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This paper is focused on the absolute stability of Lur’e systems with time-varying delay. Based on the quadratic separation
framework, a complete delay-decomposing Lyapunov-Krasovskii functional is constructed. By considering the relationship
between the time-varying delay and its varying interval, improved delay-dependent absolute stability conditions in terms of linear
matrix inequalities (LMIs) are obtained. Moreover, the derived conditions are extended to systems with time-varying structured
uncertainties. Finally, a numerical example is given to show the advantage over existing literatures.

1. Introduction

Since the concept of absolute stability and the Lur’e problem
was introduced in 1940s, the absolute stability of Lur’e
control systems has received much attention and many rich
results have been proposed [1–6]. As time-delay is frequently
encountered in practical systems and is often a source of
instability and poor performance, the problem of absolute
stability of Lur’e systems with time-delay has been attracting
much attention [7–14].

In [10, 11], the absolute stability of Lur’e systems with
time-invariant delay was addressed. In the case that the delay
is time-varying, the problem of absolute stability has also
been investigated in [12]. In addition, by retaining some
useful information and employing an improved free-matrix
approach to consider the relationship between the time-
varying delay and its upper bound, some less conservative
criteria are obtained in [13]. Nevertheless, the results obtained
in [13] are based on simple Lyapunov-Krasovskii functionals
and are still conservative. In [14], the absolute stability of Lur’e
systems with interval-varying delay has been investigated via
a delay decomposition approach. However, there is room for
further improvement.

Recently, a delay decomposition method was proposed
in [15], which significantly reduced the conservatism of

the derived stability conditions for systemswith time-varying
delay. However, as pointed out in [16], the term 𝜏(𝑡)− (𝑘−1)𝛿
with (𝑘 − 1)𝛿 ≤ 𝜏(𝑡) ≤ 𝑘𝛿 was enlarged as 𝛿 and another
term 𝑘𝛿 − 𝜏(𝑡) was also regarded as 𝛿 in [15], leading to the
conservatism. Moreover, in the construction of Lyapunov-
Krasovskii functional, the term ∫𝑡

𝑡−𝜏(𝑡)
𝑥
𝑇
(𝑠)𝑄𝑥(𝑠)𝑑𝑠 has been

universally employed in [15]; that is, 𝑄 ≥ 0 is kept on the
whole delay interval [𝑡 − 𝜏(𝑡), 𝑡], which is also a source of
conservatism for systems with time-varying delay.

In this paper, a complete-decomposing Lyapunov-
Krasovskii functional is employed to investigate the absolute
stability of Lur’e systems with a time-varying delay. By
considering the relationship between the time-varying
delay and its varying interval, improved delay-dependent
absolute stability conditions are presented in the linear
matrix inequality (LMI) setting. Finally, a numerical example
is given to demonstrate the effectiveness and the merits of
the presented method.

Notation. Throughout this paper, the superscripts “−1” and
“𝑇” stand for the inverse and transpose of a matrix, respec-
tively;𝑅𝑛 denotes the 𝑛-dimensional Euclidean space;𝑅𝑛×𝑚 is
the set of all 𝑛 ×𝑚 real matrices; 𝑃 > 0means that the matrix
𝑃 is symmetric and positive definite; 𝐼 is an appropriately
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dimensioned identity matrix; diag{⋅ ⋅ ⋅ } denotes a block-
diagonal matrix; and the symmetric terms in a symmetric
matrix are denoted by ∗; for example, [𝑋 𝑌

∗ 𝑍
] = [

𝑋 𝑌

𝑌
𝑇
𝑍
].

2. Problem Statement

Consider the following system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑤 (𝑡)

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝑑 (𝑡))

𝑤 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡))

𝑥 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑤(𝑡) ∈ 𝑅

𝑚, and 𝑧(𝑡) ∈ 𝑅
𝑚 are the

state, input, and output vectors of the system, respectively;
𝐴, 𝐵,𝐷,𝑀, and 𝑁 are constant matrices with appropriate
dimensions; the initial condition 𝜓(𝑡) is a continuous vector-
valued function of 𝑡 ∈ [−ℎ, 0]. 𝜑(𝑡, 𝑧(𝑡)) ∈ 𝑅

𝑚 is a
nonlinear function, which is piecewise continuous in 𝑡,
globally Lipschitz in 𝑧(𝑡), 𝜑(𝑡, 0) = 0, and satisfies the
following sector condition ∀𝑡 ≥ 0 and ∀𝑧(𝑡) ∈ 𝑅𝑚:

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
1
𝑧 (𝑡)]
𝑇

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
2
𝑧 (𝑡)] ≤ 0, (2)

where 𝐾
1
and 𝐾

2
are constant real matrices of appropriate

dimensions, and𝐾 = 𝐾
2
−𝐾
1
is a symmetric positive definite

matrix. Customarily, the nonlinear function, 𝜑(𝑡, 𝑧(𝑡)), is said
to belong to the sector [𝐾

1
, 𝐾
2
].

The time-delay, 𝑑(𝑡), is a time-varying differentiable
function satisfying

0 ≤ 𝑑 (𝑡) ≤ ℎ, (3)

̇
𝑑 (𝑡) ≤ 𝜇, (4)

where ℎ and 𝜇 are constants.
First, we introduce the following definition of absolute

stability.

Definition 1. System (1) is said to be absolutely stable in the
sector [𝐾

1
, 𝐾
2
] if a trivial solution 𝑥(𝑡) = 0 is globally

uniformly asymptotically stable for any nonlinear function
𝜑(𝑡, 𝑧(𝑡)) satisfying (2).

In this paper, we investigate not only the absolute stability
of nominal system (1), but also the following system with
time-varying structured uncertainties:

�̇� (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ (𝐵 + Δ𝐵 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑤 (𝑡)

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝑑 (𝑡))

𝑤 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡))

𝑥 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(5)

where the time-varying structured uncertainties are of the
form

[Δ𝐴 (𝑡) Δ𝐵 (𝑡)] = 𝐿𝐹 (𝑡) [𝐸
𝑎
𝐸
𝑏
] . (6)

𝐿, 𝐸
𝑎
, and 𝐸

𝑏
are appropriately dimensioned constant matri-

ces, and 𝐹(𝑡) is an unknown real and possibly time-varying
matrix satisfying

𝐹
𝑇
(𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡. (7)

Before presenting our main results, we first introduce
two lemmas, which are useful in the stability analysis of the
considered system.

Lemma 2 (see [10]). Let𝑀 = 𝑀
𝑇
> 0 be a constant real 𝑛×𝑛

matrix, and suppose �̇� : [−ℎ, 0] → 𝑅𝑛 with ℎ > 0 such that the
subsequent integration is well defined. Then, we have

−ℎ∫

𝑡

𝑡−ℎ

�̇�
𝑇
(𝑠)𝑀�̇� (𝑠) 𝑑𝑠 ≤ 𝜁

𝑇
(𝑡) [

−𝑀 𝑀

∗ −𝑀

]𝜁 (𝑡) , (8)

where 𝜁(𝑡) = col {𝑥(𝑡), 𝑥(𝑡 − ℎ)}.

Lemma 3 (see [17]). Let 𝐻, 𝐸, and 𝐹(𝑡) be real matrices of
appropriate dimensions with 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.
Then, for any scalar 𝜀 > 0

𝐻𝐹 (𝑡) 𝐸 + (𝐻𝐹 (𝑡) 𝐸)
𝑇
≤ 𝜀
−1
𝐻𝐻
𝑇
+ 𝜀𝐸
𝑇
𝐸. (9)

3. Main Results

Firstly, by applying the loop transformation the absolute
stability of system (1) in the sector [𝐾

1
, 𝐾
2
] can be converted

to that of the following system:

�̇� (𝑡) = (𝐴 − 𝐷𝐾
1
𝑀)𝑥 (𝑡)

+ (𝐵 − 𝐷𝐾
1
𝑁)𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑤 (𝑡)

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝑑 (𝑡))

𝑤 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡))

𝑥 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−ℎ, 0]

(10)

in the sector [0, 𝐾
2
− 𝐾
1
]. Thus, we consider the absolute

stability of system (10) in the sector [0, 𝐾
2
− 𝐾
1
] [18].

Now, we decompose the delay interval [0, ℎ] into 𝑚
equidistant subintervals, where 𝑚 is a given integer; that is,
[0, ℎ] = ⋃

𝑚

𝑗=1
[(𝑗 − 1)𝛿, 𝑗𝛿] with 𝛿 = ℎ/𝑚. Thus, for any

𝑡 ≥ 0, there should exist an integer 𝑘 ∈ {1, 2, . . . , 𝑚}, such
that 𝑑(𝑡) ∈ [(𝑘 − 1)𝛿, 𝑘𝛿]. Then the Lyapunov-Krasovskii
functional candidate is chosen as

𝑉 (𝑥
𝑡
)



𝑑(𝑡)∈[(𝑘−1)𝛿,𝑘𝛿]

=

4

∑

𝑗=1

𝑉
𝑗
(𝑥
𝑡
) , (11)
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where

𝑉
1
(𝑥
𝑡
) = 𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

𝑉
2
(𝑥
𝑡
) = ∫

𝑡

𝑡−𝛿

𝜁
𝑇

1
(𝑠) 𝑅
𝑎
𝜁
1
(𝑠) 𝑑𝑠

𝑉
3
(𝑥
𝑡
) =

𝑚

∑

𝑗=1

𝛿∫

−(𝑗−1)𝛿

−𝑗𝛿

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑍
𝑗
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

𝑉
4
(𝑥
𝑡
) =

𝑘−1

∑

𝑗=1

∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

𝑥
𝑇
(𝑠) 𝑄
𝑗
𝑥
2
(𝑠) 𝑑𝑠

+ ∫

𝑡−(𝑘−1)𝛿

𝑡−𝑑(𝑡)

𝑥
𝑇
(𝑠) 𝑄
𝑘
𝑥 (𝑠) 𝑑𝑠,

(12)

where 𝑃 > 0, 𝑅
𝑎
= [

[

𝑅11 𝑅12 ⋅⋅⋅ 𝑅1𝑚

∗ 𝑅22 ⋅⋅⋅ 𝑅2𝑚

∗ ∗ d
.
.
.

∗ ∗ ∗ 𝑅𝑚𝑚

]

]

> 0, 𝑄
𝑗
≥ 0, and

𝑍
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚, are to be determined, and 𝜁

1
(𝑠) =

[𝑥
𝑇
(𝑠) 𝑥
𝑇
(𝑠 − 𝛿) ⋅ ⋅ ⋅ 𝑥

𝑇
(𝑠 − (𝑚 − 1)𝛿)]

𝑇.

Remark 4. Recently, the delay-decomposing approach is
employed to reduce the conservatism of stability analysis
for systems with time-varying delay in [15]. However, the
technique proposed in this paper improves the existing
ones. In Lyapunov-Krasovskii functional (11), the quadratic
separation is employed in 𝑉

2
(𝑥
𝑡
), and a new term, 𝑉

4
(𝑥
𝑡
),

is introduced, which play an important role in reducing
conservatism of the resulting conditions.

For the absolute stability of system (1), we have the
following result.

Theorem 5. Given a positive integer 𝑚 and scalars ℎ > 0
and 𝜇, system (1) with a time-varying delay 𝑑(𝑡) satisfying (3)
and (4) is absolutely stable in the sector [𝐾

1
, 𝐾
2
] if there exist

matrices 𝑃 > 0, 𝑅
𝑎
= [

[

𝑅11 𝑅12 ⋅⋅⋅ 𝑅1𝑚

∗ 𝑅22 ⋅⋅⋅ 𝑅2𝑚

∗ ∗ d
.
.
.

∗ ∗ ∗ 𝑅𝑚𝑚

]

]

> 0, 𝑄
𝑗
≥ 0, and

𝑍
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚, and any matrices 𝐺

𝑖𝑗
, 𝐻
𝑖𝑗
, 𝑖 = 1, 2,

𝑗 = 1, 2, . . . , 𝑚, such that for 𝑘 = 1, 2, . . . , 𝑚,

[

[

Φ
0
+ Φ
𝑘
+ Λ
𝑘
𝛿Γ
𝑇̂
𝑍

∗ −
̂
𝑍

]

]

< 0 (13)

[

Φ
0
+ Φ
𝑘
+ Λ
𝑘
𝛿Γ
𝑇̂
𝑍

∗ −
̂
𝑍

] < 0, (14)

where

Φ
0
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 𝐵

𝑇

𝑃 0 ⋅ ⋅ ⋅ −𝑁
𝑇
𝐾

𝑇

0

∗ 𝜑
11
𝜑
12
⋅ ⋅ ⋅ 𝜑

1(𝑚+2)
0

∗ ∗ 𝜑
22
⋅ ⋅ ⋅ 𝜑

2(𝑚+2)
0

∗ ∗ ∗ d
.
.
.

.

.

.

∗ ∗ ∗ ⋅ ⋅ ⋅ 𝜑
(𝑚+2)(𝑚+2)

0

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝜑
𝑖𝑗
=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
1𝑗
, 𝑖 = 1, 1 ≤ 𝑗 ≤ 𝑚 + 2

𝜑
𝑖(𝑚+1)

, 2 ≤ 𝑖 ≤ 𝑚 + 1, 𝑖 = 𝑚 + 1

𝜑
𝑖(𝑚+2)

, 2 ≤ 𝑖 ≤ 𝑚 + 2, 𝑖 = 𝑚 + 2

𝑅
𝑖𝑗
− 𝑍
𝑖
, 𝑖 = 𝑗 = 2, 3, . . . , 𝑚

𝑅
𝑖𝑗
+ 𝑍
𝑖
, 2 ≤ 𝑖 ≤ 𝑚 − 1, 𝑗 = 𝑖 + 1

𝑅
𝑖𝑗
, otherwise

𝜑
1𝑗
=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑅
11
− 𝑍
1
, 𝑗 = 1

𝑅
12
+ 𝑍
1
, 𝑗 = 2

𝑅
1𝑗
, 3 ≤ 𝑗 ≤ 𝑚

0, 𝑗 = 𝑚 + 1

𝑃𝐷 −𝑀
𝑇
𝐾

𝑇

, 𝑗 = 𝑚 + 2

𝜑
𝑖(𝑚+1)

=

{
{
{
{

{
{
{
{

{

−𝑅
(𝑖−1)𝑚

, 2 ≤ 𝑖 ≤ 𝑚 − 1

−𝑅
(𝑚−1)𝑚

+ 𝑍
𝑚
, 𝑖 = 𝑚

−𝑅
𝑚𝑚
− 𝑍
𝑚
, 𝑖 = 𝑚 + 1

𝜑
𝑖(𝑚+2)

=

{

{

{

0, 2 ≤ 𝑖 ≤ 𝑚 + 1

−2𝐼, 𝑖 = 𝑚 + 2

Φ
𝑘
= (𝜓
𝑖𝑗
)
(𝑚+4)×(𝑚+4)

+ (𝜓
𝑖𝑗
)

𝑇

(𝑚+4)×(𝑚+4)

𝜓
𝑖𝑗
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐺
1𝑘
− 𝐻
1𝑘
, 𝑖 = 𝑗 = 1

𝐻
1𝑘
− 𝐻
𝑇

2𝑘
+ 𝐺
𝑇

2𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 1

−𝐺
1𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 2

𝐻
2𝑘
+

1

2

𝑍
𝑘
, 𝑖 = 𝑗 = 𝑘 + 1

−𝐺
2𝑘
− 𝑍
𝑘
, 𝑖 = 𝑘 + 1, 𝑗 = 𝑘 + 2

1

2

𝑍
𝑘
, 𝑖 = 𝑗 = 𝑘 + 2

−𝛿
𝑘
𝐻
1𝑘
, 𝑖 = 1, 𝑗 = 𝑚 + 4

−𝛿
𝑘
𝐻
2𝑘
, 𝑖 = 𝑘 + 1, 𝑗 = 𝑚 + 4

−

1

2

𝛿
2

𝑘
𝑍
𝑘
, 𝑖 = 𝑗 = 𝑚 + 4

0, otherwise
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Φ̂
𝑘
= (�̂�
(2)

𝑖𝑗
)
(𝑚+4)×(𝑚+4)

+ (�̂�
𝑖𝑗
)

𝑇

(𝑚+4)×(𝑚+4)

�̂�
𝑖𝑗
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐺
1𝑘
− 𝐻
1𝑘
, 𝑖 = 𝑗 = 1

𝐻
1𝑘
− 𝐻
𝑇

2𝑘
+ 𝐺
𝑇

2𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 1

−𝐺
1𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 2

𝐻
2𝑘
+

1

2

𝑍
𝑘
, 𝑖 = 𝑗 = 𝑘 + 1

−𝐺
2𝑘
− 𝑍
𝑘
, 𝑖 = 𝑘 + 1, 𝑗 = 𝑘 + 2

1

2

𝑍
𝑘
, 𝑖 = 𝑗 = 𝑘 + 2

−𝛿
𝑘
𝐺
1𝑘
, 𝑖 = 1, 𝑗 = 𝑚 + 4

−𝛿
𝑘
𝐺
2𝑘
, 𝑖 = 𝑘 + 1, 𝑗 = 𝑚 + 4

−

1

2

𝛿
2

𝑘
𝑍
𝑘
, 𝑖 = 𝑗 = 𝑚 + 4

0, otherwise

Λ
𝑘
= diag {Λ

1𝑘
, Λ
2𝑘
, . . . , Λ

(𝑚+4)𝑘
}

Λ
𝑗𝑘
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

− (1 − 𝜇)𝑄
𝑘
, 𝑗 = 1

𝑄
1
, 𝑗 = 2

𝑄
𝑗−1
− Q
𝑗−2
, 3 ≤ 𝑗 ≤ 𝑘 + 1

0, otherwise

𝐴 = 𝐴 − 𝐷𝐾
1
𝑀

𝐵 = 𝐵 − 𝐷𝐾
1
𝑁

𝑅
𝑖𝑗
= 𝑅
𝑖𝑗
− 𝑅
(𝑖−1)(𝑗−1)

𝑍
𝑗
= 𝑍
𝑗
+ 𝑍
𝑗−1

𝐾 = 𝐾
2
− 𝐾
1

̂
𝑍 =

𝑚

∑

𝑗=1

𝑍
𝑗

Γ = [𝐵 𝐴 0 ⋅ ⋅ ⋅ 0 𝐷 0] .

(15)

Proof. From the Leibniz-Newton formula, the following
equations are true for any matrices 𝐺

𝑖𝑘
, 𝐻
𝑖𝑘
, 𝑖 = 1, 2, 𝑘 =

1, 2, . . . , 𝑚 with appropriate dimensions

0 = 2 [𝑥
𝑇
(𝑡 − 𝑑 (𝑡))𝐻

1𝑘
+ 𝑥
𝑇
(𝑡 − (𝑘 − 1) 𝛿)𝐻

2𝑘
]

× [𝑥 (𝑡 − (𝑘 − 1) 𝛿) − 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫

𝑡−(𝑘−1)𝛿

𝑡−𝑑(𝑡)

�̇� (𝑠) 𝑑𝑠]

0 = 2 [𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝐺

1𝑘
+ 𝑥
𝑇
(𝑡 − (𝑘 − 1) 𝛿) 𝐺

2𝑘
]

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑘𝛿) − ∫

𝑡−𝑑(𝑡)

𝑡−𝑘𝛿

�̇� (𝑠) 𝑑𝑠] .

(16)

On the other hand, it follows from (2) and (10) that

− 2𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 2𝑤

𝑇
(𝑡) (𝐾

2
− 𝐾
1
)

⋅ [𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝑑 (𝑡))] ≥ 0.

(17)

Taking the derivative of 𝑉(𝑥
𝑡
) in (11) with respect to 𝑡

along the trajectory of system (10) yields

�̇� (𝑥
𝑡
)





𝑑(𝑡)∈[(𝑘−1)𝛿,𝑘𝛿]

=

4

∑

𝑗=1

�̇�
𝑗
(𝑥
𝑡
) , (18)

where

�̇�
1
(𝑥
𝑡
) = 2𝑥

𝑇
(𝑡) 𝑃�̇� (𝑡)

�̇�
2
(𝑥
𝑡
) = 𝜁
𝑇

1
(𝑡) 𝑅
𝑎
𝜁
𝑇

1
(𝑡) − 𝜁

𝑇

1
(𝑡 − 𝛿) 𝑅

𝑎
𝜁
𝑇

1
(𝑡 − 𝛿)

�̇�
3
(𝑥
𝑡
) = 𝛿
2

𝑚

∑

𝑗=1

�̇�
𝑇
(𝑡) 𝑍
𝑗
�̇� (𝑡) − 𝛿

𝑚

∑

𝑗=1

∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

�̇�
𝑇
(𝑠) 𝑍
𝑗
�̇� (𝑠) 𝑑𝑠

�̇�
4
(𝑥
𝑡
) =

𝑘−1

∑

𝑗=1

𝑥
𝑇
(𝑡 − 𝑗𝛿) (𝑄

𝑗+1
− 𝑄
𝑗
) 𝑥 (𝑡 − 𝑗𝛿)

+ 𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡)

− (1 −
̇
𝑑 (𝑡)) 𝑥

𝑇
(𝑡 − 𝑑 (𝑡)) 𝑄

𝑘
𝑥 (𝑡 − 𝑑 (𝑡))

≤

𝑘−1

∑

𝑗=1

𝑥
𝑇
(𝑡 − 𝑗𝛿) (𝑄

𝑗+1
− 𝑄
𝑗
) 𝑥 (𝑡 − 𝑗𝛿)

+ 𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡)

− (1 − 𝜇) 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝑄

𝑘
𝑥 (𝑡 − 𝑑 (𝑡)) .

(19)

Applying Lemma 2, we have

−

𝑚

∑

𝑗=1

𝛿∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

�̇�
𝑇
(𝑠) 𝑍
𝑗
�̇� (𝑠) 𝑑𝑠

≤

𝑚

∑

𝑗=1,𝑗 ̸=𝑘

[

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

𝑇

[

−𝑍
𝑗
𝑍
𝑗

∗ −𝑍
𝑗

]

⋅ [

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

− 𝛿∫

𝑡−(𝑘−1)𝛿

𝑡−𝑘𝛿

�̇�
𝑇
(𝑠) 𝑍
𝑘
�̇� (𝑠) 𝑑𝑠
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=

𝑚

∑

𝑗=1

[

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

𝑇

[

−𝑍
𝑗
𝑍
𝑗

∗ −𝑍
𝑗

][

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

− [

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

𝑇

[

−𝑍
𝑘
𝑍
𝑘

∗ −𝑍
𝑘

][

𝑥 (𝑡 − (𝑗 − 1) 𝛿)

𝑥 (𝑡 − 𝑗𝛿)

]

− 𝛿∫

𝑡−(𝑘−1)𝛿

𝑡−𝑑(𝑡)

�̇�
𝑇
(𝑠) 𝑍
𝑘
�̇� (𝑠) 𝑑𝑠 − 𝛿∫

𝑡−𝑑(𝑡)

𝑡−𝑘𝛿

�̇�
𝑇
(𝑠) 𝑍
𝑘
�̇� (𝑠) 𝑑𝑠.

(20)

Introducing a new vector as

𝜁 (𝑡, 𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡)

𝑥 (𝑡 − 𝛿)

𝑥 (𝑡 − 2𝛿)

.

.

.

𝑥 (𝑡 − 𝑚𝛿)

𝑤 (𝑡)

�̇� (𝑠)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(21)

then system (10) gives

�̇� (𝑡) = Γ𝜁 (𝑡, 𝑠) . (22)

Adding the right sides of ((16)-(17)) to (18) and applying
(20) and (22), we have

�̇� (𝑥
𝑡
)





𝑑(𝑡)∈[(𝑘−1)𝛿,𝑘𝛿]

≤

1

𝛿

∫

𝑡−(𝑘−1)𝛿

𝑡−𝑑(𝑡)

𝜁
𝑇
(𝑡, 𝑠)

⋅ [

[

Φ
0
+ Φ
𝑘
+ Λ
𝑘
+ 𝛿
2
Γ
𝑇

𝑚

∑

𝑗=1

𝑍
𝑗
Γ]

]

𝜁 (𝑡, 𝑠) 𝑑𝑠

+

1

𝛿

∫

𝑡−𝑑(𝑡)

𝑡−𝑘𝛿

𝜁
𝑇
(𝑡, 𝑠)

⋅ [

[

Φ
0
+ Φ̂
𝑘
+ Λ
𝑘
+ 𝛿
2
Γ
𝑇

𝑚

∑

𝑗=1

𝑍
𝑗
Γ]

]

𝜁 (𝑡, 𝑠) 𝑑𝑠.

(23)

For all 𝑘 = 1, 2, . . . , 𝑚, ifΦ
0
+Φ
𝑘
+Λ
𝑘
+𝛿
2
Γ
𝑇
∑
𝑚

𝑗=1
𝑍
𝑗
Γ < 0

andΦ
0
+ Φ̂
𝑘
+Λ
𝑘
+ 𝛿
2
Γ
𝑇
∑
𝑚

𝑗=1
𝑍
𝑗
Γ < 0, which are equivalent

to LMIs (13) and (14) in the sense of Schur complement [19],
then �̇�(𝑥

𝑡
) < 0 for any 𝜁(𝑡, 𝑠) ̸= 0. Noted that 𝑉(𝑥

𝑡
) is

continuous at 𝑑(𝑡) = 𝑘𝛿, so the absolute stability of system
(10) in the sector [0, 𝐾

2
− 𝐾
1
], which is equivalent to that of

system (1) in the sector [𝐾
1
, 𝐾
2
], is achieved. This completes

the proof.

For system (5)with time-varying structured uncertainties
(6), replacing 𝐴 and 𝐵 in (13) and (14) with 𝐴 + 𝐿𝐹(𝑡)𝐸

𝑎
and

𝐵 + 𝐿𝐹(𝑡)𝐸
𝑏
, respectively, applying Lemma 3 and the Schur

complement, the following theorem can be derived.

Theorem6. Given a positive integer𝑚, scalarsℎ > 0,𝜇, system
(5) with time-varying structured uncertainties (6) and a time-
varying delay 𝑑(𝑡) satisfying (3) and (4) is robustly absolutely
stable in the sector [𝐾

1
, 𝐾
2
] if there exist matrices 𝑃 > 0, 𝑅

𝑎
=

[

[

𝑅11 𝑅12 ⋅⋅⋅ 𝑅1𝑚

∗ 𝑅22 ⋅⋅⋅ 𝑅2𝑚

∗ ∗ d
.
.
.

∗ ∗ ∗ 𝑅𝑚𝑚

]

]

> 0, 𝑄
𝑗
≥ 0, 𝑍

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚, any

matrices 𝐺
𝑖𝑗
,𝐻
𝑖𝑗
, 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚, and scalars 𝜆

𝑖𝑗
> 0,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚, such that for 𝑘 = 1, 2, . . . , 𝑚,

[
[
[
[
[
[

[

Φ
0
+ Φ
𝑘
+ Λ
𝑘
𝛿Γ
𝑇̂
𝑍 𝑃𝐿 𝜆

1𝑘
𝐸

∗ −
̂
𝑍 𝛿

̂
𝑍
𝑇
𝐿 0

∗ ∗ −𝜆
1𝑘
𝐼 0

∗ ∗ ∗ −𝜆
1𝑘
𝐼

]
]
]
]
]
]

]

< 0

[
[
[
[
[
[

[

Φ
0
+ Φ̂
𝑘
+ Λ
𝑘
𝛿Γ
𝑇̂
𝑍 𝑃𝐿 𝜆

2𝑘
𝐸

∗ −
̂
𝑍 𝛿

̂
𝑍
𝑇
𝐿 0

∗ ∗ −𝜆
2𝑘
𝐼 0

∗ ∗ ∗ −𝜆
2𝑘
𝐼

]
]
]
]
]
]

]

< 0,

(24)

where

𝑃 = [0 𝑃 0 ⋅ ⋅ ⋅ 0]
𝑇

𝐸 = [𝐸
𝑏
𝐸
𝑎
0 ⋅ ⋅ ⋅ 0]

𝑇

(25)

and Φ
0
, Φ
𝑘
, Φ̂
𝑘
, Λ
𝑘
, Γ, and ̂𝑍 are defined in Theorem 5.

Remark 7. In previous works such as [12, 13, 15], considerable
attention has been paid to the case that the derivative of the
time-varying delay ̇

𝑑(𝑡) satisfies (4). In the case that ̇𝑑(𝑡) have
different upper bounds in various delay intervals, that is,

̇
𝑑 (𝑡) ≤ 𝜇

𝑘
, 𝑑 (𝑡) ∈ [(𝑘 − 1) 𝛿, 𝑘𝛿] , 𝑘 = 1, 2, . . . , 𝑚, (26)

the treatment in [12, 13] means that ̇
𝑑(𝑡) in (26) is enlarged

to ̇
𝑑(𝑡) ≤ 𝜇 = max{𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑚
}, which may inevitably

lead to conservativeness. Nevertheless, replacing 𝜇 with 𝜇
𝑘

in Theorems 5 and 6, some less conservative conditions are
readily obtained, in which the aforementioned case can be
taken fully into account. In addition, for the case that the
time-varying delay 𝑑(𝑡) is nondifferentiable in a subinterval
𝑑(𝑡) ∈ [(𝑘 − 1)𝛿, 𝑘𝛿], 𝑘 ∈ {1, 2, . . . , 𝑚}, setting corresponding
matrix 𝑄

𝑘
= 0 in Theorems 5 and 6, the corresponding

criteria can be derived. For the limitation of pages, we omit
them.

4. Numerical Example

In this section, we will present a numerical example to show
the effectiveness of the proposed method.
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Table 1: Maximum allowable time-delay bounds ℎ for different 𝜇.

𝜇 0.0 0.3 0.6 0.9
[12] 3.3057 2.0787 1.4195 0.9228
[13] 3.3057 2.2262 1.7409 1.4682
[14] (𝑚 = 2) 4.1076 2.4136 1.7457 1.6007
[14] (𝑚 = 3) 4.2657 2.4700 1.8185 1.6817
Theorem 6 (𝑚 = 2) 4.1076 2.4660 1.8787 1.7190
Theorem 6 (𝑚 = 3) 4.2664 2.5164 1.9147 1.7923

Example 1. Consider the robust absolute stability of the
uncertain system (5) with the following parameters:

𝐴 = [

−2 0

0 −0.9

] , 𝐵 = [

−1 0

−1 −1

] , 𝐷 = [

−0.2

−0.3

]

𝑀 = [0.3 0.1] , 𝑁 = [0.1 0.2] , 𝐾
1
= 0.2

𝐾
2
= 0.5, 𝐿 = [

0.1 0

0 0.1

] , 𝐸
𝑎
= 𝐸
𝑏
= [

1 0

0 1

] .

(27)

For different𝑚 and 𝜇, themaximumallowable time-delay
bounds (MATB) obtained by Theorem 6 and those methods
in [12–14] are listed in Table 1. It is clear that our results are
less conservative than those in [12–14]. Furthermore, it can
be concluded that the larger the 𝑚 is, the less conservative
results we obtain and the more computing time we consume.
As a compromise between less conservative results and CPU
computing time, taking𝑚 = 2 or𝑚 = 3 is a good choice.

5. Conclusions

In this paper, the problem of absolute stability of Lur’e
systems with a time-varying delay has been investigated. A
complete-decomposing Lyapunov-Krasovskii functional has
been proposed, in which all integral terms including delay are
decomposed. By introducing some free-weighting matrices
to consider the relationship between time-varying delay and
its varying interval, some improved conditions have been
derived. A numerical example has been given to demonstrate
the superiority over the existing ones.
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