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A state feedback control law based on the slidingmode controlmethod is derived for the aeroelastic response and flutter suppression
of a two-dimensional airfoil section with hysteresis nonlinearity in pitch. An observer is constructed to estimate the unavailable
state variables of the system. With the control law designed, nonlinear effect of time delay between the control input and actuator
is investigated by a numerical approach. The closed-loop system including the observer and nonlinear controller is asymptotically
stable. The simulation results show that the observer can give precise estimations for the plunge displacement and the velocities in
pitch and plunge and that the controller is effective for flutter suppression. The time delay between the control input and actuator
may jeopardize the control performance and cause high-frequency vibrations.

1. Introduction

Under the condition of a certain flight, aeroelastic systems
exhibit a variety of phenomena including instability, limit
cycle, and even chaotic vibration [1–3]. Flutter instability can
jeopardize aircraft structure and its performance. A number
of investigators have considered control problems for such
systems and designed controllers for flutter suppression. Kur-
dila et al. [4] gave a good summary of nonlinear controlmeth-
ods for high-energy limit cycle oscillations. Mukhopadhyay
[5] presented a historical perspective on analysis and flutter
control of aeroelastic systems. In recent years, a large number
of control strategies have been developed for the flutter
suppression [6–13], such as nonlinear adaptive control [6],
and global robust control using output feedback [7].Wells [8]
carried out a control design of the reconfigurable flight con-
trol systems using the slidingmode control (SMC)method. In
[9], adaptive decoupled fuzzy sliding-mode control laws have
been implemented for suppressing flutter and reducing the
vibrational level in subcritical flight speed range. For the two-
degree-of-freedom aeroelastic system with uncertainties, the
higher order sliding mode control laws were designed by
Defoort et al. [10, 11]. Degaki et al. [12, 13] applied sliding
mode controller for suppressing two-dimensional flow flutter
problems in which structural nonlinearities are considered.

The active feedback control involves many technical
problems, one of which is the unavoidable presence of a time
delay between the controller and actuators [14]. Time delay
feedback control has received much attention in recent years
[15]. In [16], the flutter instability of actively controlled airfoils
involving a time-delayed feedback control related to the
aeroelasticity of 2D lifting surfaces is considered via Pontry-
agin’s approach in conjunction with Stépán’s theorems. As
indicated in [17], the actuators may input energy at the
moment when the controlled system does not need it. The
timedelay is very detrimental, because redundant energymay
be inputted into the controlled system, which can lead to a
reduction of the control performance and even cause insta-
bility of the dynamical system. Zhao [18, 19] presents a sys-
tematic study on aeroelastic stability of a two-dimensional
airfoil with single or multiple time delays in the feedback
control loops and investigates the effects of time delay on the
flutter instability of an actively controlled airfoil. Huang et al.
[20] reveal the effect of input time delay on the stability of a
controlled high-dimensional aeroelastic system and present a
new optimal control law to suppress the flutter.

In the previous research, the flutter control was studied
without considering nonlinearity such as hysteresis in the
airfoil [6–13]. In this paper, hysteresis nonlinearity in pitch
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Figure 1: Schematic of airfoil section with a control surface.

has been considered in the design of a control law for
the flutter control of nonlinear aeroelastic systems by state
variable feedback.Themodel represents a prototypical aeroe-
lastic wing section which has been traditionally used for
the theoretical and experimental study of two-dimensional
aeroelastic behavior.Thepurpose of the paper is to investigate
the effect of hysteresis on the dynamic response and flutter
suppression with the control law designed. In addition, the
effect of time delay between the actuator control input and
the control surface action is also investigated.

2. Aeroelastic Model and Control Problem

The prototypical aeroelastic wing section is shown in Fig-
ure 1. The governing equations of motion are provided by
[21, 22]

[ 𝑚 𝑚𝑥
𝑎
𝑏

𝑚𝑥
𝑎
𝑏 𝐼
𝑎

][ℎ̈�̈�] + [𝑐ℎ 0
0 𝑐
𝑎

][ℎ̇̇𝑎]

+ [𝑘ℎ 0
0 𝑘
𝑎
(𝛼)] [

ℎ
𝛼] = [−𝐿𝑀] ,

(1)

where ℎ is the plunge displacement and 𝛼 is the pitch angle.
The parameter 𝑚 is the mass of the wing; 𝐼

𝑎
is the moment

of inertia; 𝑏 is the semichord of the wing; 𝑥
𝑎
is the nondi-

mensionalized distance of the center of mass from the elastic
axis; 𝑐

𝑎
and 𝑐
ℎ
are the pitch and plunge damping coefficients,

respectively.The parameters𝑀 and𝐿 are the aerodynamic lift
and moment. Assuming a quasi-steady aerodynamic model,
the aerodynamic lift and moment are given by

𝐿 = 𝜌𝑈2𝑏𝑐
𝑙𝑎

⋅ [𝛼 + ( ℎ̇
𝑈) + (12 − 𝛼) 𝑏 ( �̇�

𝑈)] + 𝜌𝑈2𝑏𝑐
𝑙𝛽
𝛽,

𝑀 = 𝜌𝑈2𝑏2𝑐
𝑚𝑎

⋅ [𝛼 + ( ℎ̇
𝑈) + (12 − 𝛼) 𝑏 ( �̇�

𝑈)] + 𝜌𝑈2𝑏2𝑐
𝑚𝛽

𝛽,

(2)

where 𝑎 is the nondimensionalized distance from the mid-
chord to the elastic axis, 𝑐

𝑙𝑎
and 𝑐
𝑚𝑎

are the lift and moment
coefficients per angle of attack, 𝑐

𝑙𝛽
and 𝑐
𝑚𝛽

are lift andmoment
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Figure 2: General sketch of hysteresis stiffness.

coefficients per control surface deflection 𝛽, and 𝑘
𝑎
(𝛼) and𝑘

ℎ
are the pitch and plunge stiffness coefficients, respectively.

The structural nonlinearities are represented by the nonlinear
functions𝑀(𝛼). In this paper, we investigate system (1) for a
hysteresis model in pitch, where 𝑀(𝛼) is illustrated in Fig-
ure 2 and given by [23]

𝑀(𝛼) = 𝑘
𝛼
(𝛼) 𝛼

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝛼 − 𝛼
𝑓
+𝑀
0
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𝛼 + 𝛼
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−𝑀
0
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𝑓
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𝑀
0
, 𝛼

𝑓
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𝑓
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−𝑀
0
, −𝛼

𝑓
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𝑓
↑,

𝛼 − 𝛼
𝑓
− 𝛿 +𝑀

0
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𝛼 + 𝛼
𝑓
+ 𝛿 −𝑀

0
, 𝛼 < −𝛼

𝑓
− 𝛿 ↓,

(3)

where ↑ and ↓ represent the motion in the increasing and
decreasing 𝛼 direction, respectively. 𝑀

0
, 𝛿, and 𝛼

𝑓
are con-

stants.
A hysteresis model is a piecewise linear system whose

state space consists of several linear regions, each of which
is governed by a linear subsystem. Let the vector 𝑥 ∈ 𝑅4 be
given by 𝑥 = [ℎ, 𝛼, ℎ̇, �̇�]; then, the preceding equations can be
written in a state-space form given by

�̇� = 𝐴 (𝑥) 𝑥 + 𝐵𝛽
𝑐
(𝑡) , (4)

where𝛽
𝑐
is the command input.The definition ofmatrix𝐴(𝑥)

and 𝐵 is given by

𝐴 =
[[[[[
[

0 0 1 0
0 0 0 1
−𝑘
1
−𝑘
2
𝑈2 − 𝑝 (𝑥

2
) −𝑐
1
−𝑐
2

−𝑘
3

−𝑘
4
𝑈2 − 𝑞 (𝑥

2
) −𝑐
3
−𝑐
4

]]]]]
]
,

𝐵 = [0 0 𝑏
3
𝑈2 𝑏
4
𝑈2]𝑇 ,

(5)
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where the parameters are given as follows:

𝑑 = 𝑚(𝐼
𝑎
− 𝑚𝑥2
𝑎
𝑏2) ,

𝑘
1
= 𝐼
𝑎
𝑘
ℎ𝑑 , 𝑘

2
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)

𝑑 ,
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2
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𝑎
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𝛼
(𝑥
2
)

𝑑 , 𝑞 (𝑥
2
) = 𝑚𝑘

𝛼
(𝑥
2
)

𝑑 ,

𝑐
1
= [𝐼
𝑎
(𝑐
ℎ
+ 𝜌𝑈𝑏𝑐

𝑙𝑎
) + 𝑚𝑥

𝑎
𝜌𝑈𝑏3𝑐

𝑚𝑎
]

𝑑 ,

𝑐
2
= [𝐼
𝑎
𝜌𝑈𝑏2𝑐

𝑙𝑎
(12 − 𝑎) − 𝑚𝑥

𝑎
𝑏𝑐
𝑎

+ 𝑚𝑥
𝑎
𝜌𝑈𝑏4𝑐

𝑚𝑎
(12 − 𝑎)] ⋅ (𝑑)−1 ,

𝑐
3
= −𝑚(𝑥

𝑎
𝑏𝑐
ℎ
+ 𝑥
𝑎
𝜌𝑈𝑏2𝑐
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+ 𝜌𝑈𝑏2𝑐

𝑙𝑎
)

𝑑 ,
𝑐
4
= 𝑚[𝑐

𝑎
− 𝑥
𝑎
𝜌𝑈𝑏3𝑐

𝑙𝑎
(12 − 𝑎)

− 𝜌𝑈𝑏3𝑐
𝑚𝑎

(12 − 𝑎)] ⋅ (𝑑)−1 ,

𝑏
3
= − (𝐼

𝑎
𝜌𝑏𝑐
𝑙𝛽
+ 𝑚𝑥
𝑎
𝜌𝑏3𝑐
𝑚𝛽

)
𝑑 ,

𝑏
4
= − (𝑚𝑥

𝑎
𝑏2𝜌𝑐
𝑙𝛽
+ 𝑚𝜌𝑏3𝑐

𝑚𝛽
)

𝑑 .
(6)

If a time delay 𝜏 exists between the control input and
actuator, (4) becomes

�̇� = 𝐴 (𝑥) 𝑥 + 𝐵𝛽
𝑐
(𝑡 − 𝜏) . (7)

3. State Variable Feedback Control Law

In this section, a nonlinear flutter control law based on the
sliding mode control (SMC) method [24] is designed. Con-
sider the nominal linear model of an uncertain system, given
by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (8)

where rank(𝐵) = 𝑚 and (𝐴, 𝐵) is a controllable pair. Define
an associated switching function

𝜎 (𝑡) = 𝑆𝑥 (𝑡) . (9)

This system can be transformed into regular form via a
change of coordinates defined by an orthogonal matrix 𝑇

𝑟

such that

𝑧 (𝑡) = 𝑇
𝑟
𝑥 (𝑡) , (10)

where 𝑇
𝑟
is found by a QR decomposition of the input dis-

tribution matrix; that is,

𝑇
𝑟
𝐵 = [ 0

𝐵
2

] . (11)

Then, define

𝑇
𝑟
𝐴𝑇𝑇
𝑟
= [𝐴11 𝐴

12

𝐴
21

𝐴
22

] ,

𝑆𝑇𝑇
𝑟
= [𝑆
1
𝑆
2
] .

(12)

The system can be expressed in the well-known regular
form

�̇�
1
(𝑡) = 𝐴

11
𝑧
1
(𝑡) + 𝐴

12
𝑧
2
(𝑡) ,

�̇�
2
(𝑡) = 𝐴

21
𝑧
1
(𝑡) + 𝐴

22
𝑧
2
(𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝜎 (𝑡) = 𝑆
1
𝑧
1
(𝑡) + 𝑆

2
𝑧
2
(𝑡) .

(13)

During the sliding motion, the switching function must
be identically zero, so

𝑆
1
𝑧
1
(𝑡) + 𝑆

2
𝑧
2
(𝑡) = 0. (14)

As mentioned before, the regular form approach of slid-
ing mode control is used for flutter and limit cycle oscillation
(LCO) suppression. Controller design process can be found
in [13]. The feedback control law is finally given by

𝛽 (𝑡) = − (𝑆𝐵)−1 𝑆𝐴𝑥 + 𝜌], (15)

where 𝜌 is the gain, ] is an approximation of the signum
function; that is,

] = sat(𝜎𝜀 ) =
{{{{{{{

𝜎
|𝜎| if : 𝜎 ≥ 𝜀
𝜎
𝜀 otherwise,

(16)

where 𝜀 is the so-called boundary layer.
Substituting the control law (15) in (4) gives the closed-

loop system

�̇� = 𝐴 (𝑥) 𝑥 + 𝐵 (− (𝑆𝐵)−1 𝑆𝐴𝑥 + 𝜌])

= 𝐴 (𝑥) 𝑥 − 𝐵 (𝑆𝐵)−1 𝑆𝐴𝑥 + 𝐵𝜌 sat(𝑆𝑥𝜀 ) .
(17)

The performance of the closed-loop system depends on
the matrix 𝐴(𝑥) and the gains 𝜌 and 𝜀.
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Figure 3: Performance of the estimator as a function of time: (a) ℎ(𝑡); (b) 𝑑ℎ/𝑑𝑡; (c) 𝑑𝛼/𝑑𝑡.

4. State Estimator

In general, not all of the states are available online and the
feedback law must be based on an estimate of the states.
Assuming that only the pitch angle 𝛼 as a function of time
can be directly measured, the output equation is given by

𝑦 = 𝛼 = [0 1 0 0] 𝑥 = 𝐶𝑥. (18)

To design an observer based on SMC, it is required that
the system be observable. For the pointwise observability, it is
required that the followingmatrix has a full rank for all times:

𝐸 (𝑥) = [𝐶𝑇 (𝐶𝐴 (𝑥))𝑇 (𝐶𝐴2 (𝑥))𝑇 (𝐶𝐴3 (𝑥))𝑇] . (19)

The determinant of the matrix 𝐸(𝑥)
det (𝐸 (𝑥)) = −𝑘2

3
+ 𝑐
3
𝑐
1
𝑘
3
− 𝑐2
3
𝑘
1
. (20)

As long as the value of the determinant is not zero, it
means that the matrix is nonsingular, the observability of the
system is only related to the system parameters. If 𝑥(𝑡) is the
estimate of the state then the observer dynamics is given by

̇̂𝑥 = 𝐴 (𝑥) 𝑥 + 𝐵𝛽 (𝑡) + 𝐾 (𝑦 − 𝐶𝑥) , (21)

where

𝐾 = −𝑃
0
𝐶𝑇𝑉−1. (22)
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Figure 4: Open-loop responses: 𝑈 = 13m/s. (a) Plunge. (b) Phase plane plot ℎ − ℎ̇. (c) Pitch. (d) Phase plane plot 𝛼 − �̇�.

The matrix 𝑃
0
is the positive definite solution of the

algebraic Riccati equation

𝐴 (𝑥) 𝑃
0
+ 𝑃
0
𝐴𝑇 (𝑥) − 𝑃

0
𝐶𝑇𝑉−1𝐶𝑃

0
+ 𝑄
0
= 0, (23)

where 𝑉−1 and 𝑄
0
are constants.

If the system in (4) and (18) is pointwise observable in the
linear sense, that is, the matrix in (19) has a full rank for all
times, then the preceding equation can be solved uniquely for
the positive definite matrix 𝑃

0
.

5. Results and Discussion

In this section, numerical results for the control of the aer-
oelastic system are obtained. The values for the system para-
meters are taken from [25] and listed as follows: 𝑏 = 0.135m,𝑚 = 12.387 kg, 𝐼

𝑎
= 0.065, 𝑥

𝑎
= 0.3267, 𝑘

ℎ
= 2844.4N/m,𝑐

ℎ
= 27.43N⋅s/m, 𝑐

𝑎
= 0.036N⋅s, 𝜌 = 1.225 kg/m3, 𝑎 = −0.68,

𝑐
𝑙𝛼
= 6.28, 𝑐

𝑙𝛽
= 3.358, 𝑐

𝑚𝛼
= −1.1304, and 𝑐

𝑚𝛽
= −0.635. The

nonlinear parameter in pitch stiffness is 𝑀
0
= 0.25∘, 𝛿 =0.5∘, and 𝑎

𝑓
= 0.25∘. For the specific data given above,

the determinant of the observability matrix 𝐸(𝑥) is equal
to −3, 487, 750.89 ( ̸= 0). The matrix has a full rank for
all times and, therefore, it is possible to design an online
observer. The weighting matrix and the scalar function in
the performance index are selected as 𝑄

0
= diag(1, 10, 1, 10)

and 𝑉 = 1000, respectively. The observer gain 𝐾 is equal
to [0.0112 −0.4161 0.0702 −0.0816]𝑇. The performance of
the estimator is shown in Figure 3. It is thus obvious that the
estimator can quickly make an accurate estimate of nondirect
measurement variables.

Case 0. Simulation is performed for the open-loop system
(𝛽 = 0) with the initial conditions 𝛼(0) = 0.1 (rad), ℎ(0) =
0.01 (m), �̇�(0) = 0 (rad/s), and ℎ̇(0) = 0 and for the values of
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Figure 5: Nonlinear flutter control: 𝑈 = 13m/s, 𝜀 = 0.009. (a) Plunge. (b) Pitch. (c) Control input.

𝑈 = 13m/s. The open-loop eigenvalues of the system are in
the right half plane at 2.9046+𝑗18.3698 and 2.9046−𝑗18.3698
and the remaining eigenvalues are in the left half plane.
Thus, the origin 𝑥 = 0 is locally unstable. From Figure 4,
it is seen that, for the chosen initial condition, after an
initial transient, the pitch angle and the plunge displacement
trajectories converge to limit cycles.

Case 1. Now the closed-loop system (17) including the
nonlinear control law (15) is simulated. The parameter𝑈 and
the initial conditions of case 0 are retained. Figures 5 and 6
illustrate the performance of the regular form of the sliding

mode control using different gains 𝜌 and 𝜀, respectively. From
the results shown in Figure 5, it can be observed that the
control law designed in the closed-loop system makes the
plunge displacement and the pitch angle converge. If the gain𝜌 changes, the shape of the response characteristics will also
change. When the gain 𝜌 = 0.02, the settling time for the
stabilization of both the plunge displacement and the pitch
angle is of the order of 5 seconds, which is fast, and the maxi-
mumcontrolmagnitude for stabilization is 7.5 (deg).With the
increase of the gain, the settling time for the stabilization is
smaller and themaximumcontrolmagnitude for stabilization
is also smaller. Until 𝜌 = 0.58, the high-frequency chattering
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Figure 6: Nonlinear flutter control: 𝑈 = 13m/s, 𝜌 = 0.05. (a) Plunge. (b) Pitch. (c) Control input.

of the control signal occurred. From the analysis results, it is
found that the choice of larger 𝜌 gives faster convergence and
requires smaller control input. As shown in Figure 6, with the
increase of the gain 𝜀, the settling time for the stabilization is
larger, but the maximum control magnitude for stabilization
has no changes, so it can be seen that the choice of larger 𝜌
gives slower convergence, which will cause the performance
of the system to become noticeably degraded. Hence, the
effects of the gains 𝜌 and 𝜀 on the response characteristics
should be seriously considered.

Case 2. In the above analysis, time delays in control loops
are ignored. In this section, the effect of time delay on

an aeroelastic system is investigated. First, a comparison was
made for the control input time histories of the closed-loop
system at 𝑈 = 10m/s with and without time delay. From
the results shown in Figure 7(a), it can be observed that
the control law designed in the previous section makes the
system response converge without any time delay. If a time
delay 𝜏 between the control input and actuator occurred at
time 𝑡, the control input 𝛽(𝑡 − 𝜏) would be derived from the
previous state 𝑥(𝑡 − 𝜏) at time 𝜏 before the present state. The
control input 𝛽(𝑡 − 𝜏) would drive the system to produce
a deflection angle, which would cause oscillations of the
system state and control input.We observe that this vibration
was convergent when 𝜏 = 0.001 s. With the time delay
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Figure 7: Time histories of control input at 𝑈 = 10m/s and (a) 𝜏 = 0 s; (b) 𝜏 = 0.001 s; (c) 𝜏 = 0.032 s; (d) 𝜏 = 0.041 s.

increasing, a high-frequency vibration of small amplitude
arose in the control input 𝛽(𝑡), but the vibration is still
convergent. However, the vibration becomes divergent when𝜏 ≥ 0.041 s. From the analysis results, it can be seen that the
time delay will produce an additional motion in the system
responses. At the flow velocity𝑈 = 20m/s, the time histories
of pitch and plunge responses are shown in Figure 8. If a
time delay was set between the control input and actuator,
the system response behaved differently. It is obvious that
the pitch and plunge responses does not converge when the
time delay 𝜏 = 0.042 s. The results indicate that the time
delay between the control input and actuator may impair

the performance of a designed control law and cause instabil-
ity of the system. Bifurcation diagrams of closed-loop system
response as function of time delay are given in Figure 9. We
can see that the amplitudes of plunge and pitch responses
are quite small until the time delay is higher than 0.035 s,
which means that a quite small time delay may lead to
high-frequency vibration of the system, but the control law
designed is still effective to suppress the flutter. Increasing the
time delay further, closed-loop response amplitudes become
large rapidly. The plunge and pitch amplitudes are almost the
same with response amplitudes when 𝜏 = 0.042 s. And now
the designed controller has no effect for flutter suppression.
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Figure 8: Time histories: (a) plunge and (b) pitch at 𝑈 = 20m/s.
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Figure 9: Bifurcation diagrams of (a) plunge and (b) pitch response as function of time delay at 𝑈 = 20m/s.

6. Conclusion

Based on the state space model of a two-dimensional airfoil
section with hysteresis nonlinearity, a feedback control law
based on the estimated states was designed by using the slid-
ing mode control method and applied for dynamic response
suppression in this paper. An observer was constructed to
estimate the unavailable state variables of the system. The
effects of time delay between the control input and actuator
on the aeroelastic responses has been investigated.

The nonlinear control law accomplishes asymptotic reg-
ulation of the pitch and plunge motion to the system
equilibrium at zero deflections. Simulation results show that

the observer can give precise estimations for the plunge
displacement and the velocities in pitch and plunge, and, in
the closed-loop system, the designed controller is effective
in flutter suppression. The system response is sensitive to
the time delay between the control input and actuator. The
bifurcation diagram of system response as function of time
delay indicates that a small time delay may lead to high-
frequency vibration. And with the time delay increasing, the
system responses become divergent in the end.
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