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An optimal𝐻
∞
tracking-based indirect adaptive fuzzy controller for a class of perturbed uncertain affine nonlinear systemswithout

reaching phase is being developed in this paper. First a practical Interval Type-2 (IT2) fuzzy system is used in an adaptive scheme to
approximate the system using a nonlinear model and to determine the optimal value of the 𝐻

∞
gain control. Secondly, to eliminate

the trade-off between 𝐻
∞
tracking performance and high gain at the control input, a modified output tracking error has been used.

The stability is ensured through Lyapunov synthesis and the effectiveness of the proposed method is proved and the simulation is
also given to illustrate the superiority of the proposed approach.

1. Introduction

After the approximation-based adaptive fuzzy controller
(AFC) of Wang [1] for a class of uncertain affine nonlinear
system, many approaches and ideas have been developed in
recent years to overcome the difficulty in controller design
[2–4].

Theprimary feature that characterizes the fuzzy logic is its
high capacity for representing and modelling the nonlinear
systems with imprecise uncertainty, as the universal approxi-
mation theorem, by Lee and Tomizuka, illustrates [5].

Many effective adaptive fuzzy control schemes have been
developed to incorporate with human expert knowledge and
information in a systematic way, which can also guarantee
various stability and performance [6]. The most important
issue for Fuzzy Logic Systems (FLSs) is how to get a system
design with the guarantee of stability and control perfor-
mance [7–9].

An adaptive fuzzy control system includes uncertain-
ties caused by unmodeled dynamics, Fuzzy Approximation
Errors (FAEs), and external disturbance, which cannot be
effectively handled by the FLS and may degrade the tracking
performance of the closed-loop system [10, 11]. The AFC
combinedwith𝐻

∞
control technique is an effective approach

for rejecting those uncertainties, ensuring stability and con-
sistent performance [12–14].

The research of fuzzy model under 𝐻
∞

has attracted
many attentions in recent years [4, 15], such as the apparent
similarities between 𝐻

∞
and fuzzy control which moti-

vate considerable research efforts in combining the two
approaches for achieving more superior performance.

Moreover, to the best of our knowledge, the control gain
needs to be known in all previous 𝐻

∞
, indirect adaptive

fuzzy controller (HIAFC) approaches, such as the arbitrary
choice of the gain which does not always give good results,
for which we propose in this work a method for extracting
automatically the optimum gain from the Lyapunov equation
whilst respecting system stability.

The convergence of the system in the initial time needs
the appearance of high gain at the control input, and the
high gain is unavoidable in all previous 𝐻

∞
tracking-based

AFC approaches.The bestmethod to solve the problem of the
tradeoffs between 𝐻

∞
tracking performance and high gain at

the control input is to eliminate the reaching phase. During
the reaching phase the tracking error cannot be controlled
directly and the system response is sensitive to parameter
uncertainties. Several methods have been proposed to com-
pletely eliminate the reaching phase [16].
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This paper focuses on a class of Single-Input Single-
Output (SISO) perturbed uncertain affine nonlinear systems
involving external disturbances without exact knowledge of
dynamic functions. Firstly, we use the type-2 fuzzy technique
to determine the optimal value of the 𝐻

∞
gain control. Sec-

ondly, a modified output tracking error is used to eliminate
the reaching phase [4].

The paper is organized as follows: Section 2 presents
the problem statement. Section 3 gives the control design
strategy. An illustration example is described in Section 4.
Finally, the simulation results are being used to demonstrate
the effectiveness and performance of the proposed approach.

2. Problem Formulations

Considering the following 𝑛th-order SISO affine nonlinear
dynamical system, Chen et al. [14]:

�̇�
1

= 𝑥
2

�̇�
2

= 𝑥
3

...

�̇�
𝑛

= 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢 (𝑡) + 𝑑 (𝑡)

𝑦 = 𝑥
1
.

(1)

Or equivalently

𝑥
(𝑛)

= 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢 (𝑡) + 𝑑 (𝑡)

𝑦 = 𝑥,

(2)

where 𝑥 = [𝑥, �̇�, . . . , 𝑥
(𝑛−1)

]
𝑇

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛 is the

state vector of the systemswhich is assumed to be available for
measurement,𝑢 ∈ 𝑅 and𝑦 ∈ 𝑅 are, respectively, the input and
the output of the systems.𝑓(𝑥, 𝑡) and𝑔(𝑥, 𝑡) are two functions
that are unknown, nonlinear, and continuous; 𝑑(𝑡) denotes
the external disturbance. For (1) to be controllable, we require
that 𝑔(𝑥, 𝑡) ̸= 0 for 𝑥 in certain controllability region. Assume
that the given reference 𝑦

𝑟

is bounded and have up to (𝑛 − 1)
bounded derivatives. The reference vector is denoted as 𝑦

𝑟

=

[𝑦
𝑟
, ̇𝑦
𝑟
, . . . , 𝑦

(𝑛−1)

𝑟
]
𝑇

. Define the tracking error 𝑒 = 𝑦
𝑟

− 𝑦 and
the error vector 𝑒 = [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
]
𝑇

= [𝑒, ̇𝑒, . . . , 𝑒
(𝑛−1)

]
𝑇

∈ 𝑅
𝑛.

Assumption 1. For all 𝑥 ∈ 𝐷, there exist unknown bounded
𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡), and 𝑑(𝑡) such that |𝑓(𝑥, 𝑡)| ≤ 𝑓(𝑥, 𝑡),
|𝑔(𝑥, 𝑡)| ≤ 𝑔(𝑥, 𝑡) and |𝑑(𝑡)| ≤ 𝑑(𝑡) hold, where compact set
𝐷 ⊂ 𝑅

𝑛 is a certain controllable region.
During the AFC design, to improve the tracking per-

formance under the external disturbance, an additional 𝐻
∞

compensator associated with an attenuation level is usually
suggested to apply, Chen et al. [14]. If the prescribed atten-
uation level is smaller, the tracking performance is better
while the control input gain is higher as the output of the 𝐻

∞

compensator becomes larger.

To avoid high control input gain, we have modified the
following output tracking error Yilmaz and Hurmuzlu [16]:

𝐸 (𝑡) = 𝑒 (𝑡) − 𝜓 (𝑡) , (3)

where (condition 1) 𝜓(𝑡) is designed to make 𝐸(𝑡) small
enough at the onset of the motion 𝑡 = 0, and (condition 2)
should rapidly vanish as the motion evolves at 𝑡 > 0.

A suggested 𝜓(𝑡) is given in the following exponential
form:

𝜓 (𝑡) = 𝛾 (𝑡) exp (𝐹 (𝑡))

𝛾 (𝑡) =

𝑛−1

∑

𝑖=0

1

𝑖!
𝛾
(𝑖)

(𝑡
0
) (𝑡 − 𝑡

0
)
𝑖

, 𝛾
(𝑖)

(𝑡
0
) =

𝑑
𝑖

𝛾

𝑑𝑡𝑖
(𝑡 = 𝑡
0
) ,

(4)

𝐹 (𝑡) = −𝛼𝑡 (5)

with 𝛾
(𝑖)

(𝑡
0
) (𝑖 = 0, 1, . . . , 𝑛−1) is selected to satisfy condition

one and 𝐹(𝑡) is selected to satisfy condition two. For the
selections of 𝛾(𝑡)

(𝑖)

(𝑡
0
) one can follow the methods in Yilmaz

and Hurmuzlu [16], on the other side 𝛼 is selected to satisfy
condition two [4].

Now, the objective of this paper is to determine the
optimal value of the 𝐻

∞
gain control, in a way to force 𝑦(𝑡)

to follow a given bounded reference signal 𝑦
𝑟
(𝑡).

Let us denote the parameter tracking error Φ = 𝜃 − 𝜃
∗ for

some parameter estimate 𝜃 and optimal parameter estimate
𝜃
∗ of Type-2 Fuzzy Logic System (T2FLS). Let 𝑤 denote the
sum of error due to fuzzy modelling approximations. Then
our design objective is to impose an adaptive fuzzy control
algorithm so that the following asymptotically stable tracking

𝐸
(𝑛)

+ 𝑘
𝑛−1

𝐸
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑘
0
𝐸 = 0 (6)

is achieved while 𝑤 = 0 (i.e., in the case of perfect fuzzy
approximation and free of external disturbance). While 𝑤

appears, the following𝐻
∞ tracking performance is requested

[17]:

∫

𝑇

0

𝐸
𝑇

𝑄𝐸 𝑑𝑡 ≤ 2𝑉 (0) + 𝜌
2

∫

𝑇

0

𝑤
2

𝑑𝑡 𝑇 ∈ [0 ∞] , (7)

where 𝐸 = [𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
] = [𝐸, �̇�, . . . , 𝐸

(𝑛−1)

]
𝑇. 𝑉 is the

Lyapunov function, 𝑄 = 𝑄
𝑇

> 0, 𝜌 ∈ 𝑅
+ is the prescribed

attenuation level, and 𝑤 ∈ 𝐿
2
[0, 𝑇].

𝑄, 𝑉, and 𝑤 will be defined in the next subsection.

Remark 2. (i)The roots of polynomial �̂�(𝑠) = 𝑠
(𝑛)

+𝑘
𝑛−1

𝑠
(𝑛−1)

+

⋅ ⋅ ⋅ + 𝑘
0
𝑠 in the characteristic equation of (6) are all in the

open left-half plane via an adequate choice of coefficients
𝑘
0
, 𝑘
1
, . . . , 𝑘

𝑛−1
.

(ii) If the system starts with initial condition 𝑉(0) = 0,
then the 𝐻

∞ performance in (7) can be rewritten as

sup
𝑤∈𝐿
2[0 𝑇]

𝐸
𝑄

‖𝑤‖
≤ 𝜌, (8)

where ‖𝐸‖
2

𝑄
= ∫
𝑇

0

𝐸
𝑇

𝑄𝐸 𝑑𝑡, and ‖𝑤‖
2

= ∫
𝑇

0

𝑤
𝑇

𝑤 𝑑𝑡, that is,
the 𝐿
2
-gain form 𝑤 to the tracking error 𝐸 must be equal to

or less than 𝜌.
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3. Control Design Strategy

3.1. Indirect Adaptive Control Scheme. In this section, we
propose a new optimal 𝐻

∞
tracking-based indirect adaptive

output-feedback fuzzy controller that eliminates the reaching
phase, with guaranteed stability of the closed loop system.
Based on the combination of the 𝐻

∞
optimal control with

fuzzy logic control, using fuzzy identifier and fuzzy logic
control, the 𝐻

∞
control design relies on the solution of an

algebraic Riccati equation.
If the system (1) is well known and 𝑔(𝑥) ̸= 0 then the

control should be designed to have the following idealized
control law:

𝑢
∗

=
1

𝑔 (𝑥, 𝑡)
(−𝑓 (𝑥, 𝑡) + 𝑦

(𝑛)

𝑟
− 𝜓
(𝑛)

+

𝑛−1

∑

𝑖=0

𝑘
𝑖
𝐸
(𝑖)

+ 𝑢
ℎ
) ,

(9)

where 𝑢
ℎ

= R ⋅ 𝐸
𝑇

𝑃𝐵.
However, in practice the functions 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡)

are unknown, thus the ideal controller in (9) cannot be
realized, and the choice of the 𝐻

∞ gain control R does not
always give good results. In this case the nonlinear functions
𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are approximated using T2-fuzzy systems
universal approximation property and by the same technique
we determine the optimal 𝐻

∞ gain control. Hence, the fuzzy
adaptive control law is as follows:

𝑢 =
1

𝑔 (𝑥, 𝜃
𝑔
)

(−𝑓 (𝑥, 𝜃
𝑓

) + 𝑦
(𝑛)

𝑟
− 𝜓
(𝑛)

+

𝑛−1

∑

𝑖=0

𝑘
𝑖
𝐸
(𝑖)

+ �̂�
ℎ
) ,

(10)

where �̂�
ℎ

= R̂ ⋅ 𝐸
𝑇

𝑃𝐵 defined the auxiliary control employed
to attenuate the approximation error of the fuzzy model and
to eliminate the external disturbance.

𝑓(𝑥, 𝜃
𝑓

), 𝑔(𝑥, 𝜃
𝑔
), and R̂(𝑥, 𝜃R) are the type-2 fuzzy

approximation of 𝑓(𝑥, 𝑡),𝑔(𝑥, 𝑡), andR.

3.2. Interval Type-2 Fuzzy Logic System (IT2FLS). For an
Interval Type-2 Fuzzy Logic System IT2FLS with 𝑀, total
number of IF-THEN rules in the rule base, the 𝑗th rule can
be written as follows:

𝑅
𝑗: if 𝑥

1
is 𝜇
𝑦
𝑗

1

and . . . and 𝑥
𝑛
is 𝜇
𝑦
𝑗

𝑛

, then 𝑦 is 𝜃
𝑗
. (11)

Equation (11) represents a T2 fuzzy relation between the input
and the output spaces of the FLS, where 𝜇

𝐹
𝑗

1

’s are antecedent
type-2 sets, 𝑦 is the output, and 𝜃

𝑗
’s are the consequent T2

fuzzy singleton.
Since fuzzy sets are type-2, we need to perform the reduc-

tion operation type. This operation will give each function
estimated 𝑦 two vector of the fuzzy basis functions [18]

�̂�cos = (𝜃
1

𝑦
, . . . , 𝜃

𝑀

𝑦
, 𝑊
1

𝑦
, . . . , 𝑊

𝑀

𝑦
)

= ∫
𝜃
1

𝑦

. . . ∫
𝜃
𝑀

𝑦

∫
𝑊
1

𝑦

. . . ∫
𝑊
𝑀

𝑦

1

∑
𝑀

𝑖=1
𝑤𝑖
𝑦

𝜃𝑖
𝑦

/ ∑
𝑀

𝑖=1
𝑤𝑖
𝑦

(12)

�̂�cos is the interval set determined by two end points 𝑦
𝑟
and

𝑦
𝑙
, and 𝑤

𝑖

𝑦
∈ 𝑊
𝑖

𝑦
= [𝑤
𝑖

𝑦𝑙
, 𝑤
𝑖

𝑦𝑟
] is the firing interval.

Accordingly, the firing interval bounds for the 𝑖th rule of
an IT2FLS with 𝑛 inputs, 𝑤

𝑖

𝑦𝑙
and 𝑤

𝑖

𝑦𝑟
, can be rewritten as

follows:

𝑤
𝑗

𝑦𝑙
= 𝜇
𝑦
𝑗

1

(𝑥
1
) × 𝜇
𝑦
𝑗

2

(𝑥
2
) × ⋅ ⋅ ⋅ × 𝜇

𝑦
𝑗

𝑛

(𝑥
𝑛
) =

𝑛

∏

𝑖=1

𝜇
𝑦
𝑗

𝑖

(𝑥
𝑖
)

𝑤
𝑖

𝑦𝑟
= 𝜇
𝑦
𝑗

1

(𝑥
1
) × 𝜇
𝑦
𝑗

2

(𝑥
2
) × ⋅ ⋅ ⋅ × 𝜇

𝑦
𝑗

𝑛

(𝑥
𝑛
) =

𝑛

∏

𝑖=1

𝜇
𝑦
𝑗

𝑖

(𝑥
𝑖
) .

(13)

Using the centre of gravity, the defuzzified crisp output for
each output is given by Liang and Mendel [19]:

𝑦 =
𝑦
𝑙

+ 𝑦
𝑟

2
(14)

𝑦
𝑙
can be represented as a vector of fuzzy basis functions

(FBFs) expansion as follows:

𝑦
𝑙

=

∑
𝑀

𝑖=1
𝑤
𝑖

𝑦𝑙
𝜃
𝑖

𝑦

∑
𝑀

𝑖=1
𝑤
𝑖

𝑦𝑙

=

𝑀

∑

𝑖=1

𝜃
𝑖

𝑦
𝜉
𝑖

𝑦𝑙
= 𝜃
𝑇

𝑦
𝜉
𝑦𝑙

(𝑥) (15)

𝜉
𝑇

𝑦𝑙

(𝑥) is the FBF vector of 𝑦
𝑙
such that 𝜉

𝑇

𝑦𝑙

(𝑥) = [𝜉
1

𝑦𝑙
, . . . , 𝜉

𝑀

𝑦𝑙
]

whose components are given by

𝜉
𝑖

𝑦𝑙
=

𝑤
𝑖

𝑦𝑙

∑
𝑀

𝑖=1
𝑤
𝑖

𝑦𝑙

(16)

𝜃
𝑇

𝑦
= [𝜃
1

𝑦
, . . . , 𝜃

𝑀

𝑦
] represents the conclusion of T2FLS.

Similar to the foregoing we have

𝑦
𝑟

=

∑
𝑀

𝑖=1
𝑤
𝑖

𝑦𝑟
𝜃
𝑖

𝑦

∑
𝑀

𝑖=1
𝑤𝑖
𝑦𝑟

=

𝑀

∑

𝑖=1

𝜃
𝑖

𝑦
𝜉
𝑖

𝑦𝑟
= 𝜃
𝑇

𝑦
𝜉
𝑦𝑟

(𝑥) . (17)

Substituting (17) and (15) in (14) then the output of the T2FLS
can be given as follows:

𝑦 =

𝜃
𝑇

𝑦
𝜉
𝑓𝑙

+ 𝜃
𝑇

𝑦
𝜉
𝑓𝑟

2
= 𝜃
𝑇

𝑦
𝜉
𝑦

(𝑥) ,
(18)

where 𝜉
𝑦

(𝑥) = (𝜉
𝑦𝑙

+ 𝜉
𝑦𝑟

)/2

The previous equation (18) will be used, in an indi-
rect adaptive control, to approximate the unknown system
dynamics and to determine the optimal 𝐻

∞
gain control.

Therefore the expression (18) can be expressed as:

𝑦
𝑓

= 𝑓 (
𝑥

𝜃
𝑓

) = 𝜃
𝑇

𝑓
𝜉
𝑓

(𝑥)

𝑦
𝑔

= 𝑔 (
𝑥

𝜃
𝑔

) = 𝜃
𝑇

𝑔
𝜉
𝑔

(𝑥)

𝑦R = R̂(
𝑥

𝜃R

) = 𝜃
𝑇

R𝜉R (𝑥) .

(19)
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Define the compact sets 𝐷 = { 𝑥 : ‖𝑥‖ ≤ 𝑀
𝑥

},

Ω
𝑓

= {𝜃
𝑓

∈ 𝑅
𝑛


𝜃
𝑓


≤ 𝑀
𝑓

} ,

Ω
𝑔

= {𝜃
𝑔

∈ 𝑅
𝑛


𝜃
𝑔


≤ 𝑀
𝑔
} ,

ΩR = {𝜃R ∈ 𝑅
𝑛 𝜃R

 ≤ 𝑀R} ,

(20)

where 𝑀
𝑓

, 𝑀
𝑔
, and 𝑀R are given constants.

The minimum approximation error is defined by

𝑤 = 𝑓 (𝑥, 𝜃
∗

𝑓
) − 𝑓 (𝑥, 𝑡) + (𝑔 (𝑥, 𝜃

∗

𝑔
) − 𝑔 (𝑥, 𝑡)) 𝑢

− (R̂ (𝑥, 𝜃
∗

R) − R) (𝐸
𝑇

𝑃𝐵)
2

− 𝑑 (𝑡) ,

(21)

where 𝜃
∗

𝑓
, 𝜃∗
𝑔
, and 𝜃

∗

R are an optimal parameter vector defined
as

𝜃
∗

𝑓
= arg min

𝜃
𝑓
∈Ω
𝑓

(sup
𝑥∈𝐷


𝑓 (𝑥, 𝜃

𝑓
) − 𝑓 (𝑥, 𝑡)


)

𝜃
∗

𝑔
= arg min

𝜃
𝑔
∈Ω
𝑔

(sup
𝑥∈𝐷


𝑔 (𝑥, 𝜃

𝑔
) − 𝑔 (𝑥, 𝑡)


)

𝜃
∗

R = arg min
𝜃R∈ΩR

(sup
𝑥∈𝐷


R̂ (𝑥, 𝜃R) − R


) .

(22)

Such that: R >
1

𝑟
, (23)

where 𝑟 is a positive constant used below.

3.3. 𝐻
∞

Tracking Performance Design in Indirect Adaptive
Fuzzy System. Choose the 𝐻

∞
compensator 𝑢

ℎ
as

𝑢
ℎ

= R̂𝐸
𝑇

𝑃𝐵, (24)

where 𝑃 is the solution of the following Riccati equation:

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵 (
2

𝑟
−

1

𝜌2
) 𝐵
𝑇

𝑃 = 0, (25)

where𝑄 > 0, 𝜌 is prescribed attenuation level and 𝑟 is positive
constant verified 𝑟 < 2𝜌

2.

Theorem 3. If we select the following adaptive fuzzy control
law in the nonlinear system (1)

𝑢 =
1

𝜃
𝑇

𝑔
𝜉
𝑔

(𝑥)

(−𝜃
𝑇

𝑓
𝜉
𝑓

(𝑥) + 𝑦
(𝑛)

𝑟
− 𝜓
(𝑛)

+

𝑛−1

∑

𝑖=0

𝑘
𝑖
𝐸
(𝑖)

+𝜃
𝑇

R𝜉R (𝑥) 𝐸
𝑇

𝑃𝐵) ,

(26)

where

̇𝜃
𝑓

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

−𝛾
1
𝐸
𝑇

𝑃𝐵𝜉
𝑓

(𝑥) if (

𝜃
𝑓


< 𝑀
𝑓
or 

𝜃
𝑓


= 𝑀
𝑓

,

𝐸
𝑇

𝑃𝐵 𝜉
𝑓

(𝑥) > 0)

−𝛾
1
𝐸
𝑇

𝑃𝐵𝜉
𝑓

(𝑥)

+𝛾
1
𝐸
𝑇

𝑃𝐵𝜉
𝑓

(𝑥)

×

𝜃
𝑇

𝑓
𝜃
𝑓

𝜉
𝑓

(𝑥)


𝜃
𝑓



2
otherwise

(27)

̇𝜃
𝑔

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

−𝛾
2
𝐸
𝑇

𝑃𝐵𝜉
𝑔

(𝑥) 𝑢 if (

𝜃
𝑔


< 𝑀
𝑔
or 

𝜃
𝑔


= 𝑀
𝑔
,

𝐸
𝑇

𝑃𝐵 𝜉
𝑔

(𝑥) 𝑢 > 0 )

−𝛾
2
𝐸
𝑇

𝑃𝐵𝜉
𝑔

(𝑥) 𝑢

+𝛾
2
𝐸
𝑇

𝑃𝐵𝜉
𝑔

(𝑥) 𝑢

×

𝜃
𝑇

𝑔
𝜃
𝑔
𝜉
𝑔

(𝑥)


𝜃
𝑔



2
otherwise

(28)

̇𝜃R =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝛾
3
(𝐸
𝑇

𝑃𝐵)
2

𝜉 R(𝑥) if (
𝜃R

 < 𝑀R or
𝜃R

 = 𝑀R,

𝐸
𝑇

𝑃𝐵𝜉 R(𝑥) > 0)

𝛾
3
(𝐸
𝑇

𝑃𝐵)
2

𝜉 R(𝑥)

−𝛾
3
(𝐸
𝑇

𝑃𝐵)
2

𝜉 R(𝑥)

×
𝜃
𝑇

R 𝜃R𝜉 R(𝑥)

𝜃R


2
otherwise.

(29)

With 𝑃 = 𝑃
𝑇

≥ 0 is the solution of the Riccati equation
(25), then the 𝐻

∞ tracking performance in (7) is achieved for
a prescribed attenuation level 𝜌.

Proof. We have

𝑥
(𝑛)

= 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝑢 + 𝑑 (𝑡) . (30)

And the equation of the control already proposed

𝑢 =
1

𝑔 (𝑥, 𝜃
𝑔
)

(−𝑓 (𝑥, 𝜃
𝑓

) + 𝑦
(𝑛)

𝑟
− 𝜓
(𝑛)

+

𝑛−1

∑

𝑖=0

𝑘
𝑖
𝐸
(𝑖)

+ �̂�
ℎ
] ,

(31)

where

�̂�
ℎ

= R̂𝐸
𝑇

𝑃𝐵. (32)

And R̂ = 𝜃
𝑇

R𝜉R.
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Utilising (3) and substituting (30) into (31), the output
error dynamics may be expressed as

𝐸
(𝑛)

= −

𝑛−1

∑

𝑖=0

𝑘
𝑖
𝐸
(𝑖)

+ 𝑓 (𝑥, 𝜃
𝑓

) − 𝑓 (𝑥, 𝑡)

+ (𝑔 (𝑥, 𝜃
𝑔
) − 𝑔 (𝑥, 𝑡)) 𝑢 − �̂�

ℎ
− 𝑑 (𝑡) .

(33)

The error dynamics can be represented by

�̇� = 𝐴𝐸 + 𝐵 [𝑓 (𝑥, 𝜃
𝑓

) − 𝑓 (𝑥, 𝑡) + (𝑔 (𝑥, 𝜃
𝑔
) − 𝑔 (𝑥, 𝑡)) 𝑢

−�̂�
ℎ

− 𝑑 (𝑡) ] ,

(34)

where

𝐴 =

[
[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅
...

... d

...
... 1

−𝑘
0

−𝑘
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑘
𝑛

]
]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[
[

[

0

...

0

1

]
]
]
]
]
]

]

. (35)

Consider the following Lyapunov function:

𝑉 =
1

2
𝐸
𝑇

𝑃𝐸 +
1

2𝛾
1

Φ
𝑇

𝑓
Φ
𝑓

+
1

2𝛾
2

Φ
𝑇

𝑔
Φ
𝑔

+
1

2𝛾
3

Φ
𝑇

RΦR, (36)

where

Φ
𝑓

= 𝜃
𝑓

− 𝜃
∗

𝑓
, Φ

𝑔
= 𝜃
𝑔

− 𝜃
∗

𝑔
, ΦR = 𝜃R − 𝜃

∗

R.

(37)

�̇� =
1

2
𝐸
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴) 𝐸 + 𝐸
𝑇

𝑃𝐵

× [𝑓 (𝑥, 𝜃
𝑓

) − 𝑓 (𝑥, 𝑡) + (𝑔 (𝑥, 𝜃
𝑔
) − 𝑔 (𝑥, 𝑡)) 𝑢

−�̂�
ℎ

− 𝑑 (𝑡) ] +
1

𝛾
1

Φ
𝑇

𝑓
Φ̇
𝑓

+
1

𝛾
2

Φ
𝑇

𝑔
Φ̇
𝑔

+
1

𝛾
3

Φ
𝑇

RΦ̇R.

(38)

Utilizing (25) and (32) into (38)

�̇� = −
1

2
𝐸
𝑇

𝑄𝐸 +

(𝐸
𝑇

𝑃𝐵)
2

𝑟
−

(𝐸
𝑇

𝑃𝐵)
2

2𝜌2

+ [𝑤 − R𝐸
𝑇

𝑃𝐵] 𝐸
𝑇

𝑃𝐵

+
1

𝛾
1

Φ
𝑇

𝑓
(Φ̇
𝑓

+ 𝛾
1
𝜉
𝑓

(𝑥) 𝐸
𝑇

𝑃𝐵)

+
1

𝛾
2

Φ
𝑇

𝑔
(Φ̇
𝑔

+ 𝛾
2
𝜉
𝑔

(𝑥) 𝐸
𝑇

𝑃𝐵𝑢)

+
1

𝛾
3

Φ
𝑇

R ( Φ̇R − 𝛾
3

𝜉R (𝑥) (𝐸
𝑇

𝑃𝐵)
2

) − (𝐸
𝑇

𝑃𝐵)
2

R,

(39)

where 𝑤 is defined in (21), the �̇� can be written as

�̇� = −
1

2
𝐸
𝑇

𝑄𝐸 −
1

2
(

(𝐸
𝑇

𝑃𝐵)

𝜌
− 𝜌𝑤)

2

+
1

2
(𝜌𝑤)
2

+ (
1

𝑟
− R) (𝐸

𝑇

𝑃𝐵)
2

+
1

𝛾
1

Φ
𝑇

𝑓
(Φ̇
𝑓

+ 𝛾
1
𝐸
𝑇

𝑃𝐵 𝜉
𝑓

(𝑥))

+
1

𝛾
2

Φ
𝑇

𝑔
(Φ̇
𝑔

+ 𝛾
2
𝐸
𝑇

𝑃𝐵 𝜉
𝑔

(𝑥) 𝑢 )

+
1

𝛾
3

Φ
𝑇

R (Φ̇R − 𝛾
3
(𝐸
𝑇

𝑃𝐵)
2

𝜉R (𝑥)) .

(40)

By consideration of the update law (27), (28), (23), and (29),
�̇� can be written as

�̇� ≤ −
1

2
𝐸
𝑇

𝑄𝐸 +
1

2
(𝜌𝑤)
2

. (41)

Integrating the above equality from 𝑡 = 0 to 𝑇 yields (0 ≤ 𝑇 ≤

∞):

𝑉 (𝑇) − 𝑉 (0) ≤ −
1

2
∫

𝑇

0

𝐸
𝑇

𝑄𝐸𝑑𝑡 +
1

2
𝜌
2

∫

𝑇

0

𝑤
2

𝑑𝑡. (42)

Since 𝑉(𝑇) ≥ 0 the above inequality implies the following
inequality:

∫

𝑇

0

𝐸
𝑇

𝑄𝐸 𝑑𝑡 ≤ 2𝑉
𝐿

(0) + 𝜌
2

∫

𝑇

0

𝑤
2

𝑑𝑡, 𝑇 ∈ [0 ∞] . (43)

Hence, the inequality (7) holds. This completes the proof of
theorem. So the system is stable and the error will asympto-
tically converge to zero; that is, 𝐻

∞
a performance is

achieved.

4. An Illustrative Example

4.1.TheDynamicModel. In this section consider a single-link
robotmanipulator governed by the following dynamicmodel
[20]:

�̇�
1

= 𝑥
2

�̇�
2

= −

𝑑
𝑓

𝑥
2

𝑚𝑙2
−

𝑔V cos (𝑥
1
)

𝑙
+ (

1

𝑚𝑙2
) 𝑢 + 𝑑 (𝑡)

𝑦 = 𝑥
1
,

(44)

where 𝑥
1
: Position, 𝑥

2
: Velocity, 𝑓(𝑥, 𝑡): Nonlinear term

depending on 𝑥, 𝑚, 𝑑
𝑓
: Mass and damping, 𝑙: Length of the

manipulator, 𝑔V: is the gravitational acceleration and 𝑑(𝑡) =

0.1 ∗ rand 𝑛 is the disturbance.
We assume that the position 𝑥

1
and the velocity 𝑥

2
are

available for measurements, where 𝑚 = 2 kg, 𝑙 = 1m, 𝑔V =

9.8m/s2, and 𝑑
𝑓

= 1.0 kgm2/s.

4.2. Controller Parameters Design

Step 1. In the first step, we need to define the type-2 fuzzy
sets for modelling the unknown functions entering into the
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creation of the control law and to determine the optimal value
of the 𝐻

∞
gain control. The choice of the number of fuzzy

sets and constant 𝑀
𝑓
, 𝑀
𝑔
, and 𝑀R are related to knowledge

of expert on the system.

The fuzzy membership functions are chosen as

𝜇
𝐹
1

𝑖

(𝑥
𝑖
) = exp(−(

𝑥
𝑖

− 𝑐𝑛
𝑖

2 ∗ sig
𝑖

)

2

) ,

𝜇
𝐹
2

𝑖

(𝑥
𝑖
) = exp(−(

𝑥
𝑖

− 𝑐𝑝
𝑖

2 ∗ sig
𝑖

)

2

) ,

𝜇
𝐹
3

𝑖

(𝑥
𝑖
) = 1 − 𝜇

𝐹
1

𝑖

(𝑥
𝑖
) − 𝜇
𝐹
2

𝑖

(𝑥
𝑖
)

𝜇
𝐹
1

𝑖

(𝑥
𝑖
) = 0.85 ∗ exp(−(

𝑥
𝑖

− 𝑐𝑛
𝑖

2 ∗ sig
𝑖

)

2

) ,

𝜇
𝐹
2

𝑖

(𝑥
𝑖
) = 0.85 ∗ exp(−(

𝑥
𝑖

− 𝑐𝑝
𝑖

2 ∗ sig
𝑖

)

2

) ,

𝜇
𝐹
3

𝑖

(𝑥
𝑖
) = 0.85 ∗ (1 − 𝜇

𝐹
1

𝑖

(𝑥
𝑖
) − 𝜇
𝐹
2

𝑖

(𝑥
𝑖
))

(𝑖 = 1, 2) ,

(45)

such as 𝑐𝑝
1

= −𝑐𝑛
1

= 𝜋/3, 𝑐𝑝
2

= −𝑐𝑛
2

= 𝜋, sig
1

= 5, and
sig
2

= 1.53 with 𝑀
𝑓

= 6, 𝑀
𝑔

= 1, and 𝑀R = 10.

Step 2. Determine parameters of the modified error 𝐸 in (3).
Choose 𝛼 = 5 in (5).
To determine 𝛾(𝑡) in (4) one can follow the method in

Yilmaz and Hurmuzlu, and one can make

𝜓 (0) = 𝛾 (0) = 𝑦
𝑟

(0) − 𝑥
1

(0)

�̇� (0) = −𝛼𝛾 (0) + ̇𝛾 (0) = ̇𝑦
𝑟

(0) − 𝑥
2

(0)

(46)

with

𝑦
𝑟

(0)= 0, ̇𝑦
𝑟

(0)=
𝜋
2

3
, 𝑥

1
(0)=

𝜋

6
, 𝑥

2
(0)=𝜋.

(47)

Thus, one gets

𝛾 (0) =
𝜋

6
, ̇𝛾 (0) = (−

𝜋

6
) 𝛼 +

𝜋
2

3
− 𝜋. (48)

Step 3. Design parameters of the control law.
The control parameters for simulation are chosen as

follows: 𝑘
0

= 1, 𝑘
1

= 2, 𝛾
1

= 0.002, 𝛾
2

= 0.0001, 𝛾
3

= 0.001,
𝑄 = 5 eye (2), and 𝜌 = 0.1.

The solution to Riccati equation for 𝑄 is

𝑃 = [
5.0503 0.0503

0.0503 0.0513
] . (49)
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Figure 1: Reponses of the 𝑦(𝑡) and the 𝑦
𝑟
(𝑡).
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Figure 2: The tracking error.

4.3. Simulation Result. Simulation result is presented to vali-
date performance and robustness of the proposed approach-
ing that we have been using 𝑇-𝑆 fuzzy logic to determine
automatically the gain of the 𝐻

∞
control and modifying the

output tracking error to eliminate the reaching phase.
Three fuzzy sets for each input have been found sufficient

for an efficient system design. Fuzzy sets for inputs 𝑥
1
and 𝑥

2

are defined according to themembership functions presented
forward in Step 1.

The sampling time is defined as 10ms and the running
time as 15 s.

Figure 1 present a responses of the output 𝑦(𝑡) versus the
desired output 𝑦

𝑟
(𝑡).

Figures 2 and 3 present successively the tracking error and
the control signal that we apply the proposed method.

5. Conclusions

In this paper, we have proposed a new method to determine
the optimal value of the 𝐻

∞
gain control based on type-2
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Figure 3: The control signal 𝑢(𝑡).

fuzzy logic systems, and to eliminate the trade-off between
𝐻
∞
tracking performance and high gain at the control input,

we have used the modification in the output tracking error.
The parameters of the dynamics systems are estimated

by using the fuzzy model. Furthermore, the parameters can
be tuned on-line by the adaptive law based on Lyapunov
synthesis.

References

[1] L. X.Wang, “Stable adaptive fuzzy control of nonlinear systems,”
IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 146–155,
1993.

[2] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation
based Control: Unifying Neural, Fuzzy and Traditional Adaptive
Approximation Approaches, John Wiley & Sons, Hoboken, NJ,
USA, 2006.

[3] K. Haisen and L. Jiang, “Adaptive control for a class of nonlinear
system with redistributed models,” Journal of Control Science
and Engineering, vol. 2012, Article ID 409139, 6 pages, 2012.

[4] Y. Pan, M. Joo Er, D. Huang, and Q. Wang, “Fire-rule-based
direct adaptive type-2 fuzzy 𝐻

∞
tracking control,” Engineering

Applications of Artificial Intelligence, vol. 24, pp. 1174–1185, 2011.
[5] H. Lee andM. Tomizuka, “Robust adaptive control using a uni-

versal approximator for SISO nonlinear systems,” IEEE Tran-
sactions on Fuzzy Systems, vol. 8, no. 1, pp. 95–106, 2000.

[6] M. Bernal and T. M. Guerra, “Generalized non-quadratic stabi-
lity of continuous-time Takagi–Sugeno models,” IEEE Transac-
tions on Fuzzy Systems, vol. 18, pp. 815–822, 2010.

[7] Y. Zhang, C. Liu, and X. Mu, “Hybrid feedback stabilization
of fuzzy nonlinear systems,” Journal of Control Science and
Engineering, vol. 2011, Article ID 579871, 7 pages, 2011.

[8] S. K. Nguang and W. Assawinchaichote, “𝐻
∞

filtering for
fuzzy dynamical systems with D stability constraints,” IEEE
Transactions on Circuits and Systems I, vol. 50, no. 11, pp. 1503–
1508, 2003.

[9] N. Golea, A. Golea, and K. Benmahammed, “Stable indirect
fuzzy adaptive control,” Fuzzy Sets and Systems, vol. 137, no. 3,
pp. 353–366, 2003.

[10] S. Tong, J. Tang, and T.Wang, “Fuzzy adaptive control of multi-
variable nonlinear systems,” Fuzzy Sets and Systems, vol. 111, no.
2, pp. 153–167, 2000.

[11] S. Tong, B. Chen, and Y.Wang, “Fuzzy adaptive output feedback
control for MIMO nonlinear systems,” Fuzzy Sets and Systems,
vol. 156, pp. 285–299, 2005.

[12] G. G. Rigatos, “Adaptive fuzzy control with output feedback for
𝐻
∞ tracking of SISO nonlinear systems,” International Journal

of Neural Systems, vol. 18, no. 4, pp. 305–320, 2008.
[13] J. Yoneyama, M. Nishikawa, H. Katayama, and A. Ichikawa,

“Design of output feedback controllers for Takagi-Sugeno fuzzy
systems,”Fuzzy Sets and Systems, vol. 121, no. 1, pp. 127–148, 2001.

[14] B. S. Chen, C. H. Lee, and Y. C. Chang, “𝐻
∞

tracking design
of uncertain nonlinear SISO systems: adaptive fuzzy approach,”
IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 32–43,
1996.

[15] Y. Pan, Y. Zhou, T. Sun, and M. Joo Er, “Composite adaptive
fuzzy 𝐻

∞
tracking control of uncertain nonlinear systems,”

Neurocomputing, vol. 99, pp. 15–24, 2013.
[16] C. Yilmaz and Y. Hurmuzlu, “Eliminating the reaching phase

from variable structure control,” Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME, vol. 122,
no. 4, pp. 753–757, 2000.

[17] J. C.Doyle, K.Glover, P. P. Khargonekar, andB.A. Francis, “State
space solution to standard 𝐻

∞ control problems,” IEEE Tran-
sactions on Automatic Control, vol. 34, no. 8, pp. 831–847, 1989.

[18] J. M.Mendel, Rule-Based Fuzzy Logic Systems’: Introduction and
NewDirections, Prentice-Hall, EnglewoodCliffs, NJ, USA, 2001.

[19] Q. Liang and J. Mendel, “Interval Type-2 fuzzy logic systems’:
theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8,
pp. 535–550, 2000.

[20] F. Mei, Z. Man, and T. Nguyen, “Fuzzy modeling and tracking
control of nonlinear systems,” Mathematical and Computer
Modeling, vol. 33, no. 6-7, pp. 759–770, 2001.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


