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The methods frequently used to estimate the state of an LTI system require that the precise value of the output variable is known at all
times, or at equidistant sampling times. In LTT systems, in which the output signal is measured through binary sensors (detectors),
the traditional way of state observers design is not applicable even though the system has a complete observability matrix. This
type of state observers design is known as passive. It is necessary, then, to introduce a new state estimation technique, which allows
reckoning the state from the information of the variable’s crossing through a detector’s action threshold (switch). This paper seeks,
therefore, to study the convergence in this type of estimators in finite time, allowing establishing, theoretically, whether some family
of the proposed models can be estimated in a convergent way through the use of the estimation technique based on events.

1. Introduction

In LTT system, where the output signal is measured through
binary sensors (detectors), the traditional design form of state
observers is not applicable, even though the system has a
complete observability matrix. This type of state observer
design is known as passive. Detectors are used in an ample
system gamut like photoelectrical detectors, to detect the
presence; oxygen detectors, to control automobile emissions;
1-bit quantizers, for analogue to digital conversion; and opti-
cal encoders, for position detection, among others. The big
difficulty offered by the systems where this type of detectors
are used resides in the fact that the information is very
limited for modeling, identifying, estimating, controlling,
and detecting failures [1].

The addressed issue involves LTI systems where the input
variable is supposed to be known, but the output is available
through a detector that sends a signal when the variable
reaches some given value. Even though the basic idea can

be taken to the case where there are multiple detectors,
with different thresholds, this work will focus on the single
detector case.

The detector’s available information accounts only for the
crossing of the variable by the thresholds of the detector,
without knowing the crossing direction. The instant of time
of the crossing can be then known with certainty. This type
of nonperiodical sampling is known as Lebesgue sampling
[2]. The Lebesgue sampling, or events based sampling, is
an alternative for the Riemann sampling. The systems with
Lebesgue sampling are more difficult to analyze than the
Riemann sampling system [3]. Nevertheless, by its conceptual
simplicity, the Lebesgue sampling has been recently used in
feedback systems.

The simulation of hybrid systems is needed due to
the nature of the studied system, where continuous and
discrete dynamics are present; this type of simulations can
be developed using different tools like Matlab/Simulink and
Ecosim.



In [4], the estimation technique for an LTI system was
introduced:

X(t)=Ax({t)+Bu(t), x(0)=x,

ZL: ¢))

y(t)=Cx(®),

where x € R" is the state variable, u € R™ is the input
variable, and y € R is the output scalar of the system,
and A, B, and C are real matrix of proper dimensions. The
objective is to estimate the value of x(t) at all times ¢ € R"
given that the input u(t) is known at all times but the only
information regarding the output y(t) is given by a binary
sensor, indicating that y has reached some constant threshold
valueY € R. This means, the instants of time ¢;,i = 1,2, .., in
which the output has reached the threshold, are known; that
is, y(t;) = Y.In their work, Moreno et al. gave an observability
(passive) characterization for this Lebesgue sampling case.

The possibility of reconstructing the initial state of (1)
depends not only on an intrinsic characteristic of the system,
but also on the obtained sampling. In system (1), together
with a sampling sequence, S = {t,1,,...,ty}, where N, the
number of samplings N € Z U {0}, is said to be Lebesgue
sampling observable if it is possible to calculate, in a unique
way, the initial state x,, from the sampling sequences Y and
u(t). If, after certain sampling interval, the observability is
obtained, it is possible to reconstruct the state of the system
for all t.

Assuming that the observation process began in ¢, so a
Lebesgue sequence of sampling exists as S = {t;,> t,,i =
1,2,...},witht; < t;+1,in which y(¢;) = Y; the measurement
process can be presented like impulsive actions y(¢;) 8(t —t;)
that happen at detection times ¢; where &(¢) is the Dirac
function. The measurement can also be expressed like

=Y y(t)8(t-1). )
i=1
Proposition 1. The actual state x(t) of (1) satisfies
P(t)x(t)=R(t), 3)
where
s [F AT T A
P(t) = C Ce™ V8 (r—t,;)dr,
ty
R(t) 2 J A T [y(‘r) —creA Buydo| @
t t

can be calculated from measured data and the system model;
if ¥ L is Lebesgue sampling observable with measurement S,
sequence, generated during the observation interval [t,, t], then
x(t) can be determined uniquely from (3).

In [4] (3) was applied to an illustrative example using
simulation. Some authors have investigated state estimators
with event detection for another application as [5-7].
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However, a formal support to determine the estimation
convergence, in finite time, was not given. In our work we
address this issue. Under certain conditions, this will permit
establishing, in theory, if some family of proposed models can
be estimated in a convergent way by using the event based
estimation technique.

2. Preliminaries

For the paper terminology comprehension, it is necessary
to understand, generically, what conforms the distribution
theory and, also, to revise some definitions.

2.1. Distribution Theory. The distribution theory generalizes
the concept of “function,” work that was initiated by the
British physician Paul Dirac, whom, close to the end of the
twenties, introduced a very important concept known as
the “delta function,” in connection with his studies about
quantum mechanics, which has the property of being equal
to zero at all times, excluding the origin where its behavior is
so that the defined integral in all R” is one. The mentioned
delta is not considered a function in the ordinary sense but
a distribution. Starting from here and with the objective of
giving a mathematical stringency, a coherent and complete
recognized theory was originated as the distributions theory,
created by a French scientist, Schwartz. Later the Soviet
scientist, Sobolev, released his generalized functions theory,
which is an extension of the distributions theory, introducing
operator conditions to the function over a space of functions
(8].

For the convergence study at hand, the distribution,
or generalized functions, will be used; they behave as a
mathematics object by generalizing the function notion,
extending the concept of differentiation to all the local
integrable functions.

According to [9], the distribution theory extends the
differential calculus to certain lineal and continuous forms,
defined in a topologic space of infinitely differentiable func-
tions with compact support; these lineal and continuous
forms are called distributions or generalized functions. This
type of functions has greater coverage than the differentiable
functions type in an ordinary sense.

Proposition 2. Let Q) be an open set of R"™:
D(Q)=Cy(Q) =g

(5)
€ C™ (Q) : sop ¢ is a compact contained in Q},

where sopp = {x € Q: ¢(x) # 0}. D(Q) denotes the vector
space of the sampling functions. If K is a compact of Q, then
Dy (Q) = {p € C®(Q) : sop¢p c K}.

One typical function of 2(Q) is

0 if |x|>1

= 6
¢ (x) Cexp ( (6)

1
|x|2_1> if |x| <1,
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where x = (x,...,x,) € R"and |x| = /x} +---+x2, and

the constant C is chosen in a way thatJRn px)dx = 1; ¢ €
C*(R") and it supports the unitary ball in R"; that is, sop ¢ =
B,(0).

One expression of the form a = (e, .. ., «,) with «; being
a nonnegative integer, for each i = 1,...,n, is called a multi-
index. For the multi-index & the order of « is defined, denoted
by |al, by

] = o + -+, (7)
,&,) are one multi-

Ifx=(x;,...,x,) € R"and a = («p,...
index, then it is defined that

X% = x A X (8)

P
Ox( - Ox ’

Convergence in 2(Q): («,),2, being one succession of
functions in 2(Q), ¢, — ¢ € D(Q), whenn — oo if

(a) thereisone compact K ¢ Q) so thatforeachnsop ¢, C
K;

(b) 0%¢,, — 0% uniformly in K, for each multi-index a.

The uniform convergence in K of the succession (0%,),e,
means that

sup [0%¢p, — 0% (x)| — 0 )
x€K

when n — co. One application f is continued in 2(Q),
meaning that each succession (¢,);°, with limit ¢, has
(f,9,) = (f,9), whenn — oo.

For each open set O in R".

The application T: D(Q)) — C is one distribution if

(a) T is linear;

(b) for each compact K ¢ () there is a constant Cx > 0
and one nonnegative integer m (depends of K) as

|<T’ (Pn>| < CK Z sup |aa(P (x)l > (10)

la|<m*€K

for each ¢ € Dy (Q) and for each multi-index «.

One distribution is a linear and continuous functional
over D(Q). The space for all distributions over Q is denoted
by D'(Q). This means, D' (Q) = Z(D(Q),C) is the dual of
D(Q).

2.2. Conditions. The distributions of compact support are

defined as linear continuous functions over C*K with a

defined topology over the space by the uniform convergence.
Then the function

flol=]_ resw 1

which converges V&(x) € K is called a “regular distribution.”

2.3. Dirac’s Delta. The concept of the Dirac’s delta “function,”
also called unitary impulse function, is useful to model
situations like, for example, where there is a mechanical
system over which an external large magnitude force acts
during a brief moment of time. In an extreme case that this
force be concentrated in one point, it would be possible to
represent it by Dirac’s delta. In all cases when a very intense
external signal is applied, during a very short time interval,
the use of the impulsive signal §(x) [8] is introduced to model
these situations.
Dirac’s delta can be expressed symbolically:

{0; x#0
§(x) = (12)

o00; x=0

so that the integral of §(x) is normalized to the unity; this
means

J 8 (x)dx = 1. (13)
The & function satisfies the property
[” reswdr=ro (1)

for all continuous function f(x):

j f(x)a(x)dx=j F )6 () dx
” -~ (15)

~ £(0) J 8 (x) dx.
The approximation has a better behavior as ¢ — 0; however
| sedx-1 (16)

for all the values of ¢ where 8(x) = 0Vx # 0, 8(x) is
normalized. Then when solving the limit when ¢ — 0 is
obtained,

J F(0)8()dx = f(0). 1)
This integral is called the filter property from the delta
function, when §(x) is acting as a filter, selecting from all the
possible values of f(x) the value in the point x = 0.

In [10], the integral is evaluated using the following
argument: due to 8(x) = 0 for all x # 0, we can change
the integration limits in the following (—¢) and (e), where
€ is a positive infinitesimal number. Even more, assuming
that f is continuous in x = 0, its values inside the selected
interval (—¢, ¢) are approximated to f(0), and we can make
the following approximation:

JOO f(x)6(x)dx = ling r f(x)6(x)dx

- £(0) j_ 8 (x) dx 18)

J,_O;6(x) dx =1,



and, changing limits,

e/ —ef2
liml J ’ f(x)dx =lim lF(x)
e0 € —&/2 e=0 € +e/2 (19)
- ?—»mo(sw =F (0) = £(0).
Then
| rwewax-ro. (0)
3. Convergency Analysis

The convergence of the estimator will be studied using the
distributions theory, the Lebesgue convergence theorem, and
the convolution properties. We will study the estimator con-
vergence using the distribution theory, Lebesgue convergence
theorem, and the convolution properties.

3.1. Delta Succession. For the solution of the problem asso-
ciated with the use of (12), an alternative function must be
sought, which is to define the function &(x) as the function
that satisfies the filter propriety

[” rwswax=ro @
for all continuous functions f(x), symbolically written
f(x)d(x) = £(0). (22)
One type of delta function is
n 1
0 =
" (x) ml+ 7T27’l2 (23)

nh—g)lo&" (x) — 6 (x),

which satisfies the equation

lim jm £(x)8, (x)dx = £ (0). (24)

n—00

3.2. Lebesgue Convergence Theorem. Let {f,} be one function
succession, f, € LY(T), such that fu(x) = f(x) for some
measurable f. If there exists p € LY(T), such that | fa(x)] <
p(x), for all p, then

fel(T),

,}H{}O ”fn - f”l =0, (25)

JT f(x)dx = nll)ngo JT f, (x) dx.

Applying the convergence theorem, according to [11],
fn is a succession of Lebesgue integrable functions in an
I interval. Assuming that f, converges in I, to some limit
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function, and there is one nonnegative Lebesgue p function
inI so that, foralln > 1,

|f, ()] < p(x), (26)

then the limit function f belongs to a Lebesgue function; the
succession | f,,| converges

n—00

| 7= tim [ £ (27)
I I
Consequently [12],

lim {3, (0} — 80), (28)

applying the convolution, which is always a function, that
switches with the translations and derivations, also with the
regularized effect. Let y be one distribution in R”, and ¢, y €
D(R"); then

T (U ¢) = (1) x ¢ = p = (1,9) € (R")
pxdeC”(RY),
D% (u = ¢) (29)
= (D) * ¢
=+ (D).
For all multi-index «,
pxr(@xy)=(usd)*y

§+¢=9¢,

where § is Dirac’s delta [13].

According to Hernandez (1994), let u € D'(R"), v €
D'(R"), and w € D'(R").

If at least one of the distributions ¢ and v has compact
support, then

(30)

Hpuxv=v*u
(3D
(ii) sop (u * sv) C sop (1) +sop (v).
Let « be one multi-index; then,
(i) D*v = (D"8) * p
(32)
(i) § x v =
If § has compact support
(sop (8) = {0}), (33)

then,
D" (u) * ¢ = p* (D"¢) = p x D* (8 * ¢)
=uxD"(8)xp=uxD"Gx¢  (34)
=D % p * ¢
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Then,
D*u = (D) * p. (35)
Assuming |«| = 0, then
D=y,
(36)
D*§=§
gives
p*d=p. (37)

Thus, it can be observed that § is the unit element for the
convolution and is considered as an algebraic operation.
Now we will apply the distributions theory to the conver-
gence study of the estimation technique proposed in Moreno
et al. (2010).
In that case the transition matrix, assuming an LTI
system, is

t T Tt
P(t) ;j AT s (r—t)dr (38)

to

and the Lebesgue convergence theorem gives

t T-tg
lim J A TOCTA ™S, (1 1) dr. (39)
to

n—o0

Applying the convolution we obtain

t o
limJ 8, (r—t)e TecTer dr,  (40)
to

n—00

and solving the limit
‘ AT (1-ty) ~~T A0
J S(r-t)e ’CC'e” dr, (41)
to
obtaining
b AT(t) T AT
J e CCe” dr, (42)
)

where P(t) meets the Lyapunov stability condition, meaning
o) =2 (&) < L] 1] (43)

for all LTI in [0, T]; therefore the system is bounded.

P(t) has a monotonously exponential behavior and con-
verges consequently to the model of the plant (3).

From the following expressions:

X (t) = Ax (t) + Bu(t),
X (t) = AX (t) + Bu(t) + S(t) C [Y (t) - Cx ()],
e=x(t)-X(t),
(44)
e(t) = Ae(t) - S(t)C" [y (t) - Cx (1)],
e(t) = Ae(t) - S(t)C Ce (),

e(t)=(A-S®C'C)e),

5
where
c'C=) LeR, (45)
obtaining,
e(t)=(A-S(@®)e(t), (46)

according to [14], the matrix A is a constant and Hurwitz and
the matrix S(¢) is time-varying such that

S(it) —0; t— oo,

00 (47)
JO IS (6)]l dt < oo.

S(t) is a matrix that is set in each iteration, reaching in some
t;, but does not require further adjustment.
Then system (46) is globally exponentially stable [14].

4. Conclusions

We started from state estimators based model for LTI systems
with event detection to which convergence was determined.

P(t) converges to the family of functions given in (42),
so the estimated x(t) converges to the x(t) plant model for
(0, T).

In future studies, assuming that the adjustments made to
S(t) are becoming smaller, it would be possible to determine
the least (j), such that S(¢;) = S(tjﬂ-).

The distributions theory was used; this generalizes the
function notion, extending the concept of derivative to all
locally integrable functions; permitting the topology change
(homeomorphism), with the purpose of giving it a mathe-
matic rigorousness.

The model convergence of estate estimators was obtained
after applying this theory, allowing future applications using
this type of state estimators.

This study offers great advantages to systems where
the information is limited, where continuous sensors are
expensive or less reliable, replacing them by binary detectors
with more resistant characteristic and less expenses.
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