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This paper deals with the self-tuning regulator for large-scale stochastic nonlinear systems, which are composed of several
interconnected nonlinear monovariable subsystems. Each interconnected subsystem is described by discrete Hammerstein model
with unknown and time-varying parameters.This self-tuning control is developed on the basis of the minimum variance approach
and is combined by a recursive algorithm in the estimation step. The parametric estimation step is performed on the basis of
the prediction error method and the least-squares techniques. Simulation results of the proposed self-tuning regulator for two
interconnected nonlinear hydraulic systems show the reliability and effectiveness of the developed method.

1. Introduction

In the past few years, large-scale systems, which can be
efficiently applied to many practical situations, such as power
systems, transportation systems, industrial processes, and
communication networks, have attracted much attention [1–
25]. There exists extensive literature concerning control for
large-scale systems. In this case, several results deal with
some schemes for control of these systems on the basis of
various approaches, such asminimum variance approach [7],
generalized minimum variance strategy [8], decentralization
[1, 2, 12], sliding mode control technique [23], artificial
neuronal networks, and fuzzy logical techniques [9–11].

Self-tuning regulators of stochastic systems with time-
varying parameters are a problem of theoretical and practical
importance. Since the synthesis of the first self-tuning reg-
ulator by Åström and Wittenmark in 1973, great numbers of
theoretical and practical results are published in the literature
in order to adjust automatically the regulator parameters
online in response to change in the process and the environ-
ment. These results concerned more particularly the linear
stochastic systems [7, 8, 26–28], the dual-rate sampled-data
systems [29–31], and so forth, when various types of adaptive
controllers are developed. In the field of adaptive control,

Kamoun presented optimal self-tuning regulators for large-
scale linear systems, which are described by discrete input-
output mathematical models, based on minimum variance
and generalized minimum variance strategies [7, 8]; Zhang
et al. developed a self-tuning control scheme based on
multi-innovation stochastic gradient parameter estimation
for discrete-time systems [28]; Ding et al. proposed an
adaptive control algorithm for Hammerstein nonlinear dual-
rate systems [29]; andDing andChendeveloped least-squares
and gradient based adaptive control algorithms for dual-rate
linear systems [30, 31].

The minimum variance regulator was proposed by
Åström and Wittenmark [26], which allows solving the
regulation problem for a small size dynamic system described
by an input-outputmathematicalmodel with knownparame-
ters. Afterwards, this approachhas been extended byKamoun
for the control of large-scale linear systems, which are com-
posed of several Single-Input Single-Output (SISO) inter-
connected subsystems and described by linear input-output
mathematical models [7, 8]. In the same way, Elloumi and
Kamoun have considered the class of large-scale nonlinear
systems, which are comprised of several SISO interconnected
nonlinear subsystems, and developed an implicit self-tuning
regulator for this class of dynamic systems [21].
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Our objective is to develop a self-tuning regulator with
explicit schemewhich can be applied to the class of large-scale
nonlinear systems with unknown time-varying parameters
in order to resolve the regulation problem for this class of
systems. We particularly focus on the dynamic large-scale
nonlinear systems which are constituted by several SISO
interconnected nonlinear systems and described by stochas-
tic Hammerstein mathematical models with unknown time-
varying parameters.The developed algorithm is combined by
a recursive parametric estimation algorithm for determining
the system parameters.

This paper is organized into four sections. The second
section deals with the parametric estimation problem of the
large-scale nonlinear systems operating in a stochastic envi-
ronment. We focus here on the dynamic large-scale systems
consisting of several interconnected nonlinear monovariable
subsystems, which can be described by the class of Hammer-
stein mathematical models, with unknown and time-varying
parameters. Section 3, which is the principal part of the paper,
detailed the self-tuning control problem of the nonlinear
interconnected subsystems based on the minimum variance
approach. This control problem is formulated while being
based on a control strategy minimizing a certain quadratic
criterion. Finally, a simulation example is provided to illus-
trate the effectiveness and the efficiency of the proposed self-
tuning regulator scheme in Section 4. Conclusions are drawn
in Section 5.

2. Description and Parametric Estimation

We consider a large-scale nonlinear system 𝑆 composed of
N SISO interconnected nonlinear subsystems 𝑆

1
, . . . , 𝑆N. We

assume that these nonlinear subsystems operate in a stochas-
tic environment with unknown time-varying parameters.
Thereby, the general structure of this considered system can
be illustrated by Figure 1.

The dynamic linear part of Hammerstein structure, as
shown in Figure 1, is described by the following equation:

𝐴
𝑖
(𝑞
−1
, 𝑘) 𝑦
𝑖
(𝑘) = 𝑞

−𝑑𝑖𝐵
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−𝑑𝑖𝑗𝐵
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−1
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𝑗
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+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑞
−𝑡𝑖𝑗𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) ℎ
𝑦𝑗

𝑗
(𝑘)

+ 𝐶
𝑖
(𝑞
−1
) 𝑒
𝑖
(𝑘) ,

(1)

where ℎ𝑢𝑖
𝑖
(𝑘) and 𝑦

𝑖
(𝑘) are, respectively, the input and the

output of the dynamic linear part at the discrete-time 𝑘, 𝑢
𝑖
(𝑘),

𝑢
𝑗
(𝑘), and 𝑦

𝑗
(𝑘) represent the inputs of the nonlinear statics

parts, ℎ𝑢𝑗
𝑗
(𝑘) and ℎ

𝑦𝑗

𝑗
(𝑘) denote the inputs from the other

interconnected dynamics systems 𝑆
𝑗
, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖,

{𝑒
𝑖
(𝑘)} is an independent random variable and is generated

as Gaussian distribution with zero average and constant
variance 𝜎2

𝑖
, 𝑑
𝑖
is an intrinsic delay of the interconnected

system 𝑆
𝑖
, 𝑑
𝑖𝑗
and 𝑡
𝑖𝑗
represent the delays of the interactions,

which are related, respectively, to the inputs and the outputs
of the other interconnected nonlinear systems 𝑆

𝑗
, 𝐴
𝑖
(𝑞
−1
, 𝑘),

𝐵
𝑖
(𝑞
−1
, 𝑘), 𝐴

𝑖𝑗
(𝑞
−1
, 𝑘), and 𝐵

𝑖𝑗
(𝑞
−1
, 𝑘) are polynomials with

unknown and time-varying parameters, and 𝐶
𝑖
(𝑞
−1
) is a

polynomial with unknown but constant parameters, which
are defined by

𝐴
𝑖
(𝑞
−1
, 𝑘) = 1 + 𝑎

𝑖,1
(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅ + 𝑎
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𝐵
𝑖
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−𝑛𝐵𝑖 ,

𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) = 1 + 𝑎

𝑖𝑗,1
(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑖𝑗,𝑛𝐴𝑖𝑗
(𝑘) 𝑞
−𝑛𝐴𝑖𝑗 ,

𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) = 𝑏

𝑖𝑗,1
(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅ + 𝑏
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𝐶
𝑖
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𝑖,1
𝑞
−1
+ ⋅ ⋅ ⋅ + 𝑐

𝑖,𝑛𝐶𝑖
𝑞
−𝑛𝐶𝑖 ,

(2)

with 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖, where 𝑛
𝐴𝑖
, 𝑛
𝐵𝑖
, 𝑛
𝐴𝑖𝑗
, 𝑛
𝐵𝑖𝑗
, and

𝑛
𝐶𝑖

are the orders of the polynomials 𝐴
𝑖
(𝑞
−1
, 𝑘), 𝐵

𝑖
(𝑞
−1
, 𝑘),

𝐴
𝑖𝑗
(𝑞
−1
, 𝑘), 𝐵

𝑖𝑗
(𝑞
−1
, 𝑘), and 𝐶

𝑖
(𝑞
−1
), respectively.

The nonlinear statics parts of the Hammerstein structure
are represented by the following nonlinear functions:

ℎ
𝑢𝑖

𝑖
(𝑘) = 𝑓

ℎ
𝑢𝑖

𝑖

[𝑢
𝑖
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ℎ
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ℎ
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𝑗
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𝑗
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(3)

where 𝑓
ℎ
𝑢𝑖

𝑖

[⋅], 𝑓
ℎ
𝑢𝑗

𝑗

[⋅], and 𝑓
ℎ
𝑦𝑗

𝑗

[⋅] are nonlinear functions.
In the literature, several presentations of these nonlinear

functions are used like the polynomial functions that are fre-
quently used in the description of these nonlinear elements.
In this case, we propose to present these nonlinear functions
by the following polynomials:

ℎ
𝑢𝑖

𝑗
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𝑝1
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𝛼
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𝑖
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𝑖
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𝑖
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ℎ
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(𝑘) =

𝑝2

∑

𝑟2=1
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(4)

where Δℎ
𝑢𝑖

𝑖
[𝑢
𝑖
(𝑘)], Δℎ𝑢𝑗

𝑗
[𝑢
𝑗
(𝑘)], and Δℎ

𝑦𝑗

𝑗
[𝑦
𝑗
(𝑘)] represent

approximated errors that can be assumed as noise acting
on the system output. Their variances values depend on the
chosen value of the nonlinearity degree 𝑝

𝑡
, 𝑡 = 1, 2, 3.

In order to facilitate the formulation of the parametric
estimation problem for large-scale nonlinear systems, we
retain the following assumptions.
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Figure 1: Structure of Hammerstein stochastic mathematical model.

Assumption 1. The choice of the nonlinearity degree is made
in such a way that the approximated errors Δℎ

𝑢𝑖

𝑖
[𝑢
𝑖
(𝑘)],

Δℎ
𝑢𝑗

𝑗
[𝑢
𝑗
(𝑘)], and Δℎ𝑦𝑗

𝑗
[𝑦
𝑗
(𝑘)] can be neglected.

Assumption 2. The polynomials 𝐴
𝑖
(𝑞
−1
, 𝑘), 𝐵

𝑖
(𝑞
−1
, 𝑘),

𝐴
𝑖𝑗
(𝑞
−1
, 𝑘), 𝐵

𝑖𝑗
(𝑞
−1
, 𝑘), and 𝐶

𝑖
(𝑞
−1
) of the mathematical

model of the linear dynamic part have the same order 𝑛
𝑖
.

Taking into account these assumptions and using (1) and
(4), we can express the system output as follows:

𝑦
𝑖
(𝑘) = −

𝑛𝑖

∑

ℎ=1

𝑎
𝑖,ℎ
(𝑘) 𝑦
𝑖
(𝑘 − ℎ)

+
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𝑝1

∑
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𝑏
𝑖,ℎ
(𝑘) 𝛼
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𝑢
𝑟1

𝑖
(𝑘 − ℎ)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑛𝑖

∑

ℎ=1

𝑝2

∑

𝑟2=1

𝑏
𝑖𝑗,ℎ

(𝑘) 𝛽
𝑗,𝑟2
𝑢
𝑟2

𝑗
(𝑘 − ℎ)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑛𝑖
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ℎ=1

𝑝3

∑
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𝑎
𝑖𝑗,ℎ

(𝑘) 𝛾
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𝑦
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𝑗
(𝑘 − ℎ)

+

𝑛𝑖

∑

ℎ=1

𝑐
𝑖,ℎ
𝑒
𝑖
(𝑘 − ℎ) + 𝑒

𝑖
(𝑘) ,

(5)

with 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖.
The stochastic nonlinear system output 𝑦

𝑖
(𝑘), which is

described by the Hammerstein mathematical model (5), can
be rewritten in the following developed form:

𝑦
𝑖
(𝑘) = −𝑎

𝑖,1
(𝑘) 𝑦
𝑖
(𝑘 − 1) − ⋅ ⋅ ⋅ − 𝑎

𝑖,𝑛𝑖
(𝑘) 𝑦
𝑖
(𝑘 − 𝑛

𝑖
)

+ 𝑏
𝑖,1
(𝑘) 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 1) + 𝑏

𝑖,2
(𝑘) 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 2)

+ ⋅ ⋅ ⋅ + 𝑏
𝑖,𝑛𝑖
(𝑘) 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅

+ 𝑏
𝑖,1
(𝑘) 𝛼
𝑖,𝑝1
𝑢
𝑝1

𝑖
(𝑘 − 1)

+ 𝑏
𝑖,2
(𝑘) 𝛼
𝑖,𝑝1
𝑢
𝑝1

𝑖
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𝑖,𝑛𝑖
(𝑘) 𝛼
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𝑢
𝑝1

𝑖
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𝑖
)
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𝑖𝑗,1

(𝑘) 𝛽
𝑗,1
𝑢
𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑏
𝑖𝑗,𝑛𝑖

(𝑘) 𝛽
𝑗,1
𝑢
𝑗
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅

+ 𝑏
𝑖𝑗,1

(𝑘) 𝛽
𝑗,𝑝2

𝑢
𝑝2

𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑏
𝑖𝑗,𝑛𝑖

(𝑘) 𝛽
𝑗,𝑝2

𝑢
𝑝2

𝑗
(𝑘 − 𝑛

𝑖
)

+ 𝑎
𝑖𝑗,1

(𝑘) 𝛾
𝑗,1
𝑦
𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) 𝛾
𝑗,1
𝑦
𝑗
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,1

(𝑘) 𝛾
𝑗,𝑝3

𝑦
𝑝3

𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) 𝛾
𝑗,𝑝3

𝑦
𝑝3

𝑗
(𝑘 − 𝑛

𝑖
) + 𝑒
𝑖
(𝑘)

+ 𝑐
𝑖,1
𝑒
𝑖
(𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑐

𝑖,𝑛𝑖
𝑒
𝑖
(𝑘 − 𝑛

𝑖
) .

(6)

We remark that model (6) contains some redundant
parameters, such as the parameters 𝑏

𝑖,ℎ
(𝑘), 𝑏

𝑖𝑗,ℎ
(𝑘), and

𝑎
𝑖𝑗,ℎ
(𝑘), ℎ = 1, . . . , 𝑛

𝑖
, which are nonlinear over the parameters

𝛼
𝑖,𝑟1
, 𝛽
𝑗,𝑟2

, and 𝛾
𝑗,𝑟3

, 𝑟
𝑡
= 1, . . . , 𝑝

𝑡
, 𝑡 = 1, 2, 3, 𝑖, 𝑗 = 1, . . . , 𝑁,

𝑗 ̸= 𝑖, respectively. In that event, the formulation of the
parametric estimation scheme presents some implementa-
tion difficulties. To overcome these difficulties, we proposed
one of the following two situations [22]:

(1) To have knowledge about one of the parameters
𝑏
𝑖,ℎ
(𝑘), 𝑏
𝑖𝑗,ℎ
(𝑘), and 𝛾

𝑗,𝑟3
, ℎ = 1, . . . , 𝑛

𝑖
, 𝑟
3
= 1, . . . , 𝑝

3
.

For example, when the parameters 𝑏
𝑖,1
(𝑘), 𝑏

𝑖𝑗,1
(𝑘),

and 𝛾
𝑗,1

are well known at the discrete-time 𝑘, we
can estimate the parameters 𝛼

𝑖,𝑟1
(𝑘), 𝛽

𝑗,𝑟2
(𝑘), and

𝑎
𝑖𝑗,ℎ
(𝑘), 𝑟

𝑡
= 1, . . . , 𝑝

𝑡
, 𝑡 = 1, 2, ℎ = 1, . . . , 𝑛

𝑖
.

Thereafter, we can easily determine the parameters
𝑏
𝑖,2
(𝑘), . . . , 𝑏̂

𝑖,𝑛𝑖
(𝑘), 𝑏̂
𝑖𝑗,2
(𝑘), . . . , 𝑏̂

𝑖𝑗,𝑛𝑖
(𝑘), and 𝛾̂

𝑗,𝑟3
(𝑘),

𝑟
3
= 2, . . . , 𝑝

3
, based on the knowledge of 𝛼̂

𝑖,𝑟1
(𝑘),

𝛽̂
𝑗,𝑟2
(𝑘), and 𝑎̂

𝑖𝑗,ℎ
(𝑘).

(2) To have knowledge about one of the parameters
𝛼
𝑖,𝑟1
, 𝛽
𝑗,𝑟2

, and 𝛾
𝑗,𝑟3

, 𝑟
𝑡

= 1, . . . , 𝑝
𝑡
, 𝑡 = 1, 2, 3.

For example, in the case where the parameters 𝛼
𝑖,1
,

𝛽
𝑗,1
, and 𝛾

𝑗,1
are well known at the discrete-time 𝑘,

we can estimate the parameters 𝑏
𝑖,ℎ
(𝑘), 𝑏
𝑖𝑗,ℎ
(𝑘), and

𝑎
𝑖𝑗,ℎ
(𝑘), ℎ = 1, . . . , 𝑛

𝑖
. Afterwards, based on the

knowledge of these estimated parameters, we can



4 Journal of Control Science and Engineering

easily determine the parameters 𝛼̂
𝑖,2
(𝑘), . . . , 𝛼̂

𝑖,𝑝1
(𝑘),

𝛽̂
𝑗,2
(𝑘), . . . , 𝛽̂

𝑗,𝑝2
(𝑘), and 𝛾̂

𝑗,2
(𝑘), . . . , 𝛾̂

𝑗,𝑝3
(𝑘).

To overcome this problem, we assume, in what follows,
that 𝑏
𝑖,1
(𝑘), 𝑏
𝑖𝑗,1
(𝑘), and 𝛾

𝑗,1
are constant and known, in such

a way that 𝑏
𝑖,1
(𝑘) = 𝑏

𝑖𝑗,1
(𝑘) = 𝛾

𝑗,1
= 1, ∀𝑘. In this case, the

system output 𝑦
𝑖
(𝑘) can be expressed by

𝑦
𝑖
(𝑘) = −𝑎

𝑖,1
(𝑘) 𝑦
𝑖
(𝑘 − 1) − ⋅ ⋅ ⋅ − 𝑎

𝑖,𝑛𝑖
(𝑘) 𝑦
𝑖
(𝑘 − 𝑛

𝑖
)

+ 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 1) + 𝑏

𝑖,2
(𝑘) 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝑏
𝑖,𝑛𝑖
(𝑘) 𝛼
𝑖,1
𝑢
𝑖
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅ + 𝛼

𝑖,𝑝1
𝑢
𝑝1

𝑖
(𝑘 − 1)

+ 𝑏
𝑖,2
(𝑘) 𝛼
𝑖,𝑝1
𝑢
𝑝1

𝑖
(𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝑏
𝑖,𝑛𝑖
(𝑘) 𝛼
𝑖,𝑝1
𝑢
𝑝1

𝑖
(𝑘 − 𝑛

𝑖
) + 𝛽
𝑗,1
𝑢
𝑗
(𝑘 − 1)

+ ⋅ ⋅ ⋅ + 𝑏
𝑖𝑗,𝑛𝑖

(𝑘) 𝛽
𝑗,1
𝑢
𝑗
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅

+ 𝛽
𝑗,𝑝2

𝑢
𝑝2

𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑏
𝑖𝑗,𝑛𝑖

(𝑘) 𝛽
𝑗,𝑝2

𝑢
𝑝2

𝑗
(𝑘 − 𝑛

𝑖
)

+ 𝑎
𝑖𝑗,1

(𝑘) 𝑦
𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) 𝑦
𝑗
(𝑘 − 𝑛

𝑖
) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,1

(𝑘) 𝛾
𝑗,𝑝3

𝑦
𝑝3

𝑗
(𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) 𝛾
𝑗,𝑝3

𝑦
𝑝3

𝑗
(𝑘 − 𝑛

𝑖
) + 𝑒
𝑖
(𝑘)

+ 𝑐
𝑖,1
𝑒
𝑖
(𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑐

𝑖,𝑛𝑖
𝑒
𝑖
(𝑘 − 𝑛

𝑖
) ,

(7)

or equivalently in the matrix form

𝑦
𝑖
(𝑘) = 𝜃

𝑇

𝑖
(𝑘) 𝜓
𝑖
(𝑘) + 𝑒

𝑖
(𝑘) , (8)

where 𝜃
𝑖
(𝑘) and 𝜓

𝑖
(𝑘) represent, respectively, the parameter

and the observations vectors, which are defined by

𝜃
𝑇

𝑖
(𝑘) = [𝑎

𝑖,1
(𝑘) ⋅ ⋅ ⋅ 𝑎

𝑖,𝑛𝑖
(𝑘) 𝛼

𝑖,1
ℓ
𝑖,21

(𝑘) ⋅ ⋅ ⋅

ℓ
𝑖,𝑛𝑖1

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼
𝑖,𝑝1

ℓ
𝑖,2𝑝1

(𝑘) ⋅ ⋅ ⋅

ℓ
𝑖,𝑛𝑖𝑝1

(𝑘) 𝛽
𝑗,1

𝑠
𝑖𝑗,21

(𝑘) ⋅ ⋅ ⋅ 𝑠
𝑖𝑗,𝑛𝑖1

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛽
𝑗,𝑝2

𝑠
𝑖𝑗,2𝑝2

(𝑘) ⋅ ⋅ ⋅ 𝑠
𝑖𝑗,𝑛𝑖𝑝2

(𝑘) 𝑎
𝑖𝑗,1

(𝑘)

𝑎
𝑖𝑗,2

(𝑘) ⋅ ⋅ ⋅ 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑧
𝑖𝑗,1𝑝3

(𝑘)

𝑧
𝑖𝑗,2𝑝3

(𝑘) ⋅ ⋅ ⋅ 𝑧
𝑖𝑗,𝑛𝑖𝑝3

(𝑘) 𝑐
𝑖,1

⋅ ⋅ ⋅ 𝑐
𝑖,𝑛𝑖
] ,

(9)

𝜓
𝑇

𝑖
(𝑘) = [−𝑦

𝑖
(𝑘 − 1) ⋅ ⋅ ⋅ −𝑦

𝑖
(𝑘 − 𝑛

𝑖
) 𝑢
𝑖
(𝑘 − 1)

𝑢
𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑢

𝑖
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑢

𝑝1

𝑖
(𝑘 − 1)

𝑢
𝑝1

𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑢

𝑝1

𝑖
(𝑘 − 𝑛

𝑖
) 𝑢
𝑗
(𝑘 − 1) 𝑢

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑢
𝑗
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑢

𝑝2

𝑗
(𝑘 − 1) 𝑢

𝑝2

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑢
𝑝2

𝑗
(𝑘 − 𝑛

𝑖
) 𝑦
𝑗
(𝑘 − 1) 𝑦

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑦

𝑗
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑦
𝑝3

𝑗
(𝑘 − 1) 𝑦

𝑝3

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑦

𝑝3

𝑗
(𝑘 − 𝑛

𝑖
)

𝑒
𝑖
(𝑘 − 1) 𝑒

𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑒

𝑖
(𝑘 − 𝑛

𝑖
)] ,

(10)

with
ℓ
𝑖,21

(𝑘) , . . . , ℓ
𝑖,𝑛𝑖1

(𝑘) = 𝑏
𝑖,2
(𝑘) 𝛼
𝑖,1
, . . . , 𝑏

𝑖,𝑛𝑖
(𝑘) 𝛼
𝑖,1
,

ℓ
𝑖,2𝑝1

(𝑘) , . . . , ℓ
𝑖,𝑛𝑖𝑝1

(𝑘) = 𝑏
𝑖,2
(𝑘) 𝛼
𝑖,𝑝1
, . . . , 𝑏

𝑖,𝑛𝑖
(𝑘) 𝛼
𝑖,𝑝1
,

𝑠
𝑖𝑗,21

(𝑘) , . . . , 𝑠
𝑖𝑗,𝑛𝑖1

(𝑘) = 𝑏
𝑖𝑗,2

(𝑘) 𝛽
𝑗,1
, . . . , 𝑏

𝑖𝑗,𝑛𝑖
(𝑘) 𝛽
𝑗,1
,

𝑠
𝑖𝑗,2𝑝2

(𝑘) , . . . , 𝑠
𝑖𝑗,𝑛𝑖𝑝2

(𝑘)

= 𝑏
𝑖𝑗,2

(𝑘) 𝛽
𝑗,𝑝2

, . . . , 𝑏
𝑖𝑗,𝑛𝑖

(𝑘) 𝛽
𝑗,𝑝2

,

𝑧
𝑖𝑗,12

(𝑘) , . . . , 𝑧
𝑖𝑗,𝑛𝑖2

(𝑘) = 𝑎
𝑖𝑗,1

(𝑘) 𝛾
𝑗,2
, . . . , 𝑎

𝑖𝑗,𝑛𝑖
(𝑘) 𝛾
𝑗,2
,

𝑧
𝑖𝑗,1𝑝3

(𝑘) , . . . , 𝑧
𝑖𝑗,𝑛𝑖𝑝3

(𝑘)

= 𝑎
𝑖𝑗,1

(𝑘) 𝛾
𝑗,𝑝3

, . . . , 𝑎
𝑖𝑗,𝑛𝑖

(𝑘) 𝛾
𝑗,𝑝3

.

(11)

In the identification area of nonlinear systems, a large
amount of research exploring different approaches has been
published in the literature [22, 32–34]. Ding et al. developed
an auxiliary model-based least-squares identification algo-
rithm for nonlinear Hammerstein systems [32]. Ding and
Chen presented an iterative and a recursive least-squares
identification method for Hammerstein nonlinear ARMAX
systems [33]. Recently, Ding et al. studied the parameter esti-
mation problem of a class of nonlinear systems and proposed
a RLS algorithm based on the model decomposition [34].
For the class of large-scale nonlinear systems, Elloumi and
Kamoun developed an iterative estimator for identification of
Hammerstein large-scale systems, based on prediction error
method and least-squares techniques [22]. In this case, the
estimate of the parameter vector 𝜃

𝑖
(𝑘), as defined by (9), is

ensured starting from the following recursive extended least-
squares (RELS) algorithm [22]:

𝜃̂
𝑖
(𝑘) = 𝜃̂

𝑖
(𝑘 − 1) + 𝑃

𝑖
(𝑘) 󵱰𝜓
𝑖
(𝑘) 𝜀
𝑖
(𝑘) ,

𝑃
𝑖
(𝑘) =

1

𝜆
𝑖
(𝑘)

[𝑃
𝑖
(𝑘 − 1)

−
𝑃
𝑖
(𝑘 − 1) 󵱰𝜓

𝑖
(𝑘) 󵱰𝜓
𝑇

𝑖
(𝑘) 𝑃
𝑖
(𝑘 − 1)

𝜆
𝑖
(𝑘) + 󵱰𝜓

𝑇

𝑖
(𝑘) 𝑃
𝑖
(𝑘 − 1) 󵱰𝜓

𝑖
(𝑘)

] ,

𝜀
𝑖
(𝑘) = 𝑦

𝑖
(𝑘) − 𝜃̂

𝑇

𝑖
(𝑘 − 1) 󵱰𝜓

𝑖
(𝑘) ,

(12)

where 𝜆
𝑖
(𝑘) is the forgetting factor (0 ≺ 𝜆

𝑖
(𝑘) ≺ 1), 󵱰𝜓

𝑖
(𝑘) is

the vector of the approximated observations 𝜓
𝑖
(𝑘), and 𝜃̂

𝑖
(𝑘)

is the estimated parameters vector, which are described by

󵱰𝜓
𝑇

𝑖
(𝑘) = [−𝑦

𝑖
(𝑘 − 1) ⋅ ⋅ ⋅ −𝑦

𝑖
(𝑘 − 𝑛

𝑖
) 𝑢
𝑖
(𝑘 − 1)

𝑢
𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑢

𝑖
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑢

𝑝1

𝑖
(𝑘 − 1)

𝑢
𝑝1

𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝑢

𝑝1

𝑖
(𝑘 − 𝑛

𝑖
) 𝑢
𝑗
(𝑘 − 1) 𝑢

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑢
𝑗
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑢

𝑝2

𝑗
(𝑘 − 1) 𝑢

𝑝2

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑢
𝑝2

𝑗
(𝑘 − 𝑛

𝑖
) 𝑦
𝑗
(𝑘 − 1) 𝑦

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑦
𝑗
(𝑘 − 𝑛

𝑖
) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑦

𝑝3

𝑗
(𝑘 − 1) 𝑦

𝑝3

𝑗
(𝑘 − 2) ⋅ ⋅ ⋅

𝑦
𝑝3

𝑗
(𝑘 − 𝑛

𝑖
) 𝜀
𝑖
(𝑘 − 1) 𝜀

𝑖
(𝑘 − 2) ⋅ ⋅ ⋅ 𝜀

𝑖
(𝑘 − 𝑛

𝑖
)] ,



Journal of Control Science and Engineering 5

𝜃̂
𝑇

𝑖
(𝑘) = [𝑎̂

𝑖,1
(𝑘) ⋅ ⋅ ⋅ 𝑎̂

𝑖,𝑛𝑖
(𝑘) 𝛼̂

𝑖,1
(𝑘) ℓ̂

𝑖,21
(𝑘)

⋅ ⋅ ⋅ ℓ̂
𝑖,𝑛𝑖1

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼̂
𝑖,𝑝1

(𝑘) ℓ̂
𝑖,2𝑝1

(𝑘) ⋅ ⋅ ⋅

ℓ̂
𝑖,𝑛𝑖𝑝1

(𝑘) 𝛽̂
𝑗,1
(𝑘) 𝑠̂
𝑖𝑗,21

(𝑘) ⋅ ⋅ ⋅ 𝑠̂
𝑖𝑗,𝑛𝑖1

(𝑘) 𝑠̂
𝑖𝑗,21

(𝑘) ⋅ ⋅ ⋅

𝑠̂
𝑖𝑗,𝑛𝑖1

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽̂
𝑗,𝑝2

(𝑘) 𝑠̂
𝑖𝑗,2𝑝2

(𝑘) ⋅ ⋅ ⋅

𝑠̂
𝑖𝑗,𝑛𝑖𝑝2

(𝑘) 𝑎̂
𝑖𝑗,1

(𝑘) 𝑎̂
𝑖𝑗,2

(𝑘) ⋅ ⋅ ⋅

𝑎̂
𝑖𝑗,𝑛𝑖

(𝑘) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑧̂
𝑖𝑗,1𝑝3

(𝑘) 𝑧̂
𝑖𝑗,2𝑝3

(𝑘) ⋅ ⋅ ⋅

𝑧̂
𝑖𝑗,𝑛𝑖𝑝3

(𝑘) 𝑐̂
𝑖,1
(𝑘) ⋅ ⋅ ⋅ 𝑐̂

𝑖,𝑛𝑖
(𝑘)] .

(13)
The practical implementation of the recursive extended

least-squares (RELS) algorithm requires its initialization.
Thus, we must give the values of the initial conditions of the
estimated parameters vector 𝜃

𝑖
(0) and the adaptation gain

matrix𝑃
𝑖
(0).The convergence analysis of theRELS algorithm,

which permits estimating the parameters of this class of
systems, was proven by Elloumi and Kamoun [22].

3. Minimum Variance Self-Tuning Regulation

In this part, we propose to formulate the regulation problem
of interconnected nonlinear systems, which can be described
by Hammerstein stochastic mathematical model (1). In this
case, we present an explicit self-tuning algorithm for the
control of the subsystem 𝑆

𝑖
. This algorithm is obtained by

combining a least-squares estimator of the explicitmodel.The
purpose of the developed controller is to regulate the state
of the overall system and to maintain stability in spite of the
presence of nonlinear interconnections, environment varia-
tions, and ignorance and time variations of the parameters.

To develop an optimal self-tuning regulator for this class
of large-scale systems, we retain these assumptions.

Assumption 1. The delays 𝑑
𝑖
, 𝑑
𝑖𝑗
, and 𝑡

𝑖𝑗
are well known. In

addition to that, we suppose also that 𝑑
𝑖
≺ 𝑑
𝑖𝑗
and 𝑑

𝑖
≺ 𝑡
𝑖𝑗
to

facilitate the implementation of the control law 𝑢
𝑖
(𝑘).

Assumption 2. Theparameters 𝑏
𝑖,1
(𝑘), 𝑏
𝑖𝑗,1
(𝑘), and 𝛾

𝑗,1
are well

known at each discrete-time 𝑘, in such a way that 𝑏
𝑖,1
(𝑘) =

𝑏
𝑖𝑗,1
(𝑘) = 𝛾

𝑗,1
= 1, ∀𝑘.

Assumption 3. The sequences {𝑒
𝑖
(𝑘)} and {𝑢

𝑖
(𝑘), 𝑦
𝑖
(𝑘), 𝑢
𝑗
(𝑘),

𝑦
𝑗
(𝑘)} are independent.

Let us consider a stochastic large-scale system, which
consists of N SISO interconnected nonlinear subsystems
𝑆
1
, . . . , 𝑆N, with unknown time-varying parameters. This

considered system can be described by the proposed Ham-
merstein model (1). Based on the cited assumptions, we can
write the system output in the following form:

𝑦
𝑖
(𝑘) =

𝑞
−𝑑𝑖𝐵
𝑖,1
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
𝑖
(𝑘)

+

𝑞
−𝑑𝑖𝐵
𝑖,2
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅

+

𝑞
−𝑑𝑖𝐵
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
𝑝1

𝑖
(𝑘)

+

𝐶
𝑖
(𝑞
−1
)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑒
𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝑞
−𝑑𝑖𝑗𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛽
𝑗,𝑟2

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
𝑟2

𝑗
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝑞
−𝑡𝑖𝑗𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛾
𝑗,𝑟3

𝐴
𝑖
(𝑞−1, 𝑘)

𝑦
𝑟3

𝑗
(𝑘) ,

(14)

with 𝐵
𝑖,𝑟1
(𝑞
−1
, 𝑘) = 𝛼

𝑖,𝑟1
𝐵
𝑖
(𝑞
−1
, 𝑘), 𝑟

1
= 1, . . . , 𝑝

1
, 𝑟
2

=

1, . . . , 𝑝
2
, and 𝑟

3
= 1, . . . , 𝑝

3
.

Or, equivalently, at the discrete-time 𝑘 + 𝑑
𝑖
+ 1,

𝑦
𝑖
(𝑘 + 𝑑

𝑖
+ 1) =

𝑞𝐵
𝑖,1
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
𝑖
(𝑘) +

𝑞𝐵
𝑖,2
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅ +

𝑞𝐵
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑢
𝑝1

𝑖
(𝑘) +

𝐶
𝑖
(𝑞
−1
)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑒
𝑖
(𝑘 + 𝑑

𝑖
+ 1)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛽
𝑗,𝑟2

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑢
𝑟2

𝑗
(𝑘 − 𝑑

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛾
𝑗,𝑟3

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑦
𝑟3

𝑗
(𝑘 − 𝑡

𝑖𝑗
+ 𝑑
𝑖
+ 1) .

(15)

The problem arising here consists in the development of a
self-tuning regulator with explicit scheme that can be applied
to the considered stochastic system, which is described by
the discrete model (15). The formulation of this control
problem can be ensured starting from the minimization of
the following quadratic criterion:

𝐽
𝑖
(𝑘 + 𝑑

𝑖
+ 1)

= É [(𝑦
𝑖
(𝑘 + 𝑑

𝑖
+ 1) − 𝑦

𝑖𝑟
(𝑘 + 𝑑

𝑖
+ 1))
2

] ,
(16)

where É represents the expected value and 𝑦
𝑖𝑟
(𝑘 + 𝑑

𝑖
+ 1) is

the reference output of the considered system 𝑆
𝑖
.

By carrying out an Euclidian division of 𝐶
𝑖
(𝑞
−1
)/𝐴
𝑖
(𝑞
−1,

𝑘) until the order 𝑑
𝑖
, we can write (15) as follows:

𝑦
𝑖
(𝑘 + 𝑑

𝑖
+ 1) =

𝑞𝐵
𝑖,1
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑢
𝑖
(𝑘) +

𝑞𝐵
𝑖,2
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅ +

𝑞𝐵
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)
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⋅ 𝑢
𝑝1

𝑖
(𝑘) +

𝐺
𝑖
(𝑞
−1
, 𝑘)

𝐴
𝑖
(𝑞−1, 𝑘)

𝑒
𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛽
𝑗,𝑟2

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑢
𝑟2

𝑗
(𝑘 − 𝑑

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) 𝛾
𝑗,𝑟3

𝐴
𝑖
(𝑞−1, 𝑘)

⋅ 𝑦
𝑟3

𝑗
(𝑘 − 𝑡

𝑖𝑗
+ 𝑑
𝑖
+ 1) + 𝐹

𝑖
(𝑞
−1
, 𝑘)

⋅ 𝑒
𝑖
(𝑘 + 𝑑

𝑖
+ 1) ,

(17)

where the polynomials𝐹
𝑖
(𝑞
−1
, 𝑘) and𝐺

𝑖
(𝑞
−1
, 𝑘) are defined by

𝐹
𝑖
(𝑞
−1
, 𝑘) = 1 + 𝑓

𝑖,1
(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅ + 𝑓

𝑖,𝑑𝑖
(𝑘) 𝑞
−𝑑𝑖 ,

𝐺
𝑖
(𝑞
−1
, 𝑘) = 𝑔

𝑖,0
(𝑘) + 𝑔

𝑖,1
(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅

+ 𝑔
𝑖,𝑛𝑖−1

(𝑘) 𝑞
−𝑛𝑖+1.

(18)

These two polynomials are solutions of the equation

𝐶
𝑖
(𝑞
−1
) = 𝐴

𝑖
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘) + 𝑞

−𝑑𝑖−1𝐺
𝑖
(𝑞
−1
, 𝑘) . (19)

Taking into account (14), the system output 𝑦
𝑖
(𝑘 +𝑑

𝑖
+1),

as defined by (17), can be rewritten in the following form:

𝑦
𝑖
(𝑘 + 𝑑

𝑖
+ 1) =

𝐻
𝑖,1
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑖
(𝑘) +

𝐻
𝑖,2
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

⋅ 𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅ +

𝐻
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑝1

𝑖
(𝑘) +

𝐺
𝑖
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

⋅ 𝑦
𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘) 𝛽
𝑗,𝑟2

𝐶
𝑖
(𝑞−1)

⋅ 𝑢
𝑟2

𝑗
(𝑘 − 𝑑

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘) 𝛾
𝑗,𝑟3

𝐶
𝑖
(𝑞−1)

⋅ 𝑦
𝑟3

𝑗
(𝑘 − 𝑡

𝑖𝑗
+ 𝑑
𝑖
+ 1) + 𝐹

𝑖
(𝑞
−1
, 𝑘) 𝑒
𝑖
(𝑘 + 𝑑

𝑖
+ 1) ,

(20)

where the polynomial𝐻
𝑖,𝑟1
(𝑞
−1
, 𝑘) is described as follows:

𝐻
𝑖,𝑟1

(𝑞
−1
, 𝑘) = 𝑞𝐵

𝑖,𝑟1
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘)

= ℎ
𝑖,𝑟11

(𝑘) + ℎ
𝑖,𝑟12

(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅

+ ℎ
𝑖,𝑟1𝑛𝑖+𝑑𝑖

(𝑘) 𝑞
−𝑛𝑖−𝑑𝑖+1,

(21)

with 𝑟
1
= 1, . . . , 𝑝

1
and ℎ
𝑖,𝑟11

(𝑘) = 𝑏
𝑖,1
(𝑘)𝛼
𝑖,𝑟1
.

We can show easily that the quadratic criteria 𝐽
𝑖
(𝑘+𝑑
𝑖
+1),

as given by (16), can be put in the following form:

𝐽
𝑖
(𝑘 + 𝑑

𝑖
+ 1) = [

[

𝐻
𝑖,1
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑖
(𝑘)

+

𝐻
𝑖,2
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅ +

𝐻
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑝1

𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑟2

𝑗
(𝑘 − 𝑑

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝑊
𝑖𝑗,𝑟3

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑦
𝑟3

𝑗
(𝑘 − 𝑡

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

𝐺
𝑖
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑦
𝑖
(𝑘) − 𝑦

𝑖𝑟
(𝑘 + 𝑑

𝑖
+ 1)]

]

2

+ [1

+ 𝑓
2

𝑖,1
(𝑘) + 𝑓

2

𝑖,2
(𝑘) + ⋅ ⋅ ⋅ + 𝑓

2

𝑖,𝑑𝑖
(𝑘)] 𝜎

2

𝑖
,

(22)

where the polynomials 𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘) and 𝑊

𝑖𝑗,𝑟3
(𝑞
−1
, 𝑘) are

defined as follows:

𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘) = 𝛽

𝑗,𝑟2
𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘)

= V
𝑖𝑗,𝑟21

(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅

+ V
𝑖𝑗,𝑟2𝑛𝑖+𝑑𝑖

(𝑘) 𝑞
−𝑛𝑖−𝑑𝑖 ,

(23)

𝑊
𝑖𝑗,𝑟3

(𝑞
−1
, 𝑘) = 𝛾

𝑗,𝑟3
𝐴
𝑖𝑗
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘)

= 𝑤
𝑖𝑗,𝑟31

(𝑘) 𝑞
−1
+ ⋅ ⋅ ⋅

+ 𝑤
𝑖𝑗,𝑟3𝑛𝑖+𝑑𝑖

(𝑘) 𝑞
−𝑛𝑖−𝑑𝑖 .

(24)

The optimal controller 𝑢
𝑖
(𝑘) making it possible to mini-

mize the quadratic criterion, as given by (16), is obtained by
solving the following equation:

𝐻
𝑖,1
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑖
(𝑘) +

𝐻
𝑖,2
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
2

𝑖
(𝑘) + ⋅ ⋅ ⋅

+

𝐻
𝑖,𝑝1

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑝1

𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝2

𝑟2=1
𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑢
𝑟2

𝑗
(𝑘 − 𝑑

𝑖𝑗
+ 𝑑
𝑖
+ 1)

+

𝐺
𝑖
(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑦
𝑖
(𝑘)

+

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
∑
𝑝3

𝑟3=1
𝑊
𝑖𝑗,𝑟3

(𝑞
−1
, 𝑘)

𝐶
𝑖
(𝑞−1)

𝑦
𝑟3

𝑗
(𝑘 − 𝑡

𝑖𝑗
+ 𝑑
𝑖
+ 1)

− 𝑦
𝑖𝑟
(𝑘 + 𝑑

𝑖
+ 1) = 0.

(25)
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Equation (25) can be written in the following polynomial
form:
𝑀
𝑖,𝑝1

(𝑘) 𝑢
𝑝1

𝑖
(𝑘) + 𝑀

𝑖,𝑝1−1
(𝑘) 𝑢
𝑝1−1

𝑖
(𝑘) + ⋅ ⋅ ⋅

+ 𝑀
𝑖,2
(𝑘) 𝑢
2

𝑖
(𝑘) + 𝑀

𝑖,1
(𝑘) 𝑢
𝑖
(𝑘) + 𝑀

𝑖,0
(𝑘) = 0.

(26)

It should be noted that (25) admits real and/or complex
solutions for each interconnected subsystem 𝑆

𝑖
, 1 ≤ 𝑖 ≤ 𝑁.

In this instance, we regard only the real solutions, in order to
have a feasible controller 𝑢

𝑖
(𝑘). Moreover, if we get more than

a real solution, the choice of the optimal control law 𝑢
𝑖
(𝑘), to

minimize the effects of the noise acting on each output of the
interconnected nonlinear system, can be conducted based on
the following relation:

󵄨󵄨󵄨󵄨𝑢𝑖𝑟 (𝑘) − 𝑢𝑖0
󵄨󵄨󵄨󵄨 = min, (27)

where 𝑢
𝑖𝑟
(𝑘) is the real solutions obtained starting from

solving (25) and 𝑢
𝑖0
represents the optimal controller for the

considered system, allowing the system output to follow the
desired constant reference signal with a minimum variance
output.

The implementation of the optimal control law 𝑢
𝑖
(𝑘)

requires the knowledge of the different parameters involved
in the polynomials 𝐶

𝑖
(𝑞
−1
), 𝐻

𝑖,𝑟1
(𝑞
−1
, 𝑘), 𝐺

𝑖
(𝑞
−1
, 𝑘),

𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘), and 𝑊

𝑖𝑗,𝑟3
(𝑞
−1
, 𝑘), 𝑟

1
= 1, . . . , 𝑝

1
. In this

context, we need to add a parametric estimation step in the
implementation.

In general, the minimum variance self-tuning regulator
with explicit scheme can proceed by considering the follow-
ing three steps.

Step 1. Estimate the different parameters involved in the
Hammerstein mathematical model (1), based on the RELS
algorithm.

Step 2. Determine the parameters of the polynomials
𝐹
𝑖
(𝑞
−1
, 𝑘) and 𝐺

𝑖
(𝑞
−1
, 𝑘) by resolution of the polynomial

(19) and based on the estimated polynomials 𝐴̂
𝑖
(𝑞
−1
, 𝑘)

and 𝐶̂
𝑖
(𝑞
−1
, 𝑘). We can also calculate the parameters of

𝐻
𝑖,𝑟1
(𝑞
−1
, 𝑘), 𝑟

1
= 1, . . . , 𝑝

1
, as given by (21), from the

knowledge of the estimated parameters values 𝛼̂
𝑖,𝑟1
(𝑘) and

the values of the parameters involved in the polynomials
𝐵̂
𝑖
(𝑞
−1
, 𝑘) and 𝐹

𝑖
(𝑞
−1
, 𝑘). Similarly, from the knowledge of

the estimated parameters values 𝛽̂
𝑗,𝑟2
(𝑘), 𝑟
2
= 1, . . . , 𝑝

2
, and

the values of the parameters involved in the polynomials
𝐵̂
𝑖𝑗
(𝑞
−1
, 𝑘) and 𝐹

𝑖
(𝑞
−1
, 𝑘), we can calculate the parameters of

the polynomial 𝑉
𝑖𝑗,𝑟2

(𝑞
−1
, 𝑘), as defined by (23). In addition

to that, we can compute the parameters of the polynomial
𝑊
𝑖𝑗,𝑟3

(𝑞
−1
, 𝑘), as described by (24), from the knowledge of

the estimated parameters values 𝛾̂
𝑗,𝑟3
(𝑘), 𝑟
3
= 2, . . . , 𝑝

3
, and

the values of the parameters involved in the polynomials
𝐴̂
𝑖𝑗
(𝑞
−1
, 𝑘) and 𝐹

𝑖
(𝑞
−1
, 𝑘).

Step 3. Compute the control law 𝑢
𝑖
(𝑘) starting from the

resolution of polynomial (25) or (26).

It should be noted that the developed self-tuning reg-
ulator uses real-time estimation of the parameters of the
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Figure 2: Oil circuit diagram of the considered interconnected
hydraulic system.
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Figure 3: Interaction structure of the considered interconnected
nonlinear subsystems 𝑆

1
and 𝑆

2
.

interconnected nonlinear system 𝑆
𝑖
, 1 ≤ 𝑖 ≤ 𝑁. In addition to

that, the control law is obtained by solving (25) and based on
relation (25), which must be made at each iteration step.

Let us note that the stability of the interconnected
nonlinear system is ensured in closed loop if the controller
𝑢
𝑖
(𝑘) < ∞ when 𝑘 tends to infinity. This occurs to show

the conditions which allow obtaining a bounded control
signal.These requirements can be achieved on the basis of an
extended version ofKharitonov’smethod.Thiswill be studied
in a future research.

4. Simulation Results

The interconnected hydraulic system that we will deal with in
this section is installed in petroleum society and depicted in
Figure 2, in order to test the performance and the efficiency of
the developed self-tuning regulator.This process is composed
of two separators (V120 and V121), four motor-pumps ship-
ments (P300, P305, P310, and P315), and four valves controls
(LCV120, LCV121, LCV130, and LCV413).The docket of these
separators is to deal with the fluid reservoir as it arrives from
other separation stages, to segregate the three phases, water,
oil, and gas, with stabilization of oil level in each one.

Figure 3 represents the interaction structure of the con-
sidered two interconnected subsystems 𝑆

1
and 𝑆
2
.

This considered system 𝑆
𝑖
, 𝑖 = 1, 2, can be described by

the following mathematical model:

𝐴
𝑖
(𝑞
−1
, 𝑘) 𝑦
𝑖
(𝑘) = 𝑞

−1
𝐵
𝑖
(𝑞
−1
, 𝑘) ℎ
𝑢𝑖

𝑖
(𝑘)

+

2

∑

𝑗=1,𝑗 ̸=𝑖

𝑞
−2
𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) ℎ
𝑢𝑗

𝑗
(𝑘)

+ 𝐶
𝑖
(𝑞
−1
) 𝑒
𝑖
(𝑘) ,

(28)
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where the polynomials 𝐴
𝑖
(𝑞
−1
, 𝑘), 𝐵

𝑖
(𝑞
−1
, 𝑘), 𝐵

𝑖𝑗
(𝑞
−1
, 𝑘), and

𝐶
𝑖
(𝑞
−1
) are defined by

𝐴
𝑖
(𝑞
−1
, 𝑘) = 1 + 𝑎

𝑖,1
(𝑘) 𝑞
−1
+ 𝑎
𝑖,2
(𝑘) 𝑞
−2
,

𝐵
𝑖
(𝑞
−1
, 𝑘) = 𝑏

𝑖,1
(𝑘) 𝑞
−1
+ 𝑏
𝑖,2
(𝑘) 𝑞
−2
,

𝐵
𝑖𝑗
(𝑞
−1
, 𝑘) = 𝑏

𝑖𝑗,1
(𝑘) 𝑞
−1
+ 𝑏
𝑖𝑗,2

(𝑘) 𝑞
−2
,

𝐶
𝑖
(𝑞
−1
) = 1 + 𝑐

𝑖,1
𝑞
−1
.

(29)

The nonlinear statics parts of the considered system are
represented by the following polynomials:

ℎ
𝑢𝑖

𝑖
(𝑘) = 𝛼

𝑖,1
𝑢
𝑖
(𝑘) + 𝛼

𝑖,2
𝑢
2

𝑖
(𝑘) ,

ℎ
𝑢𝑗

𝑗
(𝑘) = 𝛽

𝑗,1
𝑢
𝑗
(𝑘) + 𝛽

𝑗,2
𝑢
2

𝑗
(𝑘) .

(30)

Wewill apply in this simulation study the controlmethod,
developed in Section 3, to each interconnected nonlinear
system 𝑆

𝑖
, which is described by themathematicalmodel (28).

Thus, we can express the interconnected system output 𝑦
𝑖
(𝑘),

𝑖 = 1, 2, by the following developed forms:

𝑦
1
(𝑘) = −𝑎

1,1
(𝑘) 𝑦
1
(𝑘 − 1) − 𝑎

1,2
(𝑘) 𝑦
1
(𝑘 − 2)

+ 𝛼
1,1
𝑢
1
(𝑘 − 2) + 𝑏

1,2
(𝑘) 𝛼
1,1
𝑢
1
(𝑘 − 3)

+ 𝛼
1,2
𝑢
2

1
(𝑘 − 2) + 𝑏

1,2
(𝑘) 𝛼
1,2
𝑢
2

1
(𝑘 − 3)

+ 𝛽
2,1
𝑢
2
(𝑘 − 3) + 𝑏

12,2
(𝑘) 𝛽
2,1
𝑢
2
(𝑘 − 4)

+ 𝛽
2,2
𝑢
2

2
(𝑘 − 3) + 𝑏

12,2
(𝑘) 𝛽
2,2
𝑢
2

2
(𝑘 − 4)

+ 𝑒
1
(𝑘) + 𝑐

1,1
𝑒
1
(𝑘 − 1) ,

(31)

𝑦
2
(𝑘) = −𝑎

2,1
(𝑘) 𝑦
2
(𝑘 − 1) − 𝑎

2,2
(𝑘) 𝑦
2
(𝑘 − 2)

+ 𝛼
2,1
𝑢
2
(𝑘 − 2) + 𝑏

2,2
(𝑘) 𝛼
2,1
𝑢
2
(𝑘 − 3)

+ 𝛼
2,2
𝑢
2

2
(𝑘 − 2) + 𝑏

2,2
(𝑘) 𝛼
2,2
𝑢
2

2
(𝑘 − 3)

+ 𝛽
1,1
𝑢
1
(𝑘 − 3) + 𝑏

21,2
(𝑘) 𝛽
1,1
𝑢
1
(𝑘 − 4)

+ 𝛽
1,2
𝑢
2

1
(𝑘 − 3) + 𝑏

21,2
(𝑘) 𝛽
1,2
𝑢
2

1
(𝑘 − 4)

+ 𝑒
2
(𝑘) + 𝑐

2,1
𝑒
2
(𝑘 − 1) .

(32)

In this example of our numerical simulation, the noise
sequences {𝑒

1
(𝑘)} and {𝑒

2
(𝑘)} are assumed to be independent

and corresponding to a Gaussian distributionwith zeromean
and variances 𝜎2

1
= 0.0845 and 𝜎2

2
= 0.0931, respectively.

The output 𝑦
1
(𝑘) of the interconnected nonlinear subsys-

tem 𝑆
1
can be rewritten as follows:

𝑦
1
(𝑘) = 𝜃

𝑇

1
(𝑘) 𝜓
1
(𝑘) + 𝑒

1
(𝑘) , (33)

where the parameters vector 𝜃
1
(𝑘) and the observations

vector 𝜓
1
(𝑘) are given as follows:

𝜃
𝑇

1
(𝑘) = [𝑎

1,1
(𝑘) 𝑎

1,2
(𝑘) 𝛼

1,1
ℓ
1,21

(𝑘) 𝛼
1,2

ℓ
1,22

(𝑘)

𝛽
2,1

𝑠
12,21

(𝑘) 𝛽
2,2

𝑠
12,22

(𝑘) 𝑐
1,1
] ,

(34)

𝜓
𝑇

1
(𝑘) = [−𝑦

1
(𝑘 − 1) −𝑦

1
(𝑘 − 2) 𝑢

1
(𝑘 − 2) 𝑢

1
(𝑘 − 3)

𝑢
2

1
(𝑘 − 2) 𝑢

2

1
(𝑘 − 3) 𝑢

2
(𝑘 − 3) 𝑢

2
(𝑘 − 4)

𝑢
2

2
(𝑘 − 3) 𝑢

2

2
(𝑘 − 4) 𝑒

1
(𝑘 − 1)] ,

(35)

with ℓ
1,21

(𝑘) = 𝑏
1,2
(𝑘)𝛼
1,1
, ℓ
1,22

(𝑘) = 𝑏
1,2
(𝑘)𝛼
1,2
, 𝑠
12,21

(𝑘) =

𝑏
12,2

(𝑘)𝛽
2,1
, and 𝑠

12,22
(𝑘) = 𝑏

12,2
(𝑘)𝛽
2,2
.

Similarly, the output 𝑦
2
(𝑘) of the interconnected nonlin-

ear subsystem 𝑆
2
can be rewritten in the following form:

𝑦
2
(𝑘) = 𝜃

𝑇

2
(𝑘) 𝜓
2
(𝑘) + 𝑒

2
(𝑘) , (36)

where the parameters vector 𝜃
2
(𝑘) and the observations

vector 𝜓
2
(𝑘) are described by

𝜃
𝑇

2
(𝑘) = [𝑎

2,1
(𝑘) 𝑎

2,2
(𝑘) 𝛼

2,1
ℓ
2,21

(𝑘) 𝛼
2,2

ℓ
2,22

(𝑘)

𝛽
1,1

𝑠
21,21

(𝑘) 𝛽
1,2

𝑠
21,22

(𝑘) 𝑐
2,1
] ,

(37)

𝜓
𝑇

2
(𝑘) = [−𝑦

2
(𝑘 − 1) −𝑦

2
(𝑘 − 2) 𝑢

2
(𝑘 − 2) 𝑢

2
(𝑘 − 3)

𝑢
2

2
(𝑘 − 2) 𝑢

2

2
(𝑘 − 3) 𝑢

1
(𝑘 − 3) 𝑢

1
(𝑘 − 4)

𝑢
2

1
(𝑘 − 3) 𝑢

2

1
(𝑘 − 4) 𝑒

2
(𝑘 − 1)] ,

(38)

with ℓ
2,21

(𝑘) = 𝑏
2,2
(𝑘)𝛼
2,1
, ℓ
2,22

(𝑘) = 𝑏
2,2
(𝑘)𝛼
2,2
, 𝑠
21,21

(𝑘) =

𝑏
21,2

(𝑘)𝛽
1,1
, and 𝑠

21,22
(𝑘) = 𝑏

21,2
(𝑘)𝛽
1,2
.

In the first step of the control method, we propose to
estimate the parameters involved in the parameter vectors
(34) and (37) using the RELS algorithm (12). The second step
is reserved to the resolution of the polynomial equation:

𝐶
𝑖
(𝑞
−1
) = 𝐴

𝑖
(𝑞
−1
, 𝑘) 𝐹
𝑖
(𝑞
−1
, 𝑘) + 𝑞

−2
𝐺
𝑖
(𝑞
−1
, 𝑘) . (39)

The resolution of (39) permits determining the parameters of
the polynomials:

𝐹
𝑖
(𝑞
−1
, 𝑘) = 1 + 𝑓

𝑖,1
(𝑘) 𝑞
−1
,

𝐺
𝑖
(𝑞
−1
, 𝑘) = 𝑔

𝑖,0
(𝑘) + 𝑔

𝑖,1
(𝑘) 𝑞
−1
,

(40)

with

𝑓
𝑖,1
(𝑘) = 𝑐̂

𝑖,1
(𝑘) − 𝑎̂

𝑖,1
(𝑘) ,

𝑔
𝑖,0
(𝑘) = −𝑎̂

𝑖,1
(𝑘) 𝑓
𝑖,1
(𝑘) − 𝑎̂

𝑖,2
(𝑘) ,

𝑔
𝑖,1
(𝑘) = −𝑎̂

𝑖,2
(𝑘) 𝑓
𝑖,1
(𝑘) .

(41)

As for the third step, it concerns resolving the following
equation:

𝑀
𝑖,2
(𝑘) 𝑢
2

𝑖
(𝑘) + 𝑀

𝑖,1
(𝑘) 𝑢
𝑖
(𝑘) + 𝑀

𝑖,0
(𝑘) = 0, (42)

where

𝑀
𝑖,2
(𝑘) = ℎ

𝑖,21
(𝑘) ,

𝑀
𝑖,1
(𝑘) = ℎ

𝑖,11
(𝑘) ,

𝑀
𝑖,0
(𝑘) = ℎ

𝑖,12
(𝑘) 𝑢
𝑖
(𝑘 − 1) + ℎ

𝑖,13
(𝑘) 𝑢
𝑖
(𝑘 − 2)

+ ℎ
𝑖,22

(𝑘) 𝑢
2

𝑖
(𝑘 − 1)

+ ℎ
𝑖,23

(𝑘) 𝑢
2

𝑖
(𝑘 − 2) + 𝑔

𝑖,0
(𝑘) 𝑦
𝑖
(𝑘)

+ 𝑔
𝑖,1
(𝑘) 𝑦
𝑖
(𝑘 − 1) + V

𝑖𝑗,11
(𝑘) 𝑢
𝑗
(𝑘 − 1)
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+ V
𝑖𝑗,12

(𝑘) 𝑢
𝑗
(𝑘 − 2)

+ V
𝑖𝑗,13

(𝑘) 𝑢
𝑗
(𝑘 − 3)

+ V
𝑖𝑗,21

(𝑘) 𝑢
2

𝑗
(𝑘 − 1)

+ V
𝑖𝑗,22

(𝑘) 𝑢
2

𝑗
(𝑘 − 2)

+ V
𝑖𝑗,23

(𝑘) 𝑢
2

𝑗
(𝑘 − 3) − 𝑦

𝑖𝑟
(𝑘 + 2)

− 𝑐̂
𝑖,1
(𝑘) 𝑦
𝑖𝑟
(𝑘 + 1) ,

(43)

with
ℎ
𝑖,11

(𝑘) = 𝛼̂
𝑖,1
(𝑘) ,

ℎ
𝑖,12

(𝑘) = 𝛼̂
𝑖,1
(𝑘) (𝑓

𝑖,1
(𝑘) + 𝑏̂

𝑖,2
(𝑘)) ,

ℎ
𝑖,13

(𝑘) = 𝛼̂
𝑖,1
(𝑘) 𝑏
𝑖,2
(𝑘) 𝑓
𝑖,1
(𝑘) ,

ℎ
𝑖,21

(𝑘) = 𝛼̂
𝑖,2
(𝑘) ,

ℎ
𝑖,22

(𝑘) = 𝛼̂
𝑖,2
(𝑘) (𝑓

𝑖,1
(𝑘) + 𝑏̂

𝑖,2
(𝑘)) ,

ℎ
𝑖,23

(𝑘) = 𝛼̂
𝑖,2
(𝑘) 𝑏
𝑖,2
(𝑘) 𝑓
𝑖,1
(𝑘) ,

V
𝑖𝑗,11

(𝑘) = 𝛽̂
𝑗,1
(𝑘) ,

V
𝑖𝑗,12

(𝑘) = 𝛽̂
𝑗,1
(𝑘) (𝑓

𝑖,1
(𝑘) + 𝑏

𝑖𝑗,2
(𝑘)) ,

V
𝑖𝑗,13

(𝑘) = 𝑓
𝑖,1
(𝑘) 𝑏̂
𝑖𝑗,2

(𝑘) 𝛽̂
𝑗,1
(𝑘) ,

V
𝑖𝑗,21

(𝑘) = 𝛽̂
𝑗,2
(𝑘) ,

V
𝑖𝑗,22

(𝑘) = 𝛽̂
𝑗,2
(𝑘) (𝑓

𝑖,1
(𝑘) + 𝑏

𝑖𝑗,2
(𝑘)) ,

V
𝑖𝑗,23

(𝑘) = 𝑓
𝑖,1
(𝑘) 𝑏̂
𝑖𝑗,2

(𝑘) 𝛽̂
𝑗,2
(𝑘) ,

(44)

with 𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖.
Based on discriminant Δ = 𝑀

2

𝑖,1
(𝑘)−4𝑀

𝑖,2
(𝑘)𝑀
𝑖,0
(𝑘), the

control law 𝑢
𝑖
(𝑘) is given, such that

(i) if Δ > 0, then 𝑢
𝑖
(𝑘) = (−𝑀

𝑖,1
(𝑘) ±

√𝑀
2

𝑖,1
(𝑘) − 4𝑀

𝑖,2
(𝑘)𝑀
𝑖,0
(𝑘))/2𝑀

𝑖,2
(𝑘);

(ii) if Δ = 0, then 𝑢
𝑖
(𝑘) = −𝑀

𝑖,1
(𝑘)/2𝑀

𝑖,2
(𝑘);

(iii) if Δ is strictly negative, then the polynomial (42)
does not admit solution. In this case, we propose that
𝑢
𝑖
(𝑘) = 𝑢

𝑖
(𝑘 − 1).

It can be remarked that the boundedness of these
obtained controllers depends on the parameter 𝑀

𝑖,2
(𝑘) =

ℎ
𝑖,21
(𝑘). However, if this parameter is equal to zero at discrete-

time 𝑘
0
, then the control law𝑢

𝑖
(𝑘
0
)diverges. To overcome this

problem, we must append a test on the estimated parameter
value 𝛼̂

𝑖,2
(𝑘). For example, if 𝛼̂

𝑖,2
(𝑘
0
) = 0, we suppose that

𝛼̂
𝑖,2
(𝑘
0
) = 0, 1 in order to complete the computation of the

controller 𝑢
𝑖
(𝑘
0
) involved in the iterative control algorithm.

The data for the practical implementation of the devel-
oped self-tuning regulator is given below:

Table 1: Statistical average values of the interconnected system.

𝑚
𝜀1(𝑘)

𝜎
2

𝜀1(𝑘)
𝑚
𝜀2(𝑘)

𝜎
2

𝜀2(𝑘)

0.0041 0.1125 −0.0053 0.0885

𝑚
𝐷1(𝑘)

𝜎
2

𝐷1(𝑘)
𝑚
𝐷2(𝑘)

𝜎
2

𝐷2(𝑘)

0.2452 0.1367 0.2438 0.3147

(1) The parameters values intervening in the mathemati-
cal model (31) are chosen as follows: 𝑎

1,1
(𝑘) = −0.88+

0.02 sin(0.2𝑘), 𝑎
1,2
(𝑘) = 0.45+0.03 cos(0.2𝑘), 𝑏

1,2
(𝑘) =

0.32 + 0.03 sin(0.2𝑘), 𝑐
1,1

= 0.25, 𝑏
12,2

(𝑘) = 0.33 +

0.04 sin(0.2𝑘), 𝛼
1,1

= 0.28, 𝛼
1,2

= 0.22, 𝛽
2,1

= 0.33,
and 𝛽

2,2
= 0.23.

(2) The parameters values of the mathematical model
(32) are selected as follows: 𝑎

2,1
(𝑘) = −0.85 +

0.02 sin(0.2𝑘), 𝑎
2,2
(𝑘) = 0.4 + 0.03 cos(0.2𝑘), 𝑏

2,2
(𝑘) =

0.35 + 0.03 sin(0.2𝑘), 𝑐
2,1

= 0.3, 𝑏
21,2

(𝑘) = 0.48 +

0.04 sin(0.2𝑘), 𝛼
2,1

= 0.33, 𝛼
2,2

= 0.23, 𝛽
1,1

= 0.28,
and 𝛽

1,2
= 0.22.

(3) The initial conditions of the estimated parameters
vector 𝜃̂

𝑖
(0) and the adaptation gain matrix 𝑃

𝑖
(0) are

chosen in such away that 𝜃̂
𝑖
(0) = 0 and𝑃

𝑖
(0) = 1000𝐼,

where 𝐼 is the identity matrix, 𝑖 = 1, 2.
(4) The forgetting factors 𝜆

1
(𝑘) and 𝜆

2
(𝑘) are chosen in

such a way that 𝜆
1
(𝑘) = 0.995 and 𝜆

2
(𝑘) = 0.992.

(5) The number of measurements is selected as 𝑀 =

1, . . . , 600.
(6) The two control laws 𝑢

1
(𝑘) and 𝑢

2
(𝑘)must minimize

the following quadratic criteria:

𝐽
𝑖
(𝑘 + 2) = É [(𝑦

𝑖
(𝑘 + 2) − 𝑦

𝑖𝑟
(𝑘 + 2))

2

] , (45)

with 𝑦
1𝑟
(𝑘) = 3.5 and 𝑦

2𝑟
(𝑘) = 4.

Some results of this simulation example of the considered
system 𝑆

𝑖
, 𝑖 = 1, 2, are given. Thus, Figures 4 and 5 represent

the evolution curves of the prediction error, the parametric
distance, and their overall variances for each interconnected
nonlinear subsystem.

Table 1 presents the statistical average values of the pre-
diction errors 𝜀

1
(𝑘) and 𝜀

2
(𝑘), the parametric distances𝐷

1
(𝑘)

and 𝐷
2
(𝑘), and their overall variances 𝜎2

𝜀1
(𝑘), 𝜎2
𝐷1
(𝑘), 𝜎2
𝜀2
(𝑘),

and 𝜎2
𝐷2
(𝑘), where the statistical average and the variance of

the different sizes illustrated in Table 1 can be made starting
from the calculation of the following expressions:

𝑚
𝑋
=
∑
600

𝑘=401
[𝑋]

200
,

𝜎
2

𝑋
=
∑
600

𝑘=401
[𝑋 − 𝑚

𝑋
]
2

200
.

(46)

It can be remarked that the parametric distances (statisti-
cal average) have some quite low values. We can remark also
that the shapes of prediction errors have some relatively low
values too. Consequently, the evolution curves of the different
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1
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Table 2: Statistical average values of the controllers and the outputs
signals.

𝑚
𝑢1

𝜎
2

𝑢1
𝑚
𝑢2

𝜎
2

𝑢2

0.5942 0.5736 1.7683 0.8629

𝑚
𝑦1

𝜎
2

𝑦1
𝑚
𝑦2

𝜎
2

𝑦2

3.4942 0.1822 4.0217 0.1448

elements, as delineated in Figures 4 and 5, indicate the good
quality of the estimate, which is obtained using the RELS
algorithm (12). This estimate quality ensures exact quality of
control, and it is justified by Figures 6 and 7, which present
the evolution curves of the control laws 𝑢

1
(𝑘) and 𝑢

2
(𝑘), the

system outputs 𝑦
1
(𝑘) and 𝑦

2
(𝑘), and their variances 𝜎2

𝑦1
(𝑘),

𝜎
2

𝑦2
(𝑘), 𝜎2
𝑢1
(𝑘), and 𝜎2

𝑢2
(𝑘).

Table 2 presents the statistical average values𝑚
𝑢𝑖
and𝑚

𝑦𝑖

of the control law 𝑢
𝑖
(𝑘) and the system output 𝑦

𝑖
(𝑘), respec-

tively, and their variances 𝜎2
𝑢𝑖
and 𝜎2
𝑦𝑖
for each interconnected

system 𝑆
𝑖
, 𝑖 = 1, 2. These values were obtained using (46).

Note that the evolution curves of the variances 𝜎2
𝑦1
(𝑘) and

𝜎
2

𝑦2
(𝑘) converge towards minimum values. Therefore, exact

regulation is achieved with the developed self-tuning con-
troller despite the parameters variations of the interconnected
nonlinear system, the presence of interactions signals, and
disturbances interim on each interconnected system output.

5. Conclusions

The self-tuning control problem of large-scale nonlinear
discrete-time systems composed of several SISO intercon-
nected nonlinear stochastic subsystems has been proposed
in this paper. Each interconnected nonlinear subsystem
is described by Hammerstein mathematical model with
unknown and time-varying parameters. A recursive algo-
rithm for self-tuning regulation of large-scale interconnected
stochastic systems has been developed on the basis of the
minimum variance approach with explicit scheme. The pre-
sented adaptive control algorithm requires three steps at each
control cycle. The general algorithm proposed here is com-
bined with a real-time estimation step and it is carried out to
solve the regulation problem for this class of interconnected
discrete-time systems by reducing the disturbances acting on
the output.The estimation step has been achieved through the
adjustable model method and the least-squares techniques.
An illustrative simulation example of hydraulic system was
treated in order to validate our developed theoretical results.
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