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This paper investigates a new wing doubled fractional-order chaos and its control. Firstly, a new fractional-order chaos is proposed,
replacing linear term x in the second equation by its absolute value; a new improved system is got, which can make the wing
of the original system doubled. Then, circuit diagram is presented for the proposed fractional-order chaos. Furthermore, based
on fractional-order stability theory and T-S fuzzy model, a more practical stability condition for fuzzy control of the proposed
fractional-order chaos is given as s set of linear matrix inequality (LMI) and the strict mathematical norms of LMI are presented.
Finally, numerical simulations are given to verify the effectiveness of the proposed theoretical results.

1. Introduction

Fractional calculus has the same history as integer calculus,
which has appeared 300 years ago. Nevertheless, it has not
been widely used in actual project until recent decades [1–4].
Recently, people find that many actual systems can be well
described with the help of fractional calculus, especially for
memory and hereditary properties of various materials and
processes [5–7]. For example, it can be better described with
fractional calculus of power system [8],memristor system [9],
physical system [10], chemical system [11], and so on.

It has been widely verified that chaos is universal in
integer-order chaos. For the advantages of fractional-order
chaotic systems in secure communication and signal process-
ing [12–14], many new fractional-order chaotic systems have
been proposed and analyzed. For example, Chen et al. pro-
posed a new fractional-order chaotic system and the circuit
synchronization of the system was implemented which was
very important in theory and practice [15]. Jia et al. studied
the chaotic features of the fractional-order Lorenz system
and the circuit implementation was presented [16]. A new
fractional-order hyperchaotic system based on the Lorenz
systemwas presented and the fractional Hopf bifurcationwas
investigated in [17]. A new three-dimensional King Cobra
face shaped fractional-order chaotic systemwas designed and

the multiscale synchronization of two identical fractional-
order King Cobra chaotic systems was derived through
feedback control in [18]. In particular, since the potential
merits of fractional-order chaos in secure communication
and many other fields, fractional-order chaos control and
synchronization has become a hot topic.

Many studies indicated that integer-order chaos could be
well controlled. Recently, many scholars tried to investigate
the control methods for fractional-order chaotic systems.
Until now, some control strategies have been designed for
the control of fractional-order chaotic systems such as sliding
mode control [19], finite time control [20], and pinning
control [21], amongmany others. Fuzzy control is well known
as an effective control strategy, and it has attracted more
andmore scholar’s attention. Linear matrix inequality (LMI),
as a very important and classic tool, has been widely used
in the fuzzy control and synchronization of integer-order
chaos. For example, in [22], by employing LMI method, a
new fuzzy controller based onT-S fuzzymodel is designed for
chaos synchronization of two Rikitake generator systems. In
[23], a T-S fuzzy receding horizonH-infinity synchronization
(TSFRHHS) approach is proposed and a novel set of LMI
conditions are given. And the scheme is applied to synchro-
nize Lorenz meteorological chaos. In [24], a robust static
output feedback controller is derived in strict LMI terms
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for discrete-time T-S fuzzy systems. However, this control
method has been mostly used in integer-order systems up to
now. As we all know, the controllability and stability region
of fractional-order systems are different with integer-order
systems. Can LMI be applied to the fuzzy control of the wing
doubled fractional-order chaos? If so, what are the special
application conditions and strict mathematical norms?There
is almost no relevant literature. Research in this area should
be meaningful and challenging.

In light of the above analysis, there are three advantages
which make our research attractive. Firstly, a new wing dou-
bled fractional-order chaos is proposed and its experimental
circuit simulation is presented. Secondly, based on fractional-
order stability theory, a more practical stability condition
for fuzzy control of the proposed fractional-order chaos is
proposed and the strict mathematical norms of LMI are
presented. Finally, numerical simulations are given to verify
the effectiveness of the proposed theoretical results.

The paper is organized as follows. In Section 2, the
fractional-order calculus and stability theory are presented.
Section 3 introduces the system description and circuit
implementation. In Section 4, the fuzzy controller design and
numerical simulations are presented. Conclusions are drawn
in Section 5.

2. Preliminaries

2.1. Fractional-Order Calculus. There are two commonly
used definitions of fractional calculus operator: Riemann-
Liouville definition and Caputo definition, which are listed
here for clarity.

Definition 1. The Riemann-Liouville fractional integral is
described as

𝐽
𝑞

𝑡0𝑓 (𝑥) =
1

Γ (𝑞)
∫

𝑡

𝑡0
(𝑡 − 𝜏)

𝑞−1
𝑓 (𝜏) 𝑑𝜏, (1)

where 𝑞 ∈ 𝑅
+, 𝑓 : 𝑅 → 𝑅, 𝐽𝑞

𝑡0 denotes 𝑞 order
integral operator, Γ(⋅)means theGamma function, and Γ(𝑞) =
∫
∞

0 𝑡
𝑞−1

𝑒
−𝑡
𝑑𝑡.

Definition 2. The Riemann-Liouville fractional derivative is
given by

𝐷
𝑞

𝑡0𝑓 (𝑡) = 𝐷
𝑛

𝑡0𝐽
𝑛−𝑞

𝑡0 𝑓 (𝑡)

=

{{{

{{{

{

𝑑
𝑛

𝑑𝑡𝑛
[

1
Γ (𝑛 − 𝑞)

∫

𝑡

𝑡0
(𝑡 − 𝜏) 𝑓 (𝜏) 𝑑𝜏] , 𝑛 − 1 < 𝑞 < 𝑛,

𝑑
𝑛

𝑑𝑡𝑛
𝑓 (𝑡) , 𝑞 = 𝑛,

(2)

where 𝐷
𝑞

𝑡0 denotes 𝑞 order Riemann-Liouville derivative
operator.

Definition 3. The Caputo derivative can be written by

𝑐

0𝐷
𝑞

𝑡0𝑓 (𝑡) = 𝐽
𝑛−𝑞

𝑡0 𝐷
𝑛

𝑡0𝑓 (𝑡)

=

{{{{

{{{{

{

1
Γ (𝑛 − 𝑞)

∫

𝑡

𝑡0
(𝑡 − 𝜏)

𝑛−𝑞−1
𝑓
(𝑛)
(𝜏) 𝑑𝜏, 𝑛 − 1 < 𝑞 < 𝑛,

𝑑
𝑛

𝑑𝑡𝑛
𝑓 (𝑡) , 𝑞 = 𝑛,

(3)

where 𝑐0𝐷
𝑞

𝑡0 denotes 𝑞 orderCaputo derivative operator, which
can be simplified as𝐷𝑞.

The Caputo derivative has a popular application in engi-
neering and is adopted in this paper.

2.2. Stability in Fractional-Order Systems

Theorem 4 (see [25]). Consider the following linear frac-
tional-order system:

𝐷
𝑞
𝑥 = 𝐴𝑥, 𝑥 (0) = 𝑥0, (4)

where 𝐴 ∈ 𝑅
𝑛×𝑛, 𝑥 ∈ 𝑅

𝑛, and 𝑞 = [𝑞1, 𝑞2, . . . , 𝑞𝑖, . . . , 𝑞𝑛] (0 <
𝑞𝑖 ≤ 1). System (4) is asymptotically stable if and only if
|arg(𝜆𝑖)| > 𝑞𝜋/2 is satisfied for all eigenvalues 𝜆𝑖 of matrix 𝐴.
Besides, this system is stable if and only if |arg(𝜆𝑖)| ≥ 𝑞𝜋/2 is
satisfied for all eigenvalues 𝜆𝑖 of matrix 𝐴 and those critical
eigenvalues, which satisfy condition |arg(𝜆𝑖)| = 𝑞𝜋/2, have
geometric multiplicity one.

3. New Wing Doubled System and
Circuit Simulation

3.1. SystemModel. Anew three-dimensional fractional-order
chaos is written as

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=
28
11
𝑥−𝑦𝑧,

𝑑
𝑞
𝑦

𝑑𝑡𝑞
= − 10𝑦+𝑥𝑧+ 𝑘𝑥,

𝑑
𝑞
𝑧

𝑑𝑡𝑞
= − 4𝑧 + 𝑥𝑦,

(5)

where 𝑥, 𝑦, and 𝑧 are the state variables, 𝑘 is a real number,
here, 𝑘 = 0.2, and 𝑞 is the fractional-order. In order to study
the chaotic characteristics of system (5), firstly, it is easy to get
the Jacobian matrix:

𝜆1 = − 10.0000,

𝜆2 = 2.5455,

𝜆3 = − 4.0000

𝐽0 =
[
[
[

[

28
11

−𝑧 −𝑦

𝑧 + 0.2 −10 𝑥

𝑦 𝑥 −4

]
]
]

]

.

(6)
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Table 1

Equilibrium points Their corresponding eigenvalues
𝐸1(0, 0, 0) 𝜆1 = −10.0000, 𝜆2 = 2.5455, 𝜆3 = −4.0000
𝐸2(−6.4512, 3.1909, −5.1462) 𝜆1 = 1.1552 + 5.3713𝑖, 𝜆2 = 1.1552 − 5.3713𝑖, 𝜆3 = −13.7650
𝐸3(−6.2004, −3.1909, −4.9462) 𝜆1 = −11.4914, 𝜆2 = 0.0368, 𝜆3 = 0
𝐸4(6.2004, 3.1909, 4.9462) 𝜆

1
= 1.0344 + 5.3349𝑖, 𝜆2 = 1.0344 − 5.3349𝑖, 𝜆3 = −13.5233

𝐸5(6.4512, −3.1909, −5.1462) 𝜆1 = 1.1552 + 5.3713𝑖, 𝜆2 = 1.1552 − 5.3713𝑖, 𝜆3 = −13.7650

Besides, the dynamic characteristics of the system are
related to the eigenvalues. Eigenvalues are determined by the
Jacobian matrix at equilibrium points. System (5) has five
equilibrium points; the corresponding eigenvalues are given
as in Table 1.

According toTheorem 4, nonstable region is determined
by the following conditions:

𝑞
𝜋

2
≥ min
𝑖

{arg 𝜆𝑖
} = max

𝑖

{arctan
Im (𝜆𝑖)


Re (𝜆𝑖)



}

= arctan 5.3349
1.0344

= 1.3793

→ 𝑞 > 0.8781.

(7)

Therefore, the necessary conditions for generating chaos
of system (5) is 𝑞 > 0.8781, and this paper takes 𝑞 = 0.9. The
phase trajectories of system (5) are shown in Figure 1 with the
initial value (𝑥(0), 𝑦(0), 𝑧(0)) = (20, 0.6, 0.8). We can clearly
see that the system has two-wing chaotic attractor.

Now we replace the linear term 𝑥 in the second equation
of system (5) by its absolute value |𝑥|; a new improved system
can be got:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=
28
11
𝑥−𝑦𝑧,

𝑑
𝑞
𝑦

𝑑𝑡𝑞
= − 10𝑦+𝑥𝑧+ 𝑘 |𝑥| ,

𝑑
𝑞
𝑧

𝑑𝑡𝑞
= − 4𝑧 + 𝑥𝑦. (8)

Note that system (8) has certain symmetry. Removing the
absolute value of the second equation, each equation contains
the corresponding linear term and the cross product term
of the other two state variables. Figure 2 shows the phase
trajectories of system (8) when 𝑘 = 0.2; in this case, we can
see that system (8) has four-wing structure and four chaotic
attractors, which realize the wing doubled system (5).

3.2. Circuit Simulation. Fractional circuit is generally
expressed as follows:

𝐹 (𝑠) =
𝑅1

𝑠𝑅1𝐶1 + 1
+

𝑅2
𝑠𝑅2𝐶2 + 1

+ ⋅ ⋅ ⋅
𝑅𝑛

𝑠𝑅𝑛𝐶𝑛 + 1
, (9)

where 𝑛 is the unit number of basic integration circuit.

According to the literature [26], when the fractional-
order is 0.9, (9) can be written as

𝐹 (𝑠) =
𝑅1

𝑠𝑅1𝐶1 + 1
+

𝑅2
𝑠𝑅2𝐶2 + 1

+
𝑅3

𝑠𝑅3𝐶3 + 1
, (10)

where 𝑅1 = 62.84MΩ, 𝑅2 = 250 kΩ, 𝑅3 = 2.5 kΩ, 𝐶1 =

1.232 𝜇F, 𝐶2 = 1.835 𝜇F, and 𝐶3 = 1.1 𝜇F. The unit circuit of
(10) is shown in Figure 3.

System (5) is rewritten as the following corresponding
circuit equation:

𝑑
0.9
𝑥

𝑑𝑡0.9
=

𝑅3
𝑅2𝑅4𝐶0

𝑥−
𝑅3

𝑅1𝑅4𝐶0
𝑦𝑧

𝑑
0.9
𝑦

𝑑𝑡0.9
= −

𝑅7
𝑅8

𝑅5
𝑅15𝑅6𝐶0

𝑦+
𝑅5

𝑅14𝑅6𝐶0
𝑥𝑧+

𝑅5
𝑅14𝑅6𝐶0

𝑥

𝑑
0.9
𝑧

𝑑𝑡0.9
= −

𝑅11
𝑅18

𝑅9
𝑅17𝑅10𝐶0

𝑧 +
𝑅9

𝑅16𝑅10𝐶0
𝑥𝑦.

(11)

The designed overall circuit diagram is shown in Figure 4.
Each channel of the circuit is formed by resistors, capaci-
tors, operational amplifiers, and multiplier. There are three
channels, representing the three states of system (5). The
circuit parameters of system (5) are designed as follows: 𝑅1 =
700 kΩ, 𝑅2 = 275 kΩ, 𝑅3 = 14 kΩ, 𝑅4 = 𝑅6 = 20 kΩ, 𝑅5 =
7 kΩ, 𝑅10 = 25 kΩ, 𝑅7 = 𝑅8 = 𝑅11 = 𝑅17 = 𝑅18 = 10 kΩ,
𝑅13 = 700 kΩ, 𝑅14 = 350 kΩ, 𝑅15 = 35 kΩ, and 𝑅16 = 40 kΩ;
𝐶0 is the unit circuit of Figure 3.

Figure 5 shows the simulation results of the fractional-
order system (5); we can see that the circuit simulation results
in Figures 5(a)–5(c) are in line with the phase diagram in
Figures 1(a)–1(c). It indicates that the proposed fractional-
order system (5) can be realized by circuit simulation, and
the circuit diagram is valid and practical.

Similarly, the designed circuit diagram of system (8) is
shown in Figure 6, and the corresponding simulation results
are presented in Figure 7. We can also see that the circuit
simulation results in Figures 7(a)–7(c) are in line with the
phase diagram in Figures 2(a)–2(c). It indicates that the
wing doubled system (8) can be easily achieved by circuit
simulation. Therefore, the circuit diagram of system (8) is
valid and practical.

4. Controller Design and
Numerical Simulations

4.1. T-S Fuzzy Model. The fractional-order T-S fuzzy model
is given in the following form:
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Figure 1: Phase trajectories of fractional-order chaotic system (5).

Rule 𝑅𝑖 is as follows: IF 𝑧1(𝑡) is𝑀𝑖1 and ⋅ ⋅ ⋅ and 𝑧𝑛(𝑡)
is𝑀𝑖𝑛

THEN 𝑑
𝑞
𝑥

𝑑𝑡𝑞
= 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) (𝑖 = 1, 2, . . . , 𝑟) , (12)

where𝑀𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑟) is the fuzzy set and 𝑟 is the number
of IF-THEN rules, 𝑥(𝑡) ∈ 𝑅

𝑛 is the state vector, 𝐴 𝑖 ∈ 𝑅
𝑛×𝑛,

𝑧(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑛(𝑡)] are the premise variables, and 𝑞
is the fractional-order; 𝑢(𝑡) is control input.

By adopting single point fuzzification, product inference,
and weighted average defuzzification, the final output of the
fractional-order T-S fuzzy model is inferred as follows:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) 𝐴 𝑖𝑥 (𝑡) +

𝑟

∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖𝑢 (𝑡) , (13)

where

ℎ𝑖 (𝑧 (𝑡)) =
∏
𝑛

𝑗=1𝑀𝑖𝑗 (𝑧𝑗 (𝑡))

∑
𝑟

𝑖=1∏
𝑛

𝑗=1𝑀𝑖𝑗 (𝑧𝑗 (𝑡))
≥ 0,

𝑟

∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) = 1

(14)

with𝑀𝑖𝑗(𝑧𝑗(𝑡)) being the grade ofmembership of 𝑧𝑗(𝑡) in𝑀𝑖𝑗.
ℎ𝑖(𝑧(𝑡)) can be regarded as the normalized weights of the IF-
THEN rules.

4.2. T-S Fuzzy Controller Design Based on LMI

Rule 𝑅𝑖 is as follows: IF 𝑧1(𝑡) is𝑀𝑖1 and ⋅ ⋅ ⋅ and 𝑧𝑛(𝑡)
is𝑀𝑖𝑛

THEN 𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡) (𝑖 = 1, 2, . . . , 𝑟) . (15)

The inferred output of the PDC controller is expressed in
the following form:

𝑢 (𝑡) =

𝑟

∑

𝑗=1
ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) , (16)

where𝐾𝑗 represents the feedback gain.
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Figure 2: Phase trajectories of wing doubled fractional-order chaotic system (8).

62.84MΩ 250kΩ 2.5 kΩ

R1 R2 R3

C1 C2 C3

1.232𝜇F 1.835𝜇F 1.1 𝜇F

Figure 3: The unit circuit of 1/𝑠0.9.

By substituting (16) into (13), one has

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) 𝐴 𝑖𝑥 (𝑡)

+

𝑟

∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖

𝑟

∑

𝑗=1
ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) .

(17)

In order to simplify (17), it is modified as follows:

𝑟

∑

𝑖=1
ℎ𝑖𝐴 𝑖 = ℎ1𝐴1 + ℎ2𝐴2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐴𝑟. (18)

Considering ∑𝑟
𝑖=1 ℎ𝑖(𝑧(𝑡)) = 1 in (17), (18) can be written

as
𝑟

∑

𝑖=1
ℎ𝑖𝐴 𝑖 = ℎ1 (ℎ1 + ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟) 𝐴1 + ⋅ ⋅ ⋅

+ ℎ𝑟 (ℎ1 + ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟) 𝐴𝑟

= (ℎ1
2
+ ℎ1ℎ2 + ⋅ ⋅ ⋅ + ℎ1ℎ𝑟)𝐴1 + ⋅ ⋅ ⋅

+ (ℎ𝑟ℎ1 + ℎ𝑟ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟
2
)𝐴𝑟

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1
ℎ𝑖ℎ𝑗𝐴 𝑖.

(19)

For formula (17), ∑𝑟
𝑖=1 ℎ𝑖𝐵𝑖∑

𝑟

𝑗=1 ℎ𝑗𝐾𝑗 can be written as

𝑟

∑

𝑖=1
ℎ𝑖𝐵𝑖

𝑟

∑

𝑗=1
ℎ𝑗𝐾𝑗 = (ℎ1𝐵1 + ℎ2𝐵2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐵𝑟)

⋅ (ℎ1𝐾1 + ℎ2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟)

= ℎ1𝐵1 (ℎ1𝐾1 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) + ⋅ ⋅ ⋅

+ ℎ𝑟𝐵𝑟 (ℎ1𝐾1 + ℎ2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) = ℎ1
2
𝐵1𝐾1
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Figure 4: Circuit diagram to realize the new fractional-order chaotic system (5).

+ ℎ2
2
𝐵2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑖

2
𝐵𝑖𝐾𝑖 + ⋅ ⋅ ⋅ + ℎ𝑟

2
𝐵𝑟𝐾𝑟

+ ℎ1 (ℎ2𝐾2 + ℎ3𝐾3 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵1

+ ℎ2 (ℎ3𝐾3 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵2 + ⋅ ⋅ ⋅

+ ℎ𝑖 (ℎ𝑖+1𝐾𝑖+1 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵𝑖 + ⋅ ⋅ ⋅

+ ℎ𝑟−1ℎ𝑟𝐾𝑟𝐵𝑟−1 + ℎ2ℎ1𝐾1𝐵2 + ℎ3 (ℎ2𝐾2 + ℎ1𝐾1)

⋅ 𝐵3 + ⋅ ⋅ ⋅ + ℎ𝑗 (ℎ𝑗−1𝐾𝑗−1 + ℎ𝑗−2𝐾𝑗−2 + ⋅ ⋅ ⋅ + ℎ1𝐾1)

⋅ 𝐵𝑗 + ⋅ ⋅ ⋅ + ℎ𝑟 (ℎ𝑟−1𝐾𝑟−1 + ℎ𝑟−2𝐾𝑟−2 + ⋅ ⋅ ⋅ + ℎ1𝐾1)

⋅ 𝐵𝑟 =

𝑟

∑

𝑖=1
ℎ𝑖

2
𝐵𝑖𝐾𝑗 +

𝑟

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝐾𝑗𝐵𝑖 +

𝑟

∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝐾𝑗𝐵𝑖

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1
ℎ𝑖ℎ𝑗𝐵𝑖𝐾𝑗.

(20)

Submitting (19) and (20) into (17), one gets

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1
ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐴 𝑖 +𝐵𝑖𝐾𝑗) 𝑥 (𝑡) . (21)

Before utilizing the T-S fuzzy model into fractional-order
systems (5) and (8), make the following assumptions.

Assumption 5. According to the boundedness of the system,
the scope of the system state can be defined as

Ω ≡ {𝑥 (𝑡) ∈ 𝑅 | ‖𝑥 (𝑡)‖
𝑛
≤ 𝛿} ,

𝑥𝑖 (𝑡) ∈ [−𝑑𝑖, 𝑑𝑖] , 𝑑𝑖 > 0 (𝑖 = 1, 2) .
(22)
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(a) 𝑥-𝑦 (b) 𝑥-𝑧

(c) 𝑦-𝑧

Figure 5: Circuit simulation results of the new fractional-order chaotic system (5).

Assumption 6. The feedback control can be applied to every
state of the system. The PDC approach together with the T-
S fuzzy model can be adopted to control systems (5) and
(8).

Based on the above assumptions, we can use T-S fuzzy
model to describe system (5). Suppose that 𝑥1(𝑡) ∈ [−𝑑1, 𝑑1],
𝑥2(𝑡) ∈ [−𝑑2, 𝑑2], where 𝑑1 = 15 and 𝑑2 = 10.

Thus, the T-S fuzzy model can be presented as follows:

𝑅
1: IF 𝑥1(𝑡) is𝑀1(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑥/𝑑𝑡
𝑞
= 𝐴1𝑥(𝑡) +

𝐵1𝑢(𝑡),

𝑅
2: IF 𝑥1(𝑡) is𝑀2(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑥/𝑑𝑡
𝑞
= 𝐴2𝑥(𝑡) +

𝐵2𝑢(𝑡),

𝑅
3: IF 𝑥2(𝑡) is𝑀3(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑥/𝑑𝑡
𝑞
= 𝐴3𝑥(𝑡) +

𝐵3𝑢(𝑡),

𝑅
4: IF 𝑥2(𝑡) is𝑀4(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑥/𝑑𝑡
𝑞
= 𝐴4𝑥(𝑡) +

𝐵4𝑢(𝑡),

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)]
𝑇, 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡),

𝑢3(𝑡)]
𝑇,

𝐴1 =
[
[
[
[

[

28
11

0 0

0.2 −10 15
0 15 −4

]
]
]
]

]

,

𝐴2 =
[
[
[
[

[

28
11

0 0

0.2 −10 −15
0 −15 −4

]
]
]
]

]

,

𝐴3 =
[
[
[

[

28
11

0 −10

0.2 −10 0
10 0 −4

]
]
]

]

,

𝐴4 =
[
[
[

[

28
11

0 10

0.2 −10 0
−10 0 −4

]
]
]

]

,

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐼3×3 (𝐼 is a unit matrix) .

(23)
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Figure 6: Circuit diagram to realize the new wing doubled fractional-order chaotic system (8).

The membership functions of fuzzy sets are taken as
follows:

𝑀1 (𝑥1 (𝑡)) =
1
2
(1+ 𝑥1 (𝑡)

𝑑1
) ,

𝑀2 (𝑥1 (𝑡)) =
1
2
(1− 𝑥1 (𝑡)

𝑑1
) ,

𝑀3 (𝑥2 (𝑡)) =
1
2
(1+ 𝑥2 (𝑡)

𝑑2
) ,

𝑀4 (𝑥2 (𝑡)) =
1
2
(1− 𝑥2 (𝑡)

𝑑2
) .

(24)

Thus, the fractional-order system (5) based on T-S fuzzy
model can be expressed as

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

4
∑

𝑖=1
ℎ𝑖 (𝑧 (𝑡)) (𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡)) . (25)

According to the PDC method, the controller is given as
follows:

𝑅
1: IF 𝑥1(𝑡) is𝑀1(𝑥1(𝑡)), THEN 𝑢(𝑡) = 𝐾1𝑥(𝑡),

𝑅
2: IF 𝑥1(𝑡) is𝑀2(𝑥1(𝑡)), THEN 𝑢(𝑡) = 𝐾2𝑥(𝑡),

𝑅
3: IF 𝑥2(𝑡) is𝑀3(𝑥2(𝑡)), THEN 𝑢(𝑡) = 𝐾3𝑥(𝑡),

𝑅
4: IF 𝑥2(𝑡) is𝑀4(𝑥2(𝑡)), THEN 𝑢(𝑡) = 𝐾4𝑥(𝑡).
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(a) 𝑥-𝑦 (b) 𝑥-𝑧

(c) 𝑦-𝑧

Figure 7: Circuit simulation results of the new wing doubled fractional-order chaotic system (8).

The overall controller is obtained as

𝑢 (𝑡) =

4
∑

𝑗=1
ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) . (26)

Submitting (26) into (25), one can get the fractional-order
system:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

4
∑

𝑖=1

4
∑

𝑗=1
ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐴 𝑖 +𝐵𝑖𝐾𝑗) 𝑥 (𝑡) . (27)

Similarly, for wing doubled system (8), 𝑑1 = 30 and 𝑑2 =
20. One has

𝐴1 =
[
[
[
[

[

28
11

0 0

0 −10 30
0 30 −4

]
]
]
]

]

,

𝐴2 =
[
[
[
[

[

28
11

0 0

0 −10 −30
0 −30 −4

]
]
]
]

]

,

𝐴3 =
[
[
[
[

[

28
11

0 −20

0 −10 0
20 0 −4

]
]
]
]

]

,

𝐴4 =
[
[
[
[

[

28
11

0 20

0 −10 0
−20 0 −4

]
]
]
]

]

.

(28)

To stabilize the fractional-order system (27), the follow-
ing lemma and theorem are given.

Lemma 7 (see [27]). For the arbitrary state variable 𝑥 =

[𝑥1, 𝑥2, . . . , 𝑥𝑛]
𝑇, if there exists a symmetric positive defi-

nite real matrix 𝑃 satisfying 𝐽 = 𝑥
𝑇
𝑃(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
) ≤ 0

(𝑥𝑇𝑃(𝑑𝑞𝑥/𝑑𝑡𝑞) is called 𝐽 function), then the fractional-
order system (27) is globally asymptotically stable. Condition
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Figure 8: State trajectories of system (5) without controller.

𝐽 = 𝑥
𝑇
𝑃(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
) ≤ 0 can be equally written as 𝐽0 =

𝑥
𝑇
𝑃(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
) + (𝑑

𝑞
𝑥/𝑑𝑡
𝑞
)
𝑇
𝑃𝑥 ≤ 0.

Theorem 8. If there exist positive definite matrices 𝑃, 𝐸, and
𝐹 as well as a positive constant 𝜂, suppose that 𝜆𝑖 (𝑖 =

1, 2, 3, 4) and 𝜉𝑖 (𝑖 = 1, 2, 3, 4) are the eigenvalues of matrices
𝑃𝐸𝐸
𝑇
𝑃 and 𝐹

𝑇
𝐹, respectively. If 𝜆𝑖 (𝑖 = 1, 2, 3, 4) > 0,

𝜉𝑖 (𝑖 = 1, 2, 3, 4) > 0, and we select the controller gain matrix
𝐾𝑖 (𝑖 = 1, 2, 3, 4) which satisfies the following inequalities, the
fractional-order system (27) is globally asymptotically stable:

𝐺𝑖𝑖
𝑇
𝑃+𝑃𝐺𝑖𝑖 + 𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹 < 0

(𝑖, 𝑗 = 1, 2, 3, 4) ,
(29)

𝐺𝑖𝑗
𝑇
𝑃+𝑃𝐺𝑖𝑗 + 𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹 < 0 (𝑖 < 𝑗 < 4) , (30)

where𝐺𝑖𝑖 = 𝐴 𝑖+𝐵𝑖𝐾𝑖 and𝐺𝑖𝑗 = ((𝐴 𝑖+𝐵𝑖𝐾𝑗)+(𝐴𝑗+𝐵𝑗𝐾𝑖))/2.

Proof. ByLemma 7, select 𝐽0 = 𝑥
𝑇
𝑃(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
)+(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
)
𝑇
𝑃𝑥

as 𝐽 function of system (27):

𝐽0 = 𝑥
𝑇
𝑃
𝑑
𝑞
𝑥

𝑑𝑡𝑞
+(

𝑑
𝑞
𝑥

𝑑𝑡𝑞
)

𝑇

𝑃𝑥

= 𝑥
𝑇
𝑃

4
∑

𝑖=1

4
∑

𝑗=1
ℎ𝑖ℎ𝑗 (𝐴 𝑖 +𝐵𝑖𝐾𝑗) 𝑥

+

4
∑

𝑖=1

4
∑

𝑗=1
ℎ𝑖ℎ𝑗 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃𝑥

=

4
∑

𝑖=1

4
∑

𝑗=1
ℎ𝑖ℎ𝑗𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)] 𝑥

=

4
∑

𝑖=1
ℎ
2
𝑖
𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑖)

𝑇
𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑖)] 𝑥

+

4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)] 𝑥

+

4
∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)] 𝑥.

(31)
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Figure 9: State trajectories of closed-loop system (5) with controller (26).

According to ∑4
𝑖=1 ℎ𝑖

2
+ 2∑4
𝑖<𝑗
ℎ𝑖ℎ𝑗 = 1 in (14), so there is

4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)] 𝑥

+

4
∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
[(𝐴 𝑖 +𝐵𝑖𝐾𝑗)

𝑇

𝑃+𝑃 (𝐴 𝑖 +𝐵𝑖𝐾𝑗)] 𝑥

=

4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
{[(𝐴 𝑖 + 𝐵𝑖𝐾𝑗) + (𝐴𝑗 + 𝐵𝑗𝐾𝑖)]

𝑇

𝑃

+𝑃 [(𝐴 𝑖 + 𝐵𝑖𝐾𝑗) + (𝐴𝑗 + 𝐵𝑗𝐾𝑖)]} 𝑥

= 2
4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
{

{

{

[
(𝐴 𝑖 + 𝐵𝑖𝐾𝑗) + (𝐴𝑗 + 𝐵𝑗𝐾𝑖)

2
]

𝑇

𝑃

+𝑃[
(𝐴 𝑖 + 𝐵𝑖𝐾𝑗) + (𝐴𝑗 + 𝐵𝑗𝐾𝑖)

2
]
}

}

}

𝑥.

(32)

Selecting 𝐺𝑖𝑖 = 𝐴 𝑖 + 𝐵𝑖𝐾𝑖, 𝐺𝑖𝑗 = ((𝐴 𝑖 + 𝐵𝑖𝐾𝑗) + (𝐴𝑗 +

𝐵𝑗𝐾𝑖))/2 and under conditions (29) and (30), one gets

𝐽0 =
4
∑

𝑖=1
ℎ
2
𝑖
𝑥
𝑇
(𝐺𝑖𝑖
𝑇
𝑃+𝑃𝐺𝑖𝑖) 𝑥

+ 2
4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
(𝐺𝑖𝑗
𝑇
𝑃+𝑃𝐺𝑖𝑗) < 𝑥

−
{

{

{

4
∑

𝑖=1
ℎ𝑖

2
𝑥
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹) 𝑥

+ 2
4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹) 𝑥

}

}

}

.

(33)

According to Theorem 4, the eigenvalues of the matrices
𝑃𝐸𝐸
𝑇
𝑃 and 𝐹

𝑇
𝐹 are 𝜆𝑖 (𝑖 = 1, 2, 3, 4) > 0 and 𝜉𝑖 (𝑖 =

1, 2, 3, 4) > 0, respectively, so the matrices 𝑃𝐸𝐸𝑇𝑃 and 𝐹𝑇𝐹
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Figure 10: State trajectories of system (8) without controller.

both are positive definite matrix; that is, 𝑃𝐸𝐸𝑇𝑃 + 𝐹
𝑇
𝐹 > 0;

since 𝜂 > 0, one gets

𝜂𝑃𝐸𝐸
𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹 > 0. (34)

Considering (34) for (33), one can get

𝐽0 < −
{

{

{

4
∑

𝑖=1
ℎ𝑖

2
𝑥
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹) 𝑥

+ 2
4
∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹) 𝑥

}

}

}

< 0.

(35)

Therefore, when inequalities (29) and (30) hold, one has

𝐽0 = 𝑥
𝑇
𝑃
𝑑
𝑞
𝑥

𝑑𝑡𝑞
+(

𝑑
𝑞
𝑥

𝑑𝑡𝑞
)

𝑇

𝑃𝑥 ≤ 0. (36)

This shows that the fractional system (27) is globally
asymptotically stable. This completes the proof.

According to Schur complement theorem, inequalities
(29) and (30) can be transformed into the problem of solving
linear matrix inequalities (LMIs).

From (29), we can obtain

𝐴
𝑇

𝑖
𝑃+𝐾𝑖

𝑇
𝐵𝑖𝑃+𝑃𝐴 𝑖 +𝑃𝐵𝑖𝐾𝑖 + 𝜂𝑃𝐸𝐸

𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹

< 0.
(37)

Multiplying 𝑃−1 both in the left and in the right in (37),
one gets

𝑃
−1
𝐴
𝑇

𝑖
+𝑃
−1
𝐾
𝑇

𝑖
𝐵𝑖 +𝐴 𝑖𝑃

−1
+𝐵𝑖𝐾𝑖𝑃

−1
+ 𝜂𝐸𝐸

𝑇

+ 𝜂
−1
𝑃
−1
𝐹
𝑇
𝐹𝑃
−1
< 0.

(38)

In (38), selecting𝑄 = 𝑃
−1 and𝑀𝑖 = 𝐾𝑖𝑃

−1, we can obtain

𝑄𝐴
𝑇

𝑖
+𝐴 𝑖𝑄+𝑀

𝑇

𝑖
𝐵
𝑇

𝑖
+𝐵𝑖𝑀𝑖 + 𝜂𝐸𝐸

𝑇
+ 𝜂
−1
𝑄𝐹
𝑇
𝐹𝑄

< 0.
(39)

The controller gain is 𝐾𝑖 = 𝑀𝑖𝑄
−1.
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Figure 11: State trajectories of closed-loop system (8) with controller (26).

From (30), we can obtain

1
2
(𝐴
𝑇

𝑖
𝑃+𝐾

𝑇

𝑗
𝐵
𝑇

𝑖
𝑃+𝐴

𝑇

𝑗
𝑃+𝐾

𝑇

𝑖
𝐵
𝑇

𝑗
𝑃+𝑃𝐴 𝑖 +𝑃𝐵𝑖𝐾𝑗

+𝑃𝐴𝑗 +𝑃𝐵𝑗𝐾𝑖) + 𝜂𝑃𝐸𝐸
𝑇
𝑃+ 𝜂
−1
𝐹
𝑇
𝐹 < 0.

(40)

Multiplying 𝑃−1 both in the left and in the right in (40),
we obtain

1
2
(𝑃
−1
𝐴
𝑇

𝑖
+𝑃
−1
𝐾
𝑇

𝑗
𝐵
𝑇

𝑖
+𝑃
−1
𝐴
𝑇

𝑗
+𝑃
−1
𝐾
𝑇

𝑖
𝐵
𝑇

𝑗
+𝐴 𝑖𝑃

−1

+𝐵𝑖𝐾𝑗𝑃
−1
+𝐴𝑗𝑃

−1
+𝐵𝑗𝐾𝑖𝑃

−1
) + 𝜂𝐸𝐸

𝑇

+ 𝜂
−1
𝑃
−1
𝐹
𝑇
𝐹𝑃
−1
< 0.

(41)

In (41), selecting 𝑄 = 𝑃
−1,𝑀𝑖 = 𝐾𝑖𝑃

−1, and𝑀𝑗 = 𝐾𝑗𝑃
−1,

we can obtain

1
2
(𝑄𝐴
𝑇

𝑖
+𝐴 𝑖𝑄+𝑀

𝑇

𝑖
𝐵
𝑇

𝑗
+𝐵𝑗𝑀𝑖 +𝑄𝐴

𝑇

𝑗
+𝐴𝑗𝑄

+𝑀
𝑇

𝑗
𝐵
𝑇

𝑖
+𝐵𝑖𝑀𝑗) + 𝜂𝐸𝐸

𝑇
+ 𝜂
−1
𝑄𝐹
𝑇
𝐹𝑄 < 0.

(42)

The controller gain is 𝐾𝑖 = 𝑀𝑖𝑄
−1.

By Schur complement theorem, (39) can be written as

[
𝑄𝐴
𝑇

𝑖
+𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐴 𝑖𝑄 + 𝐵𝑖𝑀𝑖 + 𝜂𝐸𝐸

𝑇
𝑄𝐹
𝑇

𝐹𝑄 −𝜂
−1
𝐼
] < 0. (43)

Similarly, (42) can be written as

[

[

1
2
(𝑄𝐴
𝑇

𝑖
+ 𝐴
𝑇

𝑖
𝑄 +𝑀

𝑇

𝑖
𝐵
𝑇

𝑗
+ 𝐵𝑗𝑀𝑖 + 𝑄𝐴

𝑇

𝑗
+ 𝐴
𝑇

𝑗
𝑄 +𝑀

𝑇

𝑗
𝐵
𝑇

𝑖
+ 𝐵𝑖𝑀𝑗) + 𝜂𝐸𝐸

𝑇
𝑄𝐹
𝑇

𝐹𝑄 −𝜂
−1
𝐼

]

]

< 0

𝑄 > 0.

(44)
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For a given positive number 𝜂 > 0, we can use Matlab
LMI toolbox to solve the linear matrix inequalities (43) and
(44) to obtain the positive definitematrix𝑃 and the controller
gain 𝐾𝑖 (𝑖 = 1, 2, 3, 4).

4.3. Simulation Results. For fractional-order system (5), take
𝑑1 = 15, 𝑑2 = 10, and 𝜂 = 10000. According to Theorem 4,
select positive definite matrices:

𝐸

= [1 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0] ;

𝐹

= [1 0 0; 0 1 0; 0 0 1; 1 0 0; 0 1 0; 0 0 1; 1 0 0; 0 1 0; 0 0 1] .

(45)

Through Matlab 7.0 LMI toolbox, the positive definite
matrix 𝑃 and the feedback controller gain 𝐾𝑖 (𝑖 = 1, 2, 3, 4)
can be obtained:

𝑃 = diag (0.00066, 0.00066, 0.00066) ,

𝐾1 =
[
[

[

−9.2609 −0.0583 0.1021
−0.1417 3.2846 −22.0523
−0.1021 −7.9477 −2.7154

]
]

]

,

𝐾2 =
[
[

[

−9.2609 −0.1217 0.0497
−0.0783 3.2846 11.4239
−0.0497 18.5761 −2.7154

]
]

]

,

𝐾3 =
[
[

[

−9.2609 −0.1278 −0.2628
−0.0722 3.2846 −0.0017
0.2628 0.0017 −2.7154

]
]

]

,

𝐾4 =
[
[

[

−9.2609 −0.1234 −0.1296
−0.0766 3.2846 −0.0068
0.1296 0.0068 −2.7154

]
]

]

.

(46)

Substituting the value of 𝐾𝑖 (𝑖 = 1, 2, 3, 4) into (26), the
desired feedback controller 𝑢(𝑡) can be got. Figure 8 shows
the state trajectories of system (5) without controller; the
system states are unstable. Figure 9 illustrates the state trajec-
tories of closed-loop system (5) with controller (26), and the
states of system (5) globally converge to the equilibrium point
which implies the effectiveness of the designed controller.

Similarly, for wing doubled system (8), select 𝑑1 = 30,
𝑑2 = 20, and 𝜂 = 10000. According to Theorem 4, take
positive definite matrices:

𝐸

= [1 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0] ;

𝐹

= [1 0 0; 0 1 0; 0 0 1; 1 0 0; 0 1 0; 0 0 1; 1 0 0; 0 1 0; 0 0 1] .

(47)

ThroughMatlab LMI toolbox, the positive definitematrix
𝑃 and the feedback controller gain 𝐾𝑖 (𝑖 = 1, 2, 3, 4) can be
obtained:

𝑃 = diag (0.00066, 0.00066, 0.00066)

𝐾1 =
[
[

[

−9.2609 0.0056 0.0005
−0.0056 3.2846 −30.4410
−0.0005 −29.5590 −2.7154

]
]

]

,

𝐾2 =
[
[

[

−9.2609 −0.0091 0.0002
0.0091 3.2846 30.1005
−0.0002 29.8995 −2.7154

]
]

]

,

𝐾3 =
[
[

[

−9.2609 −0.0000 −0.7819
0.0000 3.2846 −0.0000
0.7819 0.0000 −2.7154

]
]

]

,

𝐾4 =
[
[

[

−9.2609 −0.0000 0.0255
0.0000 3.2846 −0.0000
−0.0255 0.0000 −2.7154

]
]

]

.

(48)

Substituting the value of 𝐾𝑖 (𝑖 = 1, 2, 3, 4) into (26), the
controller can be got. Figure 10 shows the state trajectories of
system (8) without controller; the system states are unstable.
Figure 11 illustrates the state trajectories of system (8) with
controller (26). We can see that the controller can be applied
to the more complicated wing doubled chaotic system (8)
with short time and small overshoot, which shows the speed
ability and robustness of the control method.

5. Conclusions

A new three-dimensional fractional-order chaos was pro-
posed in this paper. When the linear term 𝑥 in the second
equation of the system was replaced by its absolute value,
the new system can make the wing of the original system
doubled, and the circuit diagram was implemented. Based
on the T-S fuzzy model and fractional-order stability theory,
a more practical stability condition for fuzzy control of the
proposed wing doubled fractional-order chaos was given as
a set of LMI and the strict mathematical derivation was
presented. Numerical simulation results were consistent with
theoretical results.

More and better methods for the control of fractional-
order chaotic systems should be studied. The authors will
continue the study of application condition of integer-order
chaotic theory into fractional-order chaotic systems. There
will be focus on the stability of fractional-order chaotic
systems.
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