and H in�m×n, then

sat(Kx,u) ∈ Co
{
DiKx + D−i Hx, i = 1, . . . , 2m

}
(8)

for all x ∈ �n that satisfy |hix| ≤ ui, i = 1, . . . ,m.

Therefore, if we consider any compact set Sc ⊂ �n, for
any x ∈ Sc and H in �m×n such that |hix| ≤ ui, then the
closed loop system of (1) and (6) may be written as follows:

ẋ(t)− Cẋ(t − τ(t)) =
2m∑

j=1

λjÂ jx(t) + A1x(t − h(t)), (9)

where Â j = B(DjK + D−j H) + A0,
∑2m

j=1 λj = 1, and λj ≥ 0.
The following L-K functional candidate will be used

throughout the paper:

V(t) = xT(t)P1x(t) +
∫ t

t−h(t)
xT(s)Qx(s)ds

+
∫ 0

−hm

∫ t

t+θ
ẋT(s)Rẋ(s)ds dθ

+
∫ t

t−τ(t)
ẋT(s)Wẋ(s)ds,

(10)

where P1 = PT
1 > 0, Q = QT > 0, R = RT > 0 and W =

WT > 0.
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Finally, for a positive scalar β and a positive definite
symmetric matrix P1, the ellipsoid De is defined as follows:

De ≡
{
x(t) ∈ �n; xT(t)P1x(t) ≤ β−1

}
. (11)

3. Main Results

This section presents sufficient conditions that guarantee the
convergence to the origin of all the trajectories of system
(1), starting from the domain Ξδ , that is included in the
ellipsoid (11). First the main results are derived, which are
later extended to neutral systems, and a practical algorithm
is presented to design controllers that enlarge the size of the
domain of initial conditions.

3.1. Neutral Systems with Time-Varying Delays

Theorem 2. The system described by (9) is asymptotically
stable if there exist P1 = PT

1 > 0, Q = QT > 0, R = RT >
0, W = WT > 0, and appropriately dimensioned matrices
Pi, i = 2, . . . , 6 such that the following condition holds:

Γ j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Γ11( j) ΓT21( j) ΓT31 −PT
4 PT

2 C

Γ21( j) Γ22 ΓT32 −PT
5 PT

3 C

Γ31 Γ32 Γ33 −PT
6 0

−P4 −P5 −P6 − 1
hm

R 0

CTP2 CTP3 0 0 (d2 − 1)W

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

j = 1, . . . , 2m,

(12)

where

|hix| ≤ ui, ∀x ∈ De, (13)

Γ11( j) = PT
2 Â j + ÂT

j P2 + P4 + PT
4 + Q,

Γ21( j) = P1 + PT
3 Â j + PT

5 − P2,

Γ22 = hmR + W − P3 − PT
3 ,

Γ31 = AT
1 P2 − P4 + PT

6 ,

Γ32 = AT
1 P3 − P5,

Γ33 = (d1 − 1)Q − P6 − PT
6 .

(14)

Proof of Theorem 2. Calculating the time derivative of the
proposed Lyapunov function (10) along the trajectory of the
system (9) gives

V̇(t) = 2xT(t)P1ẋ(t) + xT(t)Qx(t)

−
(

1− ḣ(t)
)
xT(t − h(t))Qx(t − h(t))

+ hmẋ
T(t)Rẋ(t)

−
∫ t

t−hm
ẋT(s)Rẋ(s)ds + ẋT(t)Wẋ(t)

− (1− τ̇(t))ẋT(t − τ(t))Wẋ(t − τ(t)). (15)

From (2), it is clear that the following is true:

−
∫ t

t−hm
ẋT(s)Rẋ(s)ds ≤ −

∫ t

t−h(t)
ẋT(s)Rẋ(s)ds. (16)

Also, from the Leibniz-Newton formula 0 = x(t) − x(t −
h(t))− ∫ tt−h(t) ẋ(s)ds and using (9), we can write the first term
of (15) as follows:

2xT(t)P1ẋ(t)

= 2x̃T(t)PT

⎛

⎜
⎜
⎝

ẋ(t)

0

0

⎞

⎟
⎟
⎠

= 2x̃T(t)PT

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẋ(t)

−ẋ(t) + Cẋ(t − τ(t)) +
2m∑

j=1

λjÂ jx(t) + A1x(t − h(t))

x(t)− x(t − h(t))−
∫ t

t−h(t)
ẋ(s)ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(17)

where x̃(t) = ( xT (t) ẋT (t) xT (t−h(t)) )T and P =
(

P1 0 0
P2 P3 0
P4 P5 P6

)

.

Since Σ2m
j=1λj = 1, substituting (17) into (15) gives

V̇(t) =
2m∑

j=1

λj

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̃T(t)Ξ j x̃(t) + 2x̃T(t)PT

⎛

⎜
⎜
⎝

0

0

−I

⎞

⎟
⎟
⎠

∫ t

t−h(t)
ẋ(s)ds

+ xT(t)Qx(t)

−
(

1− ḣ(t)
)
xT(t − h(t))Qx(t − h(t))

− (1− τ̇(t))ẋT(t − τ(t))Wẋ(t − τ(t))

+ hmẋ
T(t)Rẋ(t) + ẋT(t)Wẋ(t)

+ 2x̃T(t)PT

⎛

⎜
⎜
⎝

0

C

0

⎞

⎟
⎟
⎠ẋ(t − τ(t))

−
∫ t

t−h(t)
ẋT(s)Rẋ(s)ds

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(18)

where Ξ j = PT

( 0 I 0
Â j −I A1

I 0 −I

)

+

(
0 ÂT

j I

I −I 0
0 AT

1 −I

)

P.

Using Jensen’s inequality [21], the last term in (18) can
be bounded as follows:

−
∫ t

t−h(t)
ẋT(s)Rẋ(s)ds ≤ − 1

hm

∫ t

t−h(t)
ẋT(s)dsR

∫ t

t−h(t)
ẋ(s)ds.

(19)
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Therefore, we get

V̇(t) ≤
2m∑

j=1

λj

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̃T(t)Ξ j x̃(t) + 2x̃T(t)PT

⎛

⎜
⎜
⎝

0

0

−I

⎞

⎟
⎟
⎠

∫ t

t−h(t)
ẋ(s)ds

+ xT(t)Qx(t)

− (1− d1)xT(1− h(t))Qx(1− h(t))

− (1− d2)ẋT(1− τ(t))Wẋ(1− τ(t))

+ hmẋ
T(t)Rẋ(t)

+ ẋT(t)Wẋ(t) + 2x̃T(t)PT

⎛

⎜
⎜
⎝

0

C

0

⎞

⎟
⎟
⎠ẋ(t − τ(t))

− 1
hm

∫ t

t−h(t)
ẋT(s)dsR

∫ t

t−h(t)
ẋ(s)ds

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(20)

By simple manipulation, the inequality (20) can be rewritten
as:

V̇(t) ≤
2m∑

j=1

λjΩ
T(t, s)Γ jΩ(t, s) < 0,

with Ω(t, s) =

⎛

⎜
⎜
⎜
⎜
⎝

x̃(t)
∫ t

t−h(t)
ẋ(s)ds

ẋ(t − τ(t))

⎞

⎟
⎟
⎟
⎟
⎠

,

(21)

and Γ j defined in (12). Therefore, if the condition (13) holds,
then V̇(t) is negative definite, which ensures the asymptotic
stability of the polytopic system (9) [22].

This result gives a general solution for testing stability.
We present now the following result that permits to calculate
a stabilizing controller.

Theorem 3. The system (1)–(3) is asymptotically stabilized
by feedback law u(t) = Kx(t), with Ξδ inside the domain of

attraction if there exist Q = Q
T
> 0, R = R

T
> 0, W =W

T
>

0, X1 = XT
1 > 0, X2, X3 ∈ �n×n, U ,G ∈ �m×n, ε1, ε2 ∈ �,

and positive scalars β and δ, satisfying the following conditions:

∑

( j)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

11

∗ ∗ ∗ ∗ ∗ ∗ ∗
∑

21( j)

∑

22

∗ ∗ ∗ ∗ ∗ ∗

−ε1QA
T
1 (1− ε2)QAT

1 (d1 − 1)Q ∗ ∗ ∗ ∗ ∗

−ε1RA
T
1 −ε2RA

T
1 0 − 1

hm
R ∗ ∗ ∗ ∗

0 WCT 0 0 (d2 − 1)W ∗ ∗ ∗
hmX2 hmX3 0 0 0 −hmR ∗ ∗
X2 X3 0 0 0 0 −W ∗
X1 0 0 0 0 0 0 −Q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, j = 1, . . . , 2m, (22)

⎛

⎝
β ∗
gTi u2

i X1

⎞

⎠ ≥ 0, i = 1, . . . ,m, (23)

δ2 max
{

λ
(
X−1

1

)
+ 2

hm
1− d1

λ
(
Q
−1
)

; 2h2
mλ
(
Q
−1
)

+
1

1− d2
λ
(
W

−1
)

+ hmλ
(
R
−1
)}

≤ β−1,
(24)

where
∑

11

= X2 + XT
2 + ε1

(
X1A

T
1 + A1X1

)
,

∑

21( j)

= XT
3 − X2 + (A0 + ε2A1)X1 + B

(
DjU + D−j G

)
,

∑

22

= −XT
3 − X3, (25)

and λ denotes the maximum eigenvalue of the corresponding
matrix. The corresponding gain matrix that stabilizes the
system is given by

K = UX−1
1 . (26)

Proof of Theorem 3. From the requirement that P1 = PT
1 > 0,

if condition (12) is satisfied, then −P3 − PT
3 must be negative

definite. Thus, it follows that P̃ is nonsingular, where

P̃−1 = X =
⎛

⎝
P1 0

P2 P3

⎞

⎠

−1

=
⎛

⎝
X1 0

X2 X3

⎞

⎠. (27)

Then, multiplying (12) on the left by diag{XT , I , I , I}, on the
right by diag{X , I , I , I}, introducing the following changes of
variables:

X1 = P−1
1 , Q = Q−1, R = R−1,
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W =W−1, U = KX1, G = HX1,

⎛

⎝
N1

N2

⎞

⎠ =
⎛

⎝
X1P

T
4 + XT

2 P
T
5

XT
3 P

T
5

⎞

⎠X1,
(28)

and then using the Schur complement [10], some conditions
are obtained that are bilinear due to cross products of P6 with
P1, P2, and P3. To avoid such terms, first we select P6 = 0,
which leads to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X2 + XT
2 + N1 + NT

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∏

21( j)

−X3 − XT
3 ∗ ∗ ∗ ∗ ∗ ∗

−X−1
1 NT

1 AT
1 − X−1

1 NT
2 (d1 − 1)Q

−1 ∗ ∗ ∗ ∗ ∗
−X−1

1 NT
1 −X−1

1 NT
2 0 − 1

hm
R
−1 ∗ ∗ ∗ ∗

0 WCT 0 0 (d2 − 1)W ∗ ∗ ∗
hmX2 hmX3 0 0 0 −hmR ∗ ∗
X2 X3 0 0 0 0 −W ∗
X1 0 0 0 0 0 0 −Q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

j = 1, . . . , 2m,

(29)

with Π21( j) = XT
3 − X2 + N2 + A0X1 + B(DjU + D−j G).

This condition (29) cannot be solved directly, due to the
presence of the cross products in X−1

1 NT
1 and X−1

1 NT
2 . To

overcome this, we select

N1 = ε1A1X1, N2 = ε2A1X1, (30)

where ε1 and ε2 are decision variables. Substituting (30) into
(29), the condition in (22) is obtained (which can be solved
using the procedure presented in Remark 3).

Moreover, the satisfaction of LMIs (23) guarantee that
|hix| ≤ ui,∀x ∈ De, i = 1, . . . ,m. This can be proven in
the same manner as in [5, 9].

Furthermore, following [2], the Lyapunov functional
defined in (10) satisfies

π1
∥
∥Δφ

∥
∥2 ≤ V

(
φ
) ≤ π2 max

[−h,0]

∥
∥φ
∥
∥2, (31)

with π1 = λ(X−1
1 ) and

π2 = max
{

λ
(
X−1

1

)
+ 2

hm
1− d1

λ
(
Q
−1
)

; 2h2
mλ
(
Q
−1
)

+
1

1− d2
λ
(
W

−1
)

+ hmλ
(
R
−1
)}

.

(32)

From V̇(t) < 0, it follows that V(t) < V(φ), and, therefore,

xT(t)X−1
1 x(t) ≤ V(t) < V

(
φ
) ≤ max

θ∈[−h,0]

∥
∥φ(θ)

∥
∥2
π2 ≤ β−1.

(33)

Then, the inequality (25) guarantees that the trajectories
of x(t) remain within De for all initial functions φ ∈ Ξδ ;
moreover, V̇(t) < 0 along the trajectories of (9), which
implies that limt→∞x(t) = 0, completing the proof.

Remark 1. The result of Theorem 3 is derived by using
Theorem 2, when P6 is fixed to be zero, in order to simplify
the numerical solution: although this makes the solution
only slightly more conservative, it reduces significantly the
computational cost.

3.2. Practical Algorithms. In this section, we give as remarks
some practical procedures to design controllers using the
results derived in this paper.

Remark 2. Theorem 3 provides a condition allowing us to
compute both a control law and a domain of attraction
in which the closed loop neutral system is asymptotically
stable. It would be interesting to develop a methodology
to estimate the largest possible domain of initial conditions
that ensure stability of the system. Unfortunately, this is very
difficult, due to the nonlinearity in the system. An interesting
solution consists in imposing conditions on the maximal

eigenvalues of X−1
1 , Q

−1
, R

−1
, and W

−1
and constructs a

feasibility problem, for given hm, as follows.

Find Q,R,W ,X1,X2,X3,U ,G,β, ε1, ε2, δ, σ1, σ2, σ3, σ4

subject to X1 > 0, Q > 0, R > 0, W > 0,

β > 0, δ > 0, σ1 > 0, σ2 > 0, σ3 > 0,

σ4 > 0, (22), (23),
⎛

⎝
σ1I I

I X1

⎞

⎠ ≥ 0,

⎛

⎝
σ2I I

I Q

⎞

⎠ ≥ 0,
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⎛

⎝
σ3I I

I R

⎞

⎠ ≥ 0,

⎛

⎝
σ4I I

I W

⎞

⎠ ≥ 0,

δ2 max
{

σ1 + 2
hm

1− d1
σ2; 2h2

mσ2 + hmσ3

+
1

1− d2
σ4

}

≤ β−1.

(34)

If the above problem has a solution for a given hm, then there
exists a controller u(t) = UX−1

1 x(t) that guarantees stability
of the saturated neutral system (1)–(3).

Remark 3. When the scalar parameters ε1 and ε2 are fixed,
the condition (22) of Theorem 3 becomes LMI. However,
choosing arbitrary ε1 and ε2 does not lead to the best result.
In the following, a tuning procedure for the parameters ε1

and ε2 is proposed to enlarge the bound hm on the time
varying delay. If we select as optimization parameters ε1 and
ε2 and choose a cost function tmin, with Σ( j) ≤ tminI , where
Σ( j) is defined in (22), then if there exists a combination
of parameters ε1 and ε2 that gives a negative tmin, these
parameters give a feasible solution of the conditions in
Theorem 3 (finding this combination can be carried out
by solving the corresponding feasibility problem). Finally,
applying a numerical optimization algorithm, it is possible to
obtain a locally convergent solution to the problem (using,
e.g., fminsearch in the Optimization Toolbox [23]). If the
resulting minimum value of the cost function is negative,
then a combination of tuning parameters that solves the
problem is found.

Thus, this procedure to look for a feasible solution of the
conditions in Theorem 3 can be summarized as follows.

Algorithm (maximization of hm > 0).

Step 1. Fix initial values ε1 = ε10, ε2 = ε20, and hm = hm0,
where hm0 must be small enough to have a feasible solution,
and set a step variation hmstep.

Step 2. Solve the following problem:

min
ε1,ε2

tmin such that
∑

( j)

≤ tmin I , (35)

and obtain new values of ε1 and ε2.

Step 3. If tmin > 0, the previous values of ε1 and ε2 give
the largest domain of attraction; otherwise (tmin ≤ 0), to
improve the solution, set hm = hm + hmstep and repeat from
Step 2.

4. Numerical Examples

This section provides some numerical examples to illustrate
that the proposed method is less conservative than previous
results in the literature.

0

1

2

3

4

−1 −0.5 0 0.5 1 1.5

−4

−3

−2

−1

x1

x 2

−1.5

Figure 1: Trajectories and ellipsoid De for a maximum delay of
hm = 1.566.

Example 1. Consider a neutral system described by (1)–(3),
with the following parameters:

A0 =
⎛

⎝
0.5 −1

0.5 −0.5

⎞

⎠, A1 =
⎛

⎝
0.6 0.4

0 −0.5

⎞

⎠,

B =
⎛

⎝
1

1

⎞

⎠, C =
⎛

⎝
−0.1 0

0 −0.2

⎞

⎠,

u = 5.

(36)

It can be seen that this system is unstable, so, for stabilization,
a controller was designed based on Theorem 3. In particular,
using the algorithm proposed in Section 3.2 to enlarge the
bound on the state delay, it was found that, when d1 =
0 and d2 = 0, the system is stabilizable for all state
delays h(t) ≤ 1.566, when the state feedback gain is K =
(−2.5939 0.0653). For this case, the stability radius is δ =
0.2472, obtained when ε1 = 0.1350 and ε2 = 0.9241.

To check the stability and the corresponding time
responses, the closed-loop system was simulated, starting
from different initial values inside the domain of attraction
given by (5). To check the closed-loop stability, we show
in Figure 1 some trajectories of the saturated closed-loop
system, together with the ellipsoid De.

Example 2. Consider the system of Example 1, in which
we set C = 0. This example gives the system studied in
[5, 6, 19], where upper bounds hm and maximum radius δ
were calculated for which a state feedback controlK stabilizes
(36). Their results are listed in Table 1 along with the results
obtained by Theorem 3 (with ε1 = 0.4569 and ε2 = 0.8166,
selected following the algorithm provided in Section 3.2).

Note that, in [19] the search of the values of ε1 and ε2

is achieved by using an iterative algorithm, while, in this
paper, we adopt an optimization procedure which leads to
less conservative results.
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Table 1: Comparison of bounds on hm, maximum radius δ, and stabilizing control gains K using different approaches.

hm δ Control gain K

Cao et al. [5] 0.35 0.9680 (−2.6383 0.7204)

Fridman et al. [6] 1.854 0.091 (−25.8809 −4.9315)

El Haoussi and Tissir [19] 2 0.0718 (−5.7702 −0.9754)

Theorem 3 2 0.0722 (−5.6104 −0.9147)

−3−4 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

x1

x 2

Figure 2: Trajectories and estimated domain of attraction for a
maximum delay of hm = 0.35.

In order to compare with the results of [5, 6, 19], we take
h(t) = hm = 0.35. Theorem 3 yields the stability radius of
δ = 3.0092 (when ε1 = 0.0015, ε2 = 0.9984, and K =
(−1.7150 0.7143)), whereas the results of [5, 6, 19] give,
respectively, δ = 0.9680, δ = 2.9089, and δ = 2.852. It is
clear that our method gives the largest stability radius. This
confirms that the stabilization conditions in this note are less
conservative than those of [5, 6, 19].

Figure 2 shows some trajectories of the closed-loop
system and the domain of attraction with this controller. The
outer ellipsoid is De, and the inner ellipsoid is the stability
circle of radius δ = 3.0092.

Example 3. Consider the example studied in [5, 6, 9], where
the plant can be described by (1)–(3), where

A0 =
⎛

⎝
1 1.5

0.3 −2

⎞

⎠, A1 =
⎛

⎝
0 −1

0 0

⎞

⎠,

B =
⎛

⎝
10

1

⎞

⎠, C = 0,

h(t) = hm = 1, d1 = d2 = 0, u = 15,

(37)

(i.e., the system is nonneutral with constant delays). In [9]
stabilization via state feedback was achieved for all initial
conditions in Ξδ with δ ≤ 42.3308, when the origin of the

saturated system is requested to be asymptotically stable and
the unsaturated system be α-stable with α = 1. If we only
require that the saturated system be asymptotically stable
(i.e., α = 0), it is found that δ ≤ 58.395. In [5], stabilization
by a saturated memoryless state feedback law was obtained
for all initial conditions in Ξδ with a δ ≤ 67.0618. Following
[6], this domain can be still enlarged, with stability radius
δ = 79.43, in [7], is 79.54, and in [8], is 83.55.

The application of Theorem 3 in the present paper gives a
larger stability region: when ε1 = −0.3307, ε2 = 1.3307, β =
1, the stability radius is δ = 96.1645 when the state feedback
gain is

K =
(
−10.1970 0.9550

)
. (38)

It is clear that this estimation is less conservative than
previous results in [5–9].

5. Conclusions

This paper has presented a new approach for delay-
dependent stabilization of neutral systems with saturating
actuators, under time-varying delays. This was accomplished
by combining the Lyapunov-Krasovskii technique and the
transformation of a system with actuator saturation into
a convex polytope of linear systems. An estimation of the
domain of attraction is proposed that can be numerically
solved using linear matrix inequalities.

The derived conditions depend on the tuning parameters
ε1 and ε2 that can be used to enlarge the domain of
attraction. A simple iterative procedure based on numerical
optimization has been proposed to obtain adequate values
for these parameters. This procedure has been illustrated
using an example. Finally, additional examples have shown
that the particularization of the results for standard delayed
systems gives less conservative results than previous results
proposed in the literature.
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