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It has been realized that synchronization using linear feedback control method is efficient compared to nonlinear feedback control
method due to the less computational complexity and the synchronization error. For the problem of feedback synchronization of
Duffing chaotic system, in the paper, we firstly established three-dimensional Duffing system bymethod of variable decomposition
and, then, studied the synchronization of Duffing chaotic system and designed the control law based on linear feedback control and
Lyapunov stability theory. It is proved theoretically that the two identical integer order chaotic systems are synchronized analytically
and numerically.

1. Introduction

In recent years, the chaotic control has become one of the
important research fields of nonlinear science and received
the attention ofmany scholars around theworld.Thepossibil-
ity of synchronizing two chaotic systems has been introduced
by Pecora and Carroll [1] and the synchronization of two
identical chaotic systems with different initial conditions has
been presented in [2]. Moreover, synchronization of two
chaotic systems has been studied extensively in the last few
years. Most recently, the problem of controlling chaos for
new dynamical system has been studied and the sufficient
conditions for synchronization of chaotic systems have been
derived in [3]. An efficient nonlinear control method has
been applied to the synchronization of unified chaotic sys-
tems using the Lyapunov method in [4] and a nonlinear con-
trol scheme for the synchronization has been presented using
the Lyapunov stability theory in [5]. The synchronization of
an energy resource system has been investigated and three
linear control schemes have been proposed to synchronize an
energy resource system in [6].The synchronization process of
a four-dimensional chaotic system by using linear feedback
controller, single variable, and adaptive controller methods

has been proposed and demonstrated in [7]. Synchronization
of energy resource systems has been proposed when the
parameters of the master system are unknown and different
from the slave system using adaptive linear feedback control
in [8].

Chaos synchronization has been of tremendous world-
wide interest in communication systems, which has appli-
cations in the encryption and decryption of information
for secure communications. An adaptive scheme has been
exhibited in [9] for chaos synchronization that solves the
problem of security in the communications. The authors in
[10] have designed secure digital communication systems
using chaotic modulation, cryptography, and chaotic syn-
chronization and their security features have been analyzed.
Two methods of encoding and decoding message for secure
communication based on an adaptive chaos synchronization
have been investigated by Xing and Huang [11]. In [12], a
new technique has been suggested for synchronizing two
chaotic systems and that technique has been applied to digital
cryptography [13] for sending and receiving messages.

At present, the main research methods of chaotic con-
trol are OGY and feedback control method [14, 15]. The
chaos can be controlled by constructing simple fractional
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order controller in [16]. The chaos synchronization between
two different chaotic systems can be realized based on
the nonlinear feedback control method in [17]. Feedback
technology is commonly used in engineering, and the use
of this technology can realize the control of chaotic systems,
such as changing unstable fixed point into stable one and
controlling the periodic orbit. Chaos synchronization can
be regarded as a kind of control that the controlled chaotic
system moves in the target system orbit. Generally speaking,
feedback methods used in the chaos synchronization can be
divided into parameters feedback method and state variable
feedback method. Output feedback and linear feedback
synchronization of chaotic systems are, respectively, studied
in [18–21].

Study of chaotic oscillator characteristic is an important
subject. Many scientific researchers are interested in it [22–
25]. However, less research is focused on the problem of
Duffing chaotic system control.Therefore, based on the three-
dimensional Duffing system and the theory of Lyapunov
equation of system stability judgment, the linear state feed-
back synchronization in Duffing chaotic system is studied in
this paper.

2. Three-Dimensional Duffing System

There are many problems in engineering such as packaging
systems based on displacement excitation of nonlinear vibra-
tions and pressure sensors nonlinear vibration and so they
can be simplified into a forced Duffing equation with cubic
nonlinearity, governed by

�̈� (𝑡) + 𝜇�̇� (𝑡) + 𝜔

2
0𝑥 (𝑡) + 𝜀𝑥 (𝑡)

3
= 𝐹 cosΩ𝑡, (1)

where 𝑥(𝑡) is the solution of (1), 𝜇, 𝜔0, 𝜀, 𝐹, Ω are real con-
stants, and the dot represents differentiation with respect
to 𝑡.

Definition 1. The particular form of Duffing system related to
system (1) is described as

�̇� = 𝑦,

̇𝑦 = 𝑥 − 𝑥

3
− 𝑘𝑦+ 𝑟 cos𝜔𝑡,

(2)

where 𝑟, 𝜔 are the amplitude and frequency of driving force,
𝑘 is damping ratio, and 𝑥−𝑥3 is the nonlinear restoring force.

When given the system initial states 𝑥(0) = 0 and 𝑦(0) =
1 in (2), two-dimensional Duffing system under sinusoidal
signal drive produces the chaotic phase diagram shown in
Figure 1.

Definition 2. Given a constant 𝑏, system (2) can be converted
into the following state equation:

�̇� = 𝑦,

̇𝑦 = − 𝑘𝑦− 𝑧+ 𝑏 + 𝑟 cos𝜔𝑡,

�̇� = 3𝑥2𝑦−𝑦.

(3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 1: 2D Duffing chaotic system phase diagram.
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Figure 2: 3D Duffing chaotic system phase diagram.

Proof. Choose the following differential equation:

�̇� = 3𝑥2𝑦−𝑦. (4)

Integrating �̇� taken in (4) into system (2) yields

𝑧 = 𝑥

3
−𝑥+ 𝑐, (5)

where 𝑐 is undetermined constant and the value can be
determined by the system initial state.

Remark 3. From the above analysis, it follows that 𝑐 and 𝑏 are
unbounded, but 𝑏 is used to counteract the effects of 𝑐. When
given 𝑥(0) = 0 and 𝑧(0) = 0 in system (3), 𝑐 = 0 and 𝑏 = 0
hold.The three-dimensional Duffing chaotic dynamic system
(3) is the same as system (2). Under the general conditions,
system (2) can bemodified to system (3) by adjusting variable
𝑏 to offset the impact of variable 𝑐.

When given 𝑥(0) = 0, 𝑦(0) = 1, 𝑧(0) = 0, and 𝑏 = 0 in
(3), three-dimensional Duffing system produces the chaotic
phase diagram shown in Figure 2. Its plane projections on
the 𝑥𝑜𝑦, 𝑦𝑜𝑧, and 𝑥𝑜𝑧 are shown in Figures 3, 4, and 5. By
comparing Figures 1 and 3, we can obtain the result that two-
dimensional Duffing system and three-dimensional Duffing
system are consistent. Figures 4 and 5 can only produce in
three-dimensional Duffing system.

The simulation results of equivalent condition are the
premise of system initial states 𝑥(0) = 0 and 𝑧(0) = 0;
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Figure 3: 3DDuffing chaotic systemphase diagram in the 𝑥𝑜𝑦 plane
projection.
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Figure 4: 3DDuffing chaotic systemphase diagram in the𝑦𝑜𝑧 plane
projection.

otherwise the system status may not be chaotic. When given
𝑥(0) = 0, 𝑦(0) = 1, and 𝑧(0) = 2, simulation result is shown
in Figure 6. The system state is not chaotic.

When assuming 𝑏 = 2 in (3), the system phase diagram as
shown in Figure 7 is chaotic. From the above analysis, results
counteracting the effects of initial condition on system state
and keeping the system chaotic can be obtained by adjusting
the variable 𝑏.

3. State Feedback Synchronization in
Duffing System

Definition 4. Given three positive constants 𝑘1, 𝑘2, and 𝑘3, the
response system of state feedback synchronization in Duffing
system can be written as

̇

�̂� = 𝑦 − 𝑘1 (𝑥 − 𝑥) ,

̇

�̂� = 𝑥 − 𝑘𝑦− �̂� − 𝑘2 (𝑦 − 𝑦) + 𝑟 cos𝜔𝑡,

̇

�̂� = 3𝑥2𝑦− 𝑘3 (�̂� − 𝑧) .

(6)

When driven by the state error feedback, the response system
can keep pace with the drive system.
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Figure 5: 3DDuffing chaotic systemphase diagram in the 𝑥𝑜𝑧 plane
projection.
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Figure 6: 3DDuffing chaotic systemphase diagram in the 𝑥𝑜𝑦 plane
projection.
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Figure 7: 3DDuffing chaotic systemphase diagram in the 𝑥𝑜𝑦 plane
projection.

Proof. Constructed fromdrive and response system, the error
system can be described as

�̇� −

̇

�̂� = 𝑦 −𝑦+ 𝑘1 (𝑥 − 𝑥) ,

̇𝑦 −

̇

�̂� = 𝑥 − 𝑥− 𝑘 (𝑦 −𝑦) − (𝑧 − �̂�) + 𝑘2 (𝑦 − 𝑦) ,

�̇� −

̇

�̂� = 3𝑥2𝑦− 3𝑥2𝑦+ 𝑘3 (�̂� − 𝑧) .

(7)



4 Journal of Control Science and Engineering

y

z

State-space 1

State-space

Sine wave 1

Sine wave

Scope 2

Product 1

Product

Signal 1
Signal 2
Signal 3

Signal 1
Signal 2
Signal 3

Gain 2

Gain 1

Gain

Fcn 1

Fcn
Demux

0
Constant 1

0
Constant

Add 5

Add 4

Add 2

Add 1

Addx

−6

−60Demux −
+

−
+

+

+
+

+
+

−4−
+

y


z


x


x

= Ax + Bu

y = Cx + Du

×

×

x

= Ax + Bu

y = Cx + Du

u(1) ∗ u(1) ∗ 3

u(1) ∗ u(1) ∗ 3

Figure 8: State feedback simulation system.

Let 𝑒
𝑥
= 𝑥−𝑥, 𝑒

𝑦
= 𝑦−𝑦, and 𝑒

𝑧
= 𝑧−�̂�.Then (7) can change

into

̇𝑒

𝑥
= 𝑒

𝑦
− 𝑘1𝑒𝑥,

̇𝑒

𝑦
= 𝑒

𝑥
− (𝑘 + 𝑘2) 𝑒𝑦 − 𝑒𝑧,

̇𝑒

𝑧
= 3𝑥2𝑦− 3𝑥2𝑦− 𝑘3𝑒𝑧.

(8)

Now choose (9) as Lyapunov function:

𝑉 =

1
2
(𝑒

2
𝑥
+ 𝑒

2
𝑦
+ 𝑒

2
𝑧
) . (9)

From (8) and differentiating (9), we can obtain

̇

𝑉 = 𝑒

𝑥
̇𝑒

𝑥
+ 𝑒

𝑦
̇𝑒

𝑦
+ 𝑒

𝑧
̇𝑒

𝑧

= 2𝑒
𝑥
𝑒

𝑦
− 𝑘1𝑒

2
𝑥
− (𝑘 + 𝑘2) 𝑒

2
𝑦
− 𝑒

𝑦
𝑒

𝑧
− 𝑘3𝑒

2
𝑧

+ (3𝑥2𝑦− 3𝑥2𝑦) 𝑒
𝑧
.

(10)

Considering that Duffing chaotic system is bounded, 3𝑥2
and 3𝑥2 are not bigger than negative 𝑀2. Then (10) can be
modified as

̇

𝑉 = 2𝑒
𝑥
𝑒

𝑦
− 𝑘1𝑒

2
𝑥
− (𝑘 + 𝑘2) 𝑒

2
𝑦
+ (𝑀

2
− 1) 𝑒

𝑦
𝑒

𝑧

− 𝑘3𝑒
2
𝑧
.

(11)

If ̇𝑉 < 0 in (11), (8) at the origin is asymptotically stable.
The coefficients of 𝑘1, 𝑘2, and 𝑘3 in (11) should satisfy the
following conditions:

(1) √𝑘1 ⋅ √(𝑘 + 𝑘2)/2 > 1, ∀𝑘1 > 0 and 𝑘2 > 0.
(2) √𝑘3 ⋅ √(𝑘 + 𝑘2)/2 > (𝑀

2
− 1)/2, ∀𝑘3 > 0.

Remark 5. The state feedback system based on (6) is shown
in Figure 8. The initial states of drive system are 𝑥(0) = 0.5,
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Figure 9: The curve 𝑒
𝑥
for multivariable feedback system.

𝑦(0) = 1, and 𝑧(0) = 2 in (5). The initial states of response
system are 𝑥(0) = 0, 𝑦(0) = 1, and �̂�(0) = 0 in (6). According
to phase diagram of chaos Duffing system, we can know
𝑀

2
≤ 4. Utilizing the above conditions in (7)with coefficients

𝑘1 = 6, 𝑘2 = 60, and 𝑘3 = 4, feedback coefficients 𝑘1, 𝑘2,
and 𝑘3 are to meet the coefficient value range in Section 3.
Let 𝑒
𝑥
= 𝑥 − 𝑥, 𝑒

𝑦
= 𝑦 − 𝑦, and 𝑒

𝑧
= 𝑧 − �̂�. From (11), we

can obtain ̇𝑉 < 0. According to (8), the simulation results
based on state feedback method are shown in Figures 9, 10,
and 11. Error curves tend to zero. Simulation results show that
drive and response system can keep the good synchronization
performance.

4. Reduction of State Feedback Terms

Multivariable feedback can realize synchronization of two
chaotic systems. But, for many chaotic systems, only sin-
gle variable signal feedback can achieve synchronization
between systems. Feedback coefficient in Section 3 can be
further deduced as follows.
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Figure 10: The curve 𝑒
𝑦
for multivariable feedback system.
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Figure 11: The curve 𝑒
𝑧
for multivariable feedback system.

Proof. Let 𝑘2 = 0 and 𝑘3 = 0 in (6). The response system
of state feedback synchronization in Duffing system can be
modified to (12), where 𝑘1 is a feedback coefficient. Consider

̇

�̂� = 𝑦 − 𝑘1 (𝑥 − 𝑥) ,

̇

�̂� = 𝑥 − 𝑘𝑦− �̂� + 𝑟 cos𝜔𝑡,

̇

�̂� = 3𝑥2𝑦.

(12)

According to (12) and stability proof for the error system in
Section 3, we can obtain (13) from (11):

̇

𝑉 = 2𝑒
𝑥
𝑒

𝑦
− 𝑘1𝑒

2
𝑥
− 𝑘𝑒

2
𝑦
+ (𝑀

2
− 1) 𝑒

𝑦
𝑒

𝑧
. (13)

From (4), we know the symbol of 𝑒
𝑧
is the same as that of 𝑒

𝑥
;

namely, 𝑒
𝑧
∝ 𝑒

𝑥
. Equation (13) can be modified as

̇

𝑉 = 2𝑒
𝑥
𝑒

𝑦
− 𝑘11𝑒

2
𝑥
− 𝑘𝑒

2
𝑦
+ (𝑀

2
− 1) 𝑒

𝑦
𝑒

𝑧
− 𝑘12𝑒

2
𝑧
, (14)

where 𝑘11 and 𝑘12 satisfy

𝑘11𝑒
2
𝑥
+ 𝑘12𝑒

2
𝑧
= 𝑘1𝑒

2
𝑥
. (15)
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Figure 12: The curve 𝑒
𝑥
for single variable feedback system.
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Figure 13: The curve 𝑒
𝑦
for single variable feedback system.

If ̇𝑉 < 0 in (14), 𝑘11 and 𝑘12 should satisfy the following
conditions:

(3) √𝑘11 ⋅ √𝑘/2 > 1, ∀𝑘11 > 0.

(4) √𝑘12 ⋅ √𝑘/2 > (𝑀
2
− 1)/2, ∀𝑘12 > 0.

Remark 6. From (15), we know thatwhen feedback coefficient
𝑘1 is big enough, conditions (3) and (4) are satisfied. Let
𝑘1 = 100 and select the initial states in (12) similar to (6); then,
like that in Section 3, the error of drive and response system
tends to zero, and the two systems can keep synchronization
too. According to (12), the simulation results based on single
variable feedback method are shown in Figures 12, 13, and 14.
Error curves tend to zero.

5. Conclusions

Linear and nonlinear feedback controllers can be designed to
realize drive-response synchronization of an existing chaotic
system. It has shown that synchronization using linear feed-
back control method is suitable and efficient compared to
nonlinear control method due to less synchronization cost
and synchronization error. The present work has studied a
new three-dimensional chaotic synchronization of Duffing
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Figure 14: The curve 𝑒
𝑧
for single variable feedback system.

system. On the basis of three-dimensional model, a linear
state feedback method is used and has successfully driven the
state of response system to zero. This method is simple and
practical and can select control parameters in considerable
range. In addition, three-dimensional Duffing system is
equivalent to two-dimensional system but can show more
information, so the structure of new Duffing system is
worth future studying of weak signal detection and secret
communication.
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