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We consider the existence of global solutions and their moment boundedness for stochastic multipantograph equations. By the idea
of Lyapunov function, we impose some polynomial growth conditions on the coefficients of the equation which enables us to study
the boundedness more applicably. Methods and techniques developed here have the potential to be applied in other unbounded
delay stochastic differential equations.

1. Introduction

Delay differential equations (DDEs) play an important role in
applied mathematics owing to providing a powerful model of
many phenomena, such as some physical applications with
noninstant transmission phenomena, neural networks, or
othermemory processes, and specially biologicalmotivations
(e.g., [1–3]) like species’ growth or incubating time on disease
models among many others.

An interesting case of DDEs which is the subject of a lot
of papers is the pantograph equation:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞𝑡)) , 𝑡 ≥ 0

𝑥 (0) = 𝑥0
,

(1)

where 0 < 𝑞 ≤ 1, 𝑥
0
∈ R𝑛. The name 𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ originated

from the work of Ockendon and Tayler [4] on the collection
of current by the pantograph head of an electric locomotive.
The pantograph equations appeared in modeling of various
problems such as number theory, astrophysics, nonlinear
dynamical systems, biology, economy, quantum mechanics,

and electrodynamics. For some applications of this type of
equations, we refer to [4–8].

Since any realistic systems are inevitably subject to envi-
ronmental noise, the stochastic pantograph equation

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞𝑡)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞𝑡)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥

0

(2)

therefore receivesmore andmore attention. Fan et al. [9] have
given the sufficient conditions of existence and uniqueness
of the solutions and convergence of semi-implicit Euler
methods for (2). Appleby and Buckwar [10] have studied
the asymptotic growth and decay properties of solutions of
the linear stochastic pantograph equation with multiplicative
noise. For more literatures we refer the interested reader to
[11–13].

Properties of the analytic solution of (1) and (2) as well as
numerical methods have been studied by several authors, for
example, Lü and Cui [14], Iserles [15, 16], Liu et al. [17], and
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Appleby and Buckwar [10]. A more general form than (1) is
the multipantograph equation; it reads

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞

1
𝑡) , 𝑥 (𝑞

2
𝑡) , . . . , 𝑥 (𝑞

𝐿
𝑡)) ,

𝑡 ≥ 0,

𝑥 (0) = 𝑥0
,

(3)

where 0 < 𝑞
1
< 𝑞

2
< ⋅ ⋅ ⋅ < 𝑞

𝐿
< 1. Equation (3) was also

studied by many authors numerically and analytically (see,
e.g., [18–20] and the references cited therein).

However, to the best of our knowledge, there are no
corresponding numerical and analytical results on stochastic
multipantograph equations which also have numerous appli-
cations as (2) in engineering and science. It has the form

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞1
𝑡) , . . . , 𝑥 (𝑞

𝐿
𝑡)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑞

1
𝑡) , . . . , 𝑥 (𝑞

𝐿
𝑡)) 𝑑𝑤 (𝑡) ,

𝑥 (0) = 𝑥0
, 𝑡 ≥ 0,

(4)

where 0 < 𝑞
1
< 𝑞

2
< ⋅ ⋅ ⋅ < 𝑞

𝐿
< 1, 𝑓 : R

+
× R𝑛(𝐿+1) →

R𝑛, and 𝑔 : R
+
× R𝑛(𝐿+1) → R𝑛×𝑚. In this paper, we

mainly study the asymptotic properties of the analytic solu-
tion of (4). Owing to the fact that the delay is unbounded,
many methods which are useful for the bounded delay
systems are inefficient or impossible for these systems. For
example, some classical techniques such as Lyapunov direct
methods in [21–23] cannot be transferred directly to the
study of boundedness properties for unbounded delay equa-
tion (4). By introducing a decay function to control the
unbounded delay term, we develop the traditional techniques
like Lyapunov directmethods to be applied in the pantograph
equations’ cases.

It is well known for stochastic differential equations that
the linear growth condition plays an important role in sup-
pressing the potential explosion of solutions and guarantees
the existence of the global solutions (cf. [22–25]). This paper,
without the linear growth condition, shows that (4) almost
surely makes a global solution 𝑥(𝑡, 𝑥

0
) and this solution is

bounded in the sense

lim sup
𝑡→∞

E








𝑥 (𝑡, 𝑥

0
)









𝑝
≤ 𝐾

𝑝
, (5)

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

E








𝑥 (𝑠, 𝑥

0
)









𝑞
𝑑𝑠 ≤ 𝐿

𝑞
, (6)

where 𝑝, 𝑞,𝐾
𝑝
, and 𝐿

𝑞
are positive constants independent of

the initial data 𝑥
0
.

The content of the paper is as follows. In Section 2, we
give somenecessary notations anduseful lemmas. Section 3 is
devoted to presenting a general theorem for the existence and
boundedness of the global solution. In Section 4, we apply
Theorem 4 to obtain two useful criteria which can be easily
verifiable in applications. Two examples are provided to show
how our results will be applied in Section 5. Further remarks
are made to conclude the paper in the final section.

2. Some Preliminaries

Throughout this paper, unless otherwise specified, we use the
following notations. Let (Ω,F,P) be a complete probability
space with a filtration {F

𝑡
}

𝑡≥0
satisfying the usual conditions;

that is, it is right continuous and increasingwhileF
0
contains

all P-null sets. Let 𝑤(𝑡) be an 𝑚-dimensional Brownian
motion defined on the probability space. Let | ⋅ | be the
Euclidean norm inR𝑛. If𝐴 is a vector or matrix, its transpose
is denoted by 𝐴𝑇; if 𝐴 is a matrix, its trace norm is denoted
by |𝐴| = √trace(𝐴𝑇𝐴). Let R

+
= [0,∞); R

×
= R \ {0} and

R𝑛
×
= R𝑛 \ {0}.
Moreover, let 𝐶2(R𝑛;R

+
) denote the family of all func-

tions 𝑉(𝑥) from R𝑛 to R
+
which are continuously twice

differentiable. For all 𝑡 ≥ 0, 𝑥 ∈ R𝑛, and 𝑌 ∈ R𝑛×𝐿 and any
𝑉(𝑥) ∈ 𝐶

2
(R𝑛;R

+
), define a functionL𝑉 : R

+
×R𝑛×R𝑛×𝐿 →

R by

L𝑉 (𝑡, 𝑥, 𝑌)

= 𝑉

𝑥
(𝑥) 𝑓 (𝑡, 𝑥, 𝑌)

+

1

2

trace [𝑔𝑇 (𝑡, 𝑥, 𝑌)𝑉
𝑥𝑥
(𝑥) 𝑔 (𝑡, 𝑥, 𝑌)] ,

(7)

where 𝑌 = (𝑦
1
, 𝑦

2
, . . . , 𝑦

𝐿
) ∈ R𝑛×𝐿,

𝑉

𝑥 (
𝑥) = (

𝜕𝑉 (𝑥)

𝜕𝑥

1

,

𝜕𝑉 (𝑥)

𝜕𝑥

2

, . . . ,

𝜕𝑉 (𝑥)

𝜕𝑥

𝑛

) ,

𝑉

𝑥𝑥
(𝑥) = [

𝜕

2
𝑉 (𝑥)

𝜕𝑥

𝑖
𝜕𝑥

𝑗

]

𝑛×𝑛

.

(8)

Thus, if 𝑥(𝑡) is a solution of (4), by Itô’s formula, we have

𝑑𝑉 (𝑥 (𝑡)) = 𝐿𝑉 (𝑥 (𝑡)) 𝑑𝑡

+ 𝑉

𝑥 (
𝑥 (𝑡)) 𝑔 (𝑡, 𝑥 (𝑡) , 𝑌 (𝑡)) 𝑑𝑤 (𝑡) ,

(9)

where

𝐿𝑉 (𝑥 (𝑡)) =L𝑉 (𝑡, 𝑥 (𝑡) , 𝑌 (𝑡)) , (10)

𝑌 (𝑡) = (𝑦

1
(𝑡) , 𝑦

2
(𝑡) , . . . , 𝑦

𝐿
(𝑡)) ,

𝑦

𝑖 (
𝑡) = 𝑥 (𝑞𝑖

𝑡) , 𝑖 = 1, . . . , 𝐿.

(11)

For coefficients 𝑓 and 𝑔, we will impose the following
standing assumptions.

Assumption 1. Both 𝑓 and 𝑔 satisfy the local Lipschitz
condition.That is, for each 𝑗 = 1, 2, . . ., there exists a constant
𝑐

𝑗
> 0 such that








𝑓 (𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝐿
) − 𝑓 (𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝐿
)









∨









𝑔 (𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝐿
) − 𝑔 (𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝐿
)









≤ 𝑐

𝑗
(|𝑥 − 𝑥| +

𝐿

∑

𝑖=1









𝑦

𝑖
− 𝑦

𝑖









)

(12)

for all 𝑡 ≥ 0 and those 𝑥, 𝑥, 𝑦
𝑖
, 𝑦

𝑖
∈ R𝑛 with |𝑥| ∨ |𝑥| ∨ |𝑦

𝑖
| ∨

|𝑦

𝑖
| ≤ 𝑗 (1 ≤ 𝑖 ≤ 𝐿).
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The following lemma shows the bounded property of
polynomial functions.

Lemma 2. For any ℎ(𝑥) ∈ 𝐶(R𝑛;R
+
) and positive constants 𝑎

and 𝑞, if ℎ(𝑥) = 𝑜(|𝑥|𝑞) as |𝑥| → ∞, then

sup
𝑥∈R𝑛
[−𝑎 |𝑥|

𝑞
+ 𝑜 (|𝑥|

𝑞
)] < ∞. (13)

Proof. Choose 𝑟 > 0 such that ℎ(𝑥) < 𝑎|𝑥|𝑞 when 𝑥 ∈
R𝑛, |𝑥| > 𝑟, which implies that −𝑎|𝑥|𝑞 + 𝑜(|𝑥|𝑞) < 0. We
therefore have

sup
𝑥∈R𝑛
[−𝑎 |𝑥|

𝑞
+ 𝑜 (|𝑥|

𝑞
)]

= sup
𝑥∈R𝑛,|𝑥|≤𝑟

[−𝑎 |𝑥|

𝑞
+ 𝑜 (|𝑥|

𝑞
)] < ∞,

(14)

as required.

To proceed, we need a lemma which will play a cru-
cial role in overcoming the difficulties for the existence of
unbounded delays. For the sake of simplicity, we denote

Φ

𝜀
fl Φ
𝜀
(𝑡, 𝑥, 𝑌) =

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[









𝑦

𝑙









𝛼
𝑘

𝑒

−𝜀𝑞
𝑙
𝑡
− 𝑞

−1

𝑙
|𝑥|

𝛼
𝑘

] , (15)

where 𝑎
𝑘
, 𝛼
𝑘
(1 ≤ 𝑘 ≤ 𝐾) are all positive constants and 𝜀 ≥ 0,

𝑞

𝑙
= 1 − 𝑞

𝑙
. If 𝜀 = 0, then we have

Φ fl Φ (𝑥, 𝑌) =
𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[









𝑦

𝑙









𝛼
𝑘

− 𝑞

−1

𝑙
|𝑥|

𝛼
𝑘

] . (16)

Lemma 3. Assume that 0 ≤ 𝛾 ≤ 𝜀. If 𝑥(𝑡) is a solution to (4)
with initial data 𝑥

0
∈ R𝑛, then

∫

𝑡

0

𝑒

𝛾𝑠
Φ

𝜀
(𝑠, 𝑥 (𝑠) , 𝑌 (𝑠)) 𝑑𝑠 ≤ 0.

(17)

Proof. Let 𝐼 denote the left side of (17). We compute

𝐼 =

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[∫

𝑡

0

𝑒

𝛾𝑠
(𝑒

−𝜀𝑞
𝑙
𝑠 






𝑦

𝑙
(𝑠)









𝛼
𝑘

− 𝑞

−1

𝑙
|𝑥 (𝑠)|

𝛼
𝑘

) 𝑑𝑠]

=

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[∫

𝑡

0

𝑒

𝛾𝑠
𝑒

−𝜀𝑞
𝑙
𝑠 






𝑥 (𝑞

𝑙
𝑠)









𝛼
𝑘

𝑑𝑠

− 𝑞

−1

𝑙
∫

𝑡

0

𝑒

𝛾𝑠
|𝑥 (𝑠)|

𝛼
𝑘

𝑑𝑠]

≤

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[∫

𝑡

0

𝑒

𝛾𝑞
𝑙
𝑠 






𝑥 (𝑞

𝑙
𝑠)









𝛼
𝑘

𝑑𝑠

− 𝑞

−1

𝑙
∫

𝑡

0

𝑒

𝛾𝑠
|𝑥 (𝑠)|

𝛼
𝑘

𝑑𝑠]

≤

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[𝑞

−1

𝑙
∫

𝑞
𝑙
𝑡

0

𝑒

𝛾𝑠
|𝑥 (𝑠)|

𝛼
𝑘

𝑑𝑠

− 𝑞

−1

𝑙
∫

𝑡

0

𝑒

𝛾𝑠
|𝑥 (𝑠)|

𝛼
𝑘

𝑑𝑠]

=

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑎

𝑘
[𝑞

−1

𝑙
∫

𝑞
𝑙
𝑡

𝑡

𝑒

𝛾𝑠
|𝑥 (𝑠)|

𝛼
𝑘

𝑑𝑠] ≤ 0.

(18)

The proof is complete.

3. A General Theorem

In this section, by Lyapunov function techniques, we establish
a general theorem for the existence and boundedness of the
global solution to (4).

Theorem 4. Assume that there exist positive constants 𝜀, 𝑝, 𝑎,
letting the function 𝑉(𝑥) = |𝑥|𝑝, if

L𝑉 (𝑡, 𝑥, 𝑌) + 𝜀𝑉 (𝑥) ≤ Φ
𝜀
− 𝑎 |𝑥|

𝑞
+ 𝑜 (|𝑥|

𝑞
) ,

(𝑡 ≥ 0, 𝑥 ∈ R
𝑛
, 𝑌 ∈ R

𝑛×𝐿
) ,

(19)

where Φ
𝜀
is defined by (15) and L𝑉(𝑡, 𝑥, 𝑌) is defined by (7).

Then, for any given initial data 𝑥
0
∈ R𝑛, there exists a unique

global solution 𝑥(𝑡, 𝑥
0
) (0 ≤ 𝑡 < ∞) to (4) which obeys (5) and

(6).

Proof. For initial data 𝑥
0
∈ R𝑛, the proof will be divided into

three steps.

Step 1 (existence of the global solution). By Assumption 1, there
exists a unique maximal local solution 𝑥(𝑡) = 𝑥(𝑡, 𝑥

0
) (−𝜏

0
≤

𝑡 < 𝜎) to (4), where 𝜎 is the explosion time. Let 𝑘
0
be a

sufficiently large positive number such that |𝑥
0
| ≤ 𝑘

0
. For

each integer 𝑘 ≥ 𝑘
0
, define the stopping time:

𝜎

𝑘
= inf {−𝜏

0
≤ 𝑡 < 𝜎 : 𝑉 (𝑥 (𝑡)) ≥ 𝑘} . (20)

Clearly, 𝜎
𝑘
is increasing and 𝜎

𝑘
→ 𝜎

∞
≤ 𝜎 as 𝑘 → ∞. If we

can show 𝜎
∞
= ∞, a.s., then 𝜎 = ∞ a.s., which implies the

desired result. This is also equivalent to proving that, for any
𝑡 > 0,P(𝜎

𝑘
≤ 𝑡) → 0 as 𝑘 → ∞. Letting 𝑡

𝑘
= 𝑡∧𝜎

𝑘
, by the Itô

formula (19), and noting thatΦ
𝜀
is decreasing in 𝜀, we have

𝑘P (𝜎
𝑘
≤ 𝑡) ≤ E𝑉 (𝑥 (𝑡

𝑘
)) = const

+ E∫
𝑡
𝑘

0

𝐿𝑉 (𝑥 (𝑠)) 𝑑𝑠 ≤ const

+ E∫
𝑡
𝑘

0

[Φ

𝜀 (
𝑠, 𝑥 (𝑠) , 𝑌 (𝑠)) − 𝜀𝑉 (𝑥) − 𝑎 |𝑥 (𝑠)|

𝑞

+ 𝑜 (|𝑥|

𝑞
)] 𝑑𝑠 ≤ const + E∫

𝑡
𝑘

0

[Φ (𝑥 (𝑠) , 𝑌 (𝑠))

+ 𝐾] 𝑑𝑠 ≤ const + 𝐾𝑡,

(21)

where we have used Lemmas 2 and 3. In this paper, const and
𝐾 always represent some positive constants whose values are
not important.
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Therefore,

P (𝜎
𝑘
≤ 𝑡) → 0 as 𝑘 → ∞, (22)

as required.

Step 2 (moment boundedness). Applying the Itô formula and
connecting (19) with Lemmas 2 and 3, we compute

𝑒

𝜀𝑡
E𝑉 (𝑥 (𝑡)) = E𝑉 (𝑥 (0))

+ E∫
𝑡

0

𝑒

𝜀𝑠
[𝐿𝑉 (𝑥 (𝑠)) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

≤ const

+ E∫
𝑡

0

𝑒

𝜀𝑠
[Φ

𝜀 (
𝑠, 𝑥 (𝑠) , 𝑌 (𝑠)) + 𝐾] 𝑑𝑠

≤ const + 𝜀−1𝐾𝑒𝜀𝑡,

(23)

which implies that

lim sup
𝑡→∞

E𝑉 (𝑥 (𝑡)) ≤ 𝜀
−1
𝐾, (24)

as desired.

Step 3 (moment boundedness average in time). By (19), apply-
ing the Itô formula to 𝑉(𝑥) yields

𝑎∫

𝑡

0

E |𝑥 (𝑠)|
𝑞
𝑑𝑠 ≤ E∫

𝑡

0

[−L𝑉 (𝑠, 𝑥 (𝑠) , 𝑌 (𝑠))

+ Φ (𝑥 (𝑠) , 𝑌 (𝑠)) + 𝐾] 𝑑𝑠 ≤ − [E𝑉 (𝑥 (𝑡))

− E𝑉 (𝑥 (0))] + const + 𝐾𝑡 ≤ −E𝑉 (𝑥 (𝑡)) + const

+ 𝐾𝑡 ≤ const + 𝐾𝑡,

(25)

which implies the desired (6). The proof is complete.

Remark 5. In existence of the global solution, it is not
necessary to specify𝑉(𝑥) = |𝑥|𝑝. If the function𝑉(𝑥) satisfies
lim inf

|𝑥|→∞
𝑉(𝑥) = ∞, existence of the global solution still

holds.

After completing the proof of the general theorem, we
continue to examine it in both ways. On one hand, (5) and
(6) are the two main results whose understanding can be
enriched as the following corollary shows.

Corollary 6. Let 𝑥(𝑡) be a positive stochastic process with
properties (5) and (6). If 0 < 𝛾 < 𝑝 < ∞ and 0 < 𝛾 < 𝑞 < ∞,
then

lim sup
𝑡→∞

E |𝑥 (𝑡)|
𝛾
≤ 𝐾

𝛾
,

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

E |𝑥 (𝑠)|
𝛾
𝑑𝑠 ≤ 𝐿

𝛾
,

(26)

where𝐾
𝛾
and 𝐿

𝛾
are positive constants, which may be depend-

ent on 𝐾
𝑝
, 𝐿
𝑞
, and 𝛾, 𝛾.

Proof. By the Lyapunov inequality, for any 𝑝th integrable
random variable𝑋, we have

(E |𝑋|
𝛾
)

1/𝛾
≤ (E |𝑋|

𝑝
)

1/𝑝

,
(27)

which gives the first result. By the Lyapunov inequality, the
Hölder inequality, and (6),

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

E |𝑥 (𝑠)|
𝛾
𝑑𝑠

≤ lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

[E |𝑥 (𝑠)|
𝑞
]

𝛾/𝑞
𝑑𝑠

≤ lim sup
𝑡→∞

1

𝑡

(∫

𝑡

0

𝑑𝑠)

(𝑞−𝛾)/𝑞

[∫

𝑡

0

E |𝑥 (𝑠)|
𝑞
𝑑𝑠]

𝛾/𝑞

= lim sup
𝑡→∞

[

1

𝑡

∫

𝑡

0

E |𝑥 (𝑠)|
𝑞
𝑑𝑠]

𝛾/𝑞

≤ (𝐿

𝑞
)

𝛾/𝑞

.

(28)

This completes the proof.

On the other hand, condition (19) is inconvenient to be
checked because it is unrelated to functions𝑓 and𝑔 explicitly.
To make Theorem 4 more applicable, one natural alternative
is to look for other simplified conditions on𝑓 and𝑔. Applying
(7) to 𝑉 = |𝑥|𝑝 leads to

L𝑉 (𝑡, 𝑥, 𝑌) = 𝑝 |𝑥|
𝑝−2
𝑥

𝑇
𝑓 (𝑡, 𝑥, 𝑌)

+

𝑝

2

|𝑥|

𝑝−2 






𝑔 (𝑡, 𝑥, 𝑌)









2

+

𝑝 (𝑝 − 2)

2

|𝑥|

𝑝−4 








𝑥

𝑇
𝑔 (𝑡, 𝑥, 𝑌)











2

fl 𝐼
1
+ 𝐼

2
+ 𝐼

3
,

(29)

where 𝑌 ∈ R𝑛×𝐿 is defined in (11). By (19), if we can test

𝐼

1
+ 𝐼

2
+ 𝐼

3
≤ Φ

𝜀
(𝑡, 𝑥, 𝑌) − 𝑎 |𝑥|

𝑞
+ 𝑜 (|𝑥|

𝑞
) , (30)

where 𝑞 and 𝑎 represent positive constants, 𝑞 > 𝑝, 𝑜(|𝑥|𝑞)
denotes some ℎ(𝑥) ∈ 𝐶(R𝑛) which satisfies |𝑥|−𝑞ℎ(𝑥) →
0 as |𝑥| → ∞. By Lemma 2 we can easily decide that
sup
𝑥∈R𝑛[−𝑏|𝑥|

𝑞
+𝑜(|𝑥|

𝑞
)] < ∞, which implies thatTheorem 4

will hold.
In the next section, we give some alternative conditions

to guarantee Theorem 4, which shows coefficients 𝑓 and 𝑔
how to determine existence of global solution to (4) and
boundedness of this solution.

4. Main Results

To match (30), we will impose the following two groups
of conditions on the functions 𝑓 and 𝑔, which shows that
the growth of both 𝑓 and 𝑔 is polynomial or controlled by
polynomial speed.

For any 𝑥 ∈ R𝑛, 𝑌 ∈ R𝑛×𝐿, and 𝑡 ≥ 0,

(A
1
) 𝑥𝑇𝑓(𝑡, 𝑥, 𝑌) ≤ −𝜎|𝑥|

𝛼+2
+ ∑

𝐿

𝑙=1
𝜎

𝑙
|𝑦

𝑙
|

𝛼+2
𝑒

−𝜀𝑞
𝑙
𝑡
+

𝑜(|𝑥|

𝛼+2
),
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(A
2
) |𝑔(𝑡, 𝑥, 𝑌)| ≤ 𝜆|𝑥|𝛽+1 + ∑𝐿

𝑙=1
𝜆

𝑙
|𝑦

𝑙
|

𝛽+1
𝑒

−𝜀𝑞
𝑙
𝑡
+ 𝑜(|𝑥|

𝛽+1
),

and
(B
1
) |𝑥|−1|𝑓(𝑡, 𝑥, 𝑌)| ≤ 𝛾|𝑥|𝛼 + ∑𝐿

𝑙=1
𝛾

𝑙
|𝑦

𝑙
|

𝛼
𝑒

−𝜀𝑞
𝑙
𝑡
+ 𝑜(|𝑥|

𝛼
),

(B
2
) |𝑥|−1|𝑔(𝑡, 𝑥, 𝑌)| ≤ 𝜆|𝑥|𝛽 + ∑𝐿

𝑙=1
𝜆

𝑙
|𝑦

𝑙
|

𝛽
𝑒

−𝜀𝑞
𝑙
𝑡
+ 𝑜(|𝑥|

𝛽
),

(B
3
) −|𝑥|−4|𝑥𝑇𝑔(𝑡, 𝑥, 𝑌)|2 ≤ −𝜎|𝑥|2𝛽 + ∑𝐿

𝑙=1
𝜎

𝑙
|𝑦

𝑙
|

2𝛽
𝑒

−𝜀𝑞
𝑙
𝑡
+

𝑜(|𝑥|

2𝛽
),

where all parameters are positive. Since 𝑒−𝜀𝑞𝑙𝑡 is decreasing in
𝜀, the above conditions will still hold when 𝜀 is replaced by
any 𝜀 ∈ (0, 𝜀].

For the purpose of simplicity, define some notations:

̃

𝜆 = 𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
;

̂

𝜆 = 𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
𝑞

−1

𝑙
;

(31)

�̂� = 𝜎 −

𝐿

∑

𝑙=1

𝜎

𝑙
𝑞

−1

𝑙
;

�̂� = 𝛾 +

𝐿

∑

𝑙=1

𝛾

𝑙
𝑞

−1

𝑙
.

(32)

Theorem7. LetAssumption 1 hold.Under conditions (A
1
) and

(A
2
), if 𝛼 ≥ 2𝛽 and

2�̂� >

̃

𝜆

̂

𝜆𝐻 (2𝛽 − 𝛼) ,
(33)

then, for any initial data 𝑥
0
∈ R𝑛, there exists a unique global

solution 𝑥(𝑡, 𝑥
0
) to (4) which obeys (5) and (6), where 𝑝 ∈

(0, 𝑝

0
), 𝑞 ∈ (0, 𝛼 + 𝑝

0
). 𝐻(𝑥) = 0 if 𝑥 < 0, and 𝐻(𝑥) = 1

if 𝑥 ≥ 0, and 𝑝
0
is defined as

𝑝

0
= 1 + 2�̂� [

̃

𝜆

̂

𝜆𝐻 (2𝛽 − 𝛼)]

−1

.
(34)

In particular, 𝑝
0
= ∞ if 𝛼 > 2𝛽.

Proof. By (33) and (34), we have 𝑝
0
> 2. For any 𝑝 ∈ (2, 𝑝

0
),

by conditions (A
1
) and (A

2
), we estimate 𝐼

1
∼ 𝐼

3
. By (A

1
) and

the Young inequality,

𝐼

1
= 𝑝 |𝑥|

𝑝−2
𝑥

𝑇
𝑓 (𝑡, 𝑥, 𝑌) ≤ 𝑝 |𝑥|

𝑝−2

⋅ [−𝜎 |𝑥|

𝛼+2
+

𝐿

∑

𝑙=1

𝜎

𝑙









𝑦

𝑙









𝛼+2
𝑒

−𝜀𝑞
𝑙
𝑡
+ 𝑜 (|𝑥|

𝛼+2
)]

≤ −𝑝𝜎 |𝑥|

𝛼+𝑝

+ 𝑝

𝐿

∑

𝑙=1

𝜎

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡
(𝑝 − 2) |𝑥|

𝛼+𝑝
+ (𝛼 + 2)









𝑦

𝑙









𝛼+𝑝

𝛼 + 𝑝

+ 𝑜 (|𝑥|

𝛼+𝑝
) ≤ −𝑝𝜎 |𝑥|

𝛼+𝑝

+ 𝑝

𝐿

∑

𝑙=1

𝜎

𝑙

(𝑝 − 2) |𝑥|

𝛼+𝑝
+ (𝛼 + 2)









𝑦

𝑙









𝛼+𝑝
𝑒

−𝜀𝑞
𝑙
𝑡

𝛼 + 𝑝

+ 𝑜 (|𝑥|

𝛼+𝑝
) .

(35)

Let 𝑥
𝑖
∈ R and 𝛿

𝑖
≥ 0. By the Cauchy inequality, we have

(

𝑛

∑

𝑖=1

𝛿

𝑖
𝑥

𝑖
)

2

≤

𝑛

∑

𝑖=1

𝛿

𝑖

𝑛

∑

𝑖=1

𝛿

𝑖
𝑥

2

𝑖
.

(36)

Recall the elementary inequality: for any 0 < 𝜌 < 1, 𝑎, 𝑏 ∈
R,

(𝑎 + 𝑏)

2
≤

𝑎

2

𝜌

+

𝑏

2

1 − 𝜌

. (37)

Noting that 𝑝 > 2, by (A
2
), and combining the Young

inequality and inequalities (36) and (37) we estimate

𝐼

2
+ 𝐼

3
=

𝑝

2

|𝑥|

𝑝−2 






𝑔 (𝑡, 𝑥, 𝑌)









2
+

𝑝 (𝑝 − 2)

2

|𝑥|

𝑝−4

⋅











𝑥

𝑇
𝑔 (𝑡, 𝑥, 𝑌)











2

≤

𝑝 (𝑝 − 1)

2

|𝑥|

𝑝−2 






𝑔 (𝑡, 𝑥, 𝑌)









2

≤

𝑝 (𝑝 − 1)

2

|𝑥|

𝑝−2
[𝜆 |𝑥|

𝛽+1
+

𝐿

∑

𝑙=1

𝜆

𝑙









𝑦

𝑙









𝛽+1
𝑒

−𝜀𝑞
𝑙
𝑡

+ 𝑜 (|𝑥|

𝛽
)]

2

≤

𝑝 (𝑝 − 1)

2𝜌

|𝑥|

𝑝−2
[𝜆 |𝑥|

𝛽+1

+

𝐿

∑

𝑙=1

𝜆

𝑙









𝑦

𝑙









𝛽+1
𝑒

−𝜀𝑞
𝑙
𝑡
]

2

+

𝑝 (𝑝 − 1)

2 (1 − 𝜌)

𝑜 (|𝑥|

2𝛽+𝑝
)

≤

𝑝 (𝑝 − 1)

2𝜌

|𝑥|

𝑝−2
̃

𝜆[𝜆 |𝑥|

2𝛽+2

+

𝐿

∑

𝑙=1

𝜆

𝑙









𝑦

𝑙









2𝛽+2
𝑒

−2𝜀𝑞
𝑙
𝑡
] + 𝑜 (|𝑥|

2𝛽+𝑝
) ≤

𝑝 (𝑝 − 1)

2𝜌

⋅

̃

𝜆 [𝜆 |𝑥|

2𝛽+𝑝

+

𝐿

∑

𝑙=1

𝜆

𝑙

(𝑝 − 2) |𝑥|

2𝛽+𝑝
+ (2𝛽 + 2) 𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽+𝑝

2𝛽 + 𝑝

]

+ 𝑜 (|𝑥|

2𝛽+𝑝
) .

(38)

We therefore have

𝐼

1
+ 𝐼

2
+ 𝐼

3
≤ Φ

𝜀
+ 𝐼, (39)

where

Φ

𝜀
=

𝑝 (𝛼 + 2)

𝛼 + 𝑝

𝐿

∑

𝑙=1

𝜎

𝑙
[𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









𝛼+𝑝
− 𝑞

−1

𝑙
|𝑥|

𝛼+𝑝
]

+

(𝛽 + 1) 𝑝 (𝑝 − 1)

̃

𝜆

𝜌 (2𝛽 + 𝑝)

⋅

𝐿

∑

𝑙=1

𝜆

𝑙
[𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽+𝑝
− 𝑞

−1

𝑙
|𝑥|

2𝛽+𝑝
] ,
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𝐼 = −𝑝𝜎 |𝑥|

𝛼+𝑝
+

𝑝

𝛼 + 𝑝

⋅

𝐿

∑

𝑙=1

𝜎

𝑙
[𝑝 − 2 + (𝛼 + 2) 𝑞

−1

𝑙
] |𝑥|

𝛼+𝑝
+

𝑝 (𝑝 − 1)

2𝜌

⋅

̃

𝜆 [𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙

(𝑝 − 2) + (2𝛽 + 2) 𝑞

−1

𝑙

2𝛽 + 𝑝

] |𝑥|

2𝛽+𝑝

+ 𝑜 (|𝑥|

𝛼+𝑝
) ≤ −𝑝𝜎 |𝑥|

𝛼+𝑝
+ 𝑝

𝐿

∑

𝑙=1

𝜎

𝑙
𝑞

−1

𝑙
|𝑥|

𝛼+𝑝

+

𝑝 (𝑝 − 1)

2𝜌

̃

𝜆[𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
𝑞

−1

𝑙
] |𝑥|

2𝛽+𝑝
+ 𝑜 (|𝑥|

𝛼+𝑝
)

fl −𝑝𝑎 (𝜌) |𝑥|𝛼+𝑝 + 𝑜 (|𝑥|𝛼+𝑝) ,
(40)

in which we have used 𝑞
𝑙
≤ 1 (1 ≤ 𝑙 ≤ 𝐿). By (33) and (34),

𝑎 (𝜌 = 1) = 𝜎 −

𝐿

∑

𝑙=1

𝜎𝑞

−1

𝑙

−

(𝑝 − 1)

̃

𝜆

2

(𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
𝑞

−1

𝑙
)𝐻(2𝛽 − 𝛼)

> �̂� −

(𝑝

0
− 1)

̃

𝜆

2

̂

𝜆𝐻 (2𝛽 − 𝛼) = 0.

(41)

Choose 𝜌 sufficiently near 1 such that 𝑎(𝜌) > 0, which
shows that (39) has similar expression to (30). By Theorem 4
and Corollary 6, there almost surely exists a unique global
solution to (4), and for any 𝑝 ∈ (0, 𝑝

0
) and 𝑞 ∈ (0, 𝛼+𝑝

0
), this

solution still holds properties (5) and (6), as required.

If 𝛼 ≤ 2𝛽, for any initial data 𝑥
0
∈ R𝑛
×
, we give the

following lemma for existence of global solution to (4).

Lemma8. Let Assumption 1 hold. For positive constants𝑝 and
𝐾, letting 𝑉(𝑥) = |𝑥|𝑝 − 𝑝ln |𝑥|, if for any 𝑥 ∈ R𝑛

×
, 𝑌 ∈ R𝑛𝐿

×

and 𝑡 ≥ 0,

L𝑉 (𝑡, 𝑥, 𝑌) ≤ Φ (𝑥, 𝑌) + 𝐾, (42)

where Φ(𝑥, 𝑌) defined by (16). Then, for any given 𝑥
0
∈ R𝑛
×
,

there exists a unique global solution to (4).

Proof. Similar to the proof of Theorem 4, for any initial data
𝑥

0
∈ R𝑛
×
, there almost surely exists a unique maximal local

solution 𝑥(𝑡) = 𝑥(𝑡, 𝑥
0
) (−𝜏

0
≤ 𝑡 < 𝜎) to (4). Similar to the

stopping time (20), define the stopping time (here we still use
𝜎

𝑘
)

𝜎

𝑘
= inf {−𝜏

0
≤ 𝑡 < 𝜎 : |𝑥 (𝑡)| ∉ (𝑘

−1
, 𝑘)} for each integer 𝑘. (43)

We still need to proveP(𝜎
𝑘
≤ 𝑡) → 0 as 𝑘 → ∞ for any 𝑡 ≥ 0.

For any 𝑦 > 0, let 𝑈(𝑦) = 𝑦𝑝 − 𝑝ln𝑦 and 𝐷
𝑘
fl {𝑥 : 𝑘−1 <

|𝑥| < 𝑘}. By the definition of 𝜎
𝑘
, we have 𝑥(𝜎

𝑘
) ∈ 𝜕𝐷

𝑘
when

𝜎

𝑘
< ∞, which implies that

𝑉 (𝑥 (𝜎

𝑘
)) ≥ 𝑈 (𝑘

−1
) ∧ 𝑈 (𝑘) fl 𝑢 (𝑘) . (44)

We therefore have

P (𝜎
𝑘
≤ 𝑡) 𝑢 (𝑘) ≤ P (𝜎

𝑘
≤ 𝑡)𝑉 (𝑥 (𝜎

𝑘
))

≤ E𝑉 (𝑥 (𝑡 ∧ 𝜎
𝑘
))

≤ E𝑉 (𝑥 (0)) + E∫
𝑡
𝑘

0

𝐿𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ E𝑉 (𝑥 (0))

+ E∫
𝑡
𝑘

0

[Φ (𝑥 (𝑠) , 𝑌 (𝑠)) + 𝐾] 𝑑𝑠

≤ const + 𝐾𝑡.

(45)

Note that 𝑢(𝑘) → ∞ as 𝑘 → ∞. Letting 𝑘 → ∞, for any
𝑡 ≥ 0, we have

P (𝜎
𝑘
≤ 𝑡) → 0, as 𝑘 → ∞, (46)

as required.

Applying this lemma, we may obtain the following theo-
rem.

Theorem 9. Let Assumption 1 hold. Under conditions (B
1
),

(B
2
), and (B

3
), if 𝛼 ≤ 2𝛽 and

2�̂� >

̃

𝜆

̂

𝜆 + 2�̂�𝐻 (𝛼 − 2𝛽) ,
(47)

then, for any initial data 𝑥
0
∈ R𝑛
×
, there exists a unique global

solution to (4) and this solution has properties (5) and (6) in
which 0 < 𝑝 < 𝑝

0
and 0 < 𝑞 < 2𝛽 + 𝑝

0
and 𝑝

0
is defined as

𝑝

0
= 2 − �̂�

−1
[

̃

𝜆

̂

𝜆 + 2�̂�𝐻 (𝛼 − 2𝛽)] . (48)

Proof. By (48), 𝑝
0
∈ (0, 2). Fix any 𝑝 ∈ (0, 𝑝

0
); using (B

1
),

(B
2
), and (B

3
), we estimate 𝐼

1
∼ 𝐼

3
respectively. By the Young

inequality and (B
1
), we have

𝐼

1
= 𝑝 |𝑥|

𝑝−2
𝑥

𝑇
𝑓 (𝑡, 𝑥, 𝑌)

≤ 𝑝 |𝑥|

𝑝
[𝛾 |𝑥|

𝛼
+

𝐿

∑

𝑙=1

𝛾

𝑙









𝑦

𝑙









𝛼
𝑒

−𝜀𝑞
𝑙
𝑡
+ 𝑜 (|𝑥|

𝛼
)]

≤ 𝑝𝛾 |𝑥|

𝛼+𝑝
+ 𝑝

𝐿

∑

𝑙=1

𝛾

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡
𝑝 |𝑥|

𝛼+𝑝
+ 𝛼









𝑦

𝑙









𝛼+𝑝

𝛼 + 𝑝

+ 𝑜 (|𝑥|

𝛼+𝑝
)

≤ 𝑝𝛾 |𝑥|

𝛼+𝑝
+ 𝑝

𝐿

∑

𝑙=1

𝛾

𝑙

𝑝 |𝑥|

𝛼+𝑝
+ 𝛼









𝑦

𝑙









𝛼+𝑝
𝑒

−𝜀𝑞
𝑙
𝑡

𝛼 + 𝑝

+ 𝑜 (|𝑥|

𝛼+𝑝
) .

(49)
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By (B
2
) and elementary inequalities (36) and (37), for any 𝜌 ∈

(0, 1), we have

𝐼

2
=

𝑝

2

|𝑥|

𝑝−2 






𝑔 (𝑡, 𝑥, 𝑌)









2
≤

𝑝

2

|𝑥|

𝑝

⋅ [𝜆 |𝑥|

𝛽
+

𝐿

∑

𝑙=1

𝜆

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









𝛽
+ 𝑜 (|𝑥|

𝛽
)]

2

≤

𝑝

2𝜌

|𝑥|

𝑝

⋅ [𝜆 |𝑥|

𝛽
+

𝐿

∑

𝑙=1

𝜆

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









𝛽
]

2

+ 𝑜 (|𝑥|

2𝛽+𝑝
)

≤

𝑝

2𝜌

|𝑥|

𝑝
̃

𝜆[𝜆 |𝑥|

2𝛽
+

𝐿

∑

𝑙=1

𝜆

𝑙
𝑒

−2𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽
]

+ 𝑜 (|𝑥|

2𝛽+𝑝
) ≤

𝑝

2𝜌

⋅

̃

𝜆 [𝜆 |𝑥|

2𝛽+𝑝
+

𝐿

∑

𝑙=1

𝜆

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡
𝑝 |𝑥|

2𝛽+𝑝
+ 2𝛽









𝑦

𝑙









2𝛽+𝑝

2𝛽 + 𝑝

]

+ 𝑜 (|𝑥|

2𝛽+𝑝
) ≤

𝑝

̃

𝜆𝜆

2𝜌

|𝑥|

2𝛽+𝑝
+

𝑝

̃

𝜆

2𝜌

⋅

𝐿

∑

𝑙=1

𝜆

𝑙

𝑝 |𝑥|

2𝛽+𝑝
+ 2𝛽









𝑦

𝑙









2𝛽+𝑝
𝑒

−𝜀𝑞
𝑙
𝑡

2𝛽 + 𝑝

+ 𝑜 (|𝑥|

2𝛽+𝑝
) .

(50)

Noting that 𝑝 < 2, by the Young inequality and condition
(B
3
), we have the following estimate:

𝐼

3
=

𝑝 (𝑝 − 2)

2

|𝑥|

𝑝−4 








𝑥

𝑇
𝑔 (𝑡, 𝑥, 𝑌)











2

≤

𝑝 (𝑝 − 2)

2

|𝑥|

𝑝

⋅ [𝜎 |𝑥|

2𝛽
−

𝐿

∑

𝑙=1

𝜎

𝑙
𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽
+ 𝑜 (|𝑥|

2𝛽
)]

≤

𝑝 (𝑝 − 2)

2

[𝜎 |𝑥|

2𝛽+𝑝

−

𝐿

∑

𝑙=1

𝜎

𝑙

𝑝 |𝑥|

2𝛽+𝑝
+ 2𝛽









𝑦

𝑙









2𝛽+𝑝
𝑒

−𝜀𝑞
𝑙
𝑡

2𝛽 + 𝑝

] + 𝑜 (|𝑥|

2𝛽+𝑝
) .

(51)

We therefore have

𝐼

1
+ 𝐼

2
+ 𝐼

3
≤ Φ

𝜀
+ 𝐼, (52)

where

Φ

𝜀

=

𝛼𝑝

𝛼 + 𝑝

𝐿

∑

𝑙=1

𝛾

𝑙
[𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









𝛼+𝑝
− 𝑞

−1

𝑙
|𝑥|

𝛼+𝑝
]

+

𝑝

̃

𝜆𝛽

𝜌 (2𝛽 + 𝑝)

𝐿

∑

𝑙=1

𝜆

𝑙
[𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽+𝑝
− 𝑞

−1

𝑙
|𝑥|

2𝛽+𝑝
]

−

𝑝 (𝑝 − 2) 𝛽

2𝛽 + 𝑝

𝐿

∑

𝑙=1

𝜎

𝑙
[𝑒

−𝜀𝑞
𝑙
𝑡 






𝑦

𝑙









2𝛽+𝑝
− 𝑞

−1

𝑙
|𝑥|

2𝛽+𝑝
] ,

𝐼

= 𝑝𝛾 |𝑥|

𝛼+𝑝
+ 𝑝

𝐿

∑

𝑙=1

𝛾

𝑙
(

𝑝 + 𝛼𝑞

−1

𝑙

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+

𝑝

̃

𝜆𝜆

2𝜌

|𝑥|

2𝛽+𝑝
+ 𝑜 (|𝑥|

2𝛽+𝑝
)

+

𝑝

̃

𝜆

2𝜌

𝐿

∑

𝑙=1

𝜆

𝑙
(

𝑝 + 2𝛽𝑞

−1

𝑙

2𝛽 + 𝑝

) |𝑥|

2𝛽+𝑝

+

𝑝 (𝑝 − 2)

2

(𝜎 −

𝐿

∑

𝑙=1

𝜎

𝑙

𝑝 + 2𝛽𝑞

−1

𝑙

2𝛽 + 𝑝

) |𝑥|

2𝛽+𝑝

≤ (𝑝𝛾 + 𝑝

𝐿

∑

𝑙=1

𝛾

𝑙
𝑞

−1

𝑙
) |𝑥|

𝛼+𝑝

+

𝑝

̃

𝜆

2𝜌

(𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
𝑞

−1

𝑙
) |𝑥|

2𝛽+𝑝

+

𝑝 (𝑝 − 2)

2

(𝜎 −

𝐿

∑

𝑙=1

𝜎

𝑙
𝑞

−1

𝑙
) |𝑥|

2𝛽+𝑝

+ 𝑜 (|𝑥|

2𝛽+𝑝
) fl −𝑎 (𝜌) |𝑥|2𝛽+𝑝 + 𝑜 (|𝑥|2𝛽+𝑝) ,

(53)

where we have used 𝑞
𝑙
≤ 1 (1 ≤ 𝑙 ≤ 𝐿). By conditions (47)

and (48) we have

2

𝑝

𝑎 (𝜌 = 1) = −2(𝛾 +

𝐿

∑

𝑙=1

𝛾

𝑙
𝑞

−1

𝑙
)𝐻(𝛼 − 2𝛽)

−

̃

𝜆(𝜆 +

𝐿

∑

𝑙=1

𝜆

𝑙
𝑞

−1

𝑙
)

− (𝑝 − 2)(𝜎 −

𝐿

∑

𝑙=1

𝜎

𝑙
𝑞

−1

𝑙
)

= −2�̂�𝐻 (𝛼 − 2𝛽) −

̃

𝜆

̂

𝜆 − (𝑝 − 2) �̂�

> −2�̂�𝐻 (𝛼 − 2𝛽) −

̃

𝜆

̂

𝜆 − (𝑝

0
− 2) �̂� = 0.

(54)

Choose 𝜌 sufficiently near 1 such that 𝑎(𝜌) > 0, which shows
that (52) has similar expression to (30). By the similar proof
process to Theorem 7, we may obtain the desired result. This
completes this proof.

Theorem 7 shows that the drift coefficient 𝑓 makes a
dominant role when 𝛼 ≥ 2𝛽; in particular, 𝑔 only needs to
satisfy condition (A

2
) when 𝛼 > 2𝛽, while in Theorem 9 the

diffusion coefficient 𝑔 is dominant.That is, we depend on the
environmental noise to suppress the explosion of solutions
and guarantee the boundedness. However, we obtained that
the order of moment is lower thanTheorem 7.
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5. Examples

In this section, we investigate the moment boundedness of
two 1-dimensional stochastic multipantograph equations.

Example 1. Consider

𝑑𝑥 (𝑡) = [−4𝑥

5
(𝑡) + 𝑢1 (

𝑡) 𝑥

2
(𝑡) 𝑥

3
(0.25𝑡)

+ 𝑥

4
(𝑡) 𝑥 (0.5𝑡) 𝑢

2
(𝑡) + 𝑥

2
(𝑡)] 𝑑𝑡 + [𝑥

2
(𝑡)

+ 𝑢

1 (
𝑡) 𝑥 (𝑡) 𝑥 (0.25𝑡) + 𝑥 (𝑡) 𝑥 (0.5𝑡) 𝑢2 (

𝑡)

+ 𝑥 (𝑡)] 𝑑𝑤 (𝑡)

(55)

with initial data 𝑥(0) = 𝑥
0
∈ R, 𝑡 ≥ 0, where 𝑢

1
(𝑡) = 𝑒

−0.75𝜀𝑡,
𝑢

2
(𝑡) = 𝑒

−0.5𝜀𝑡, 𝜀 > 0.
Define 𝑦

1
(𝑡) = 𝑥(0.25𝑡), 𝑦

2
(𝑡) = 𝑥(0.5𝑡), and

𝑓 (𝑡, 𝑥, 𝑦) = −4𝑥

5
+ 𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

3

1
+ 𝑒

−0.5𝜀𝑡
𝑥

4
𝑦

2
+ 𝑥

2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑥

2
+ 𝑒

−0.75𝜀𝑡
𝑥𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2
+ 𝑥.

(56)

Obviously,𝑓 and 𝑔 satisfy the local Lipschitz condition.Then
by the Young inequality we estimate

𝑥𝑓 (𝑡, 𝑥, 𝑦) = −4𝑥

6
+ 𝑒

−0.75𝜀𝑡
𝑥

3
𝑦

3

1
+ 𝑒

−0.5𝜀𝑡
𝑥

5
𝑦

2
+ 𝑥

3

≤ −4𝑥

6
+ 𝑒

−0.75𝜀𝑡
𝑥

6
+ 𝑦

6

1

2

+ 𝑒

−0.5𝜀𝑡
5𝑥

6
+ 𝑦

6

2

6

+ 𝑥

3

≤ −

8

3

𝑥

6
+

1

2

𝑒

−0.75𝜀𝑡
𝑦

6

1
+

1

6

𝑒

−0.5𝜀𝑡
𝑦

6

2
+ 𝑥

3

(57)

which shows that condition (A
1
) will hold if 𝛼 = 4, 𝜎 =

8/3, 𝜎

1
= 1/2, 𝜎

2
= 1/6. Obviously, we have









𝑔 (𝑡, 𝑥, 𝑦)









=











𝑥

2
+ 𝑒

−0.75𝜀𝑡
𝑥𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2
+ 𝑥











≤ 𝑥

2
+

1

2

𝑒

−0.75𝜀𝑡
(𝑥

2
+ 𝑦

2

1
)

+

1

2

𝑒

−0.5𝜀𝑡
(𝑥

2
+ 𝑦

2

2
) + |𝑥|

≤ 2𝑥

2
+

1

2

𝑒

−0.75𝜀𝑡
𝑦

2

1
+

1

2

𝑒

−0.5𝜀𝑡
𝑦

2

2
+ |𝑥| ,

(58)

which shows that condition (A
2
) will hold if 𝛽 = 1, 𝜆 = 2,

𝜆

1
= 1/2, and 𝜆

2
= 1/2.

Substituting the above parameters into (32) gives �̂� =
1/3 > 0. Noting that 𝛼 > 2𝛽, applying Theorem 7, we have
the following result.

For any initial data 𝑥
0
∈ R, (55) admits a unique global

solution 𝑥(𝑡, 𝑥
0
) which has the properties (5) and (6) for any

𝑝, 𝑞 ∈ R
+
.

Example 2. Consider

𝑑𝑥 (𝑡) = [−𝑥

3
(𝑡) + 𝑢

1
(𝑡) 𝑥

2
(𝑡) 𝑥 (0.25𝑡)

+ 𝑢

2
(𝑡) 𝑥 (𝑡) 𝑥

2
(0.5𝑡) + 𝑥

2
(𝑡)] 𝑑𝑡 + [20𝑥

3
(𝑡)

+ 𝑢

1 (
𝑡) 𝑥

2
(𝑡) 𝑥 (0.25𝑡) + 𝑢2 (

𝑡) 𝑥

2
(𝑡) 𝑥 (0.5𝑡)

+ 𝑥 (𝑡)] 𝑑𝑤 (𝑡)

(59)

with initial data 𝑥(0) = 𝑥
0
∈ R
×
, 𝑡 ≥ 0, where 𝑢

1
(𝑡), 𝑢
2
(𝑡),

𝑦

1
, and 𝑦

2
are defined the same as in Example 1.

Define

𝑓 (𝑡, 𝑥, 𝑦) = −𝑥

3
+ 𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2

2
+ 𝑥

2
,

𝑔 (𝑡, 𝑥, 𝑦) = 20𝑥

3
+ 𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥

2
𝑦

2
+ 𝑥.

(60)

Obviously, 𝑓 and 𝑔 satisfy the local Lipschitz condition. By
the Young inequality, we compute

|𝑥|

−1 






𝑓 (𝑡, 𝑥, 𝑦)









= |𝑥|

−1 








−𝑥

3
+ 𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2

2
+ 𝑥

2








≤ 𝑥

2
+ 𝑒

−0.75𝜀𝑡
𝑥

2
+ 𝑦

2

1

2

+ 𝑒

−0.5𝜀𝑡
𝑦

2

2
+ |𝑥|

≤

3

2

𝑥

2
+

1

2

𝑒

−0.75𝜀𝑡
𝑦

2

1
+ 𝑒

−0.5𝜀𝑡
𝑦

2

2
+ |𝑥| ,

(61)

which shows that condition (B
1
) will hold if 𝛼 = 2, 𝛾 = 3/2,

𝛾

1
= 1/2, and 𝛾

2
= 1. Applying the Young inequality again,

we have

|𝑥|

−1 






𝑔 (𝑡, 𝑥, 𝑦)









= |𝑥|

−1 








20𝑥

3
+ 𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥

2
𝑦

2
+ 𝑥











≤ 20𝑥

2
+ 𝑒

−0.75𝜀𝑡
𝑥

2
+ 𝑦

2

1

2

+ 𝑒

−0.5𝜀𝑡
𝑥

2
+ 𝑦

2

2

2

+ 1

≤ 21𝑥

2
+

1

2

𝑒

−0.75𝜀𝑡
𝑦

2

1
+

1

2

𝑒

−0.5𝜀𝑡
𝑦

2

2
+ 1,

(62)

which shows that condition (B
2
) will hold if 𝛽 = 2, 𝜆 = 21,

𝜆

1
= 1/2, and 𝜆

2
= 1/2.

Consider the elementary inequality: for any 𝜌 > 1, 𝑎, 𝑏 ∈
R,

(𝑎 + 𝑏)

2
≥

𝑎

2

𝜌

−

𝑏

2

𝜌 − 1

, (63)

and recall inequality (37): for any 𝜌 > 1, 0 < 𝛿 < 1, we
estimate

𝑥

−2 






𝑔 (𝑡, 𝑥, 𝑦)









2

=











20𝑥

2
+ 𝑒

−0.75𝜀𝑡
𝑥𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2
+ 1











2

≥

20

2
𝑥

4

𝜌

−

[𝑒

−0.75𝜀𝑡
𝑥𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2
+ 1]

2

𝜌 − 1
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≥

20

2
𝑥

4

𝜌

−

1

𝜌 − 1

[

[

(𝑒

−0.75𝜀𝑡
𝑥𝑦

1
+ 𝑒

−0.5𝜀𝑡
𝑥𝑦

2
)

2

𝛿

+

1

1 − 𝛿

]

]

≥

20

2
𝑥

4

𝜌

−

2

𝛿 (𝜌 − 1)

[𝑒

−0.75𝜀𝑡
𝑥

2
𝑦

2

1
+ 𝑒

−0.5𝜀𝑡
𝑥

2
𝑦

2

2
]

−

1

(𝜌 − 1) (1 − 𝛿)

≥

20

2
𝑥

4

𝜌

−

1

𝛿 (𝜌 − 1)

[𝑒

−0.75𝜀𝑡
(𝑥

4
+ 𝑦

4

1
) + 𝑒

−0.5𝜀𝑡
(𝑥

4
+ 𝑦

4

2
)]

−

1

(𝜌 − 1) (1 − 𝛿)

≥ [

20

2

𝜌

−

2

𝛿 (𝜌 − 1)

] 𝑥

4
−

1

𝛿 (𝜌 − 1)

𝑒

−0.75𝜀𝑡
𝑦

4

1

−

1

𝛿 (𝜌 − 1)

𝑒

−0.5𝜀𝑡
𝑦

4

2
−

1

(𝜌 − 1) (1 − 𝛿)

.

(64)

Therefore, condition (B
3
) is satisfied with 𝛽 = 2 and

𝜎 =

20

2

𝜌

−

2

𝛿 (𝜌 − 1)

,

𝜎

1
= 𝜎

2
=

1

𝛿 (𝜌 − 1)

.

(65)

Substituting the above parameters into (31) and (32) gives ̃𝜆 =
22, ̂𝜆 = 24, and

�̂� =

20

2

𝜌

−

8

𝛿 (𝜌 − 1)

. (66)

Let 𝛿 → 1, maximizing �̂� by choosing 𝜌 = 20/(20 − √8) > 1,
yield

�̂� = (20 −

√

8)

2

.
(67)

Noting that 𝛼 < 2𝛽, then we have 2�̂� = 2(20 − √8)2 > ̃𝜆̂𝜆 =
528; that is, condition (47) is satisfied and 𝑃

0
= 2 − �̂�

−1
̃

𝜆

̂

𝜆 =

0.3.
ApplyingTheorem 9, we have the following result.
For any initial data 𝑥

0
∈ R
×
, (59) admits a unique global

solution 𝑥(𝑡, 𝑥
0
) which has properties (5) and (6) in which

𝑝 ∈ (0, 0.3) and 𝑞 ∈ (0, 4.3).

6. Further Remarks

This paper is devoted to the asymptotic properties of the
stochastic multipantograph equations. We investigate the

existence and uniqueness of the global solution and its
moment boundedness. Besides obtaining a general theorem,
we obtain two sufficient criteria which can be much more
easily verifiable than the general theorem. Two examples
demonstrate our results.

Since (3) arises in the analysis of the dynamics of an over-
head current collection system for an electric locomotive and
applied to engineering and applied mathematics fields, the
asymptotic behavior of stochastic multipantograph equation
has meaningful interpretations (cf. [4, 26]). The main idea
and the method developed in this paper have the potential to
investigate some other unbounded delay stochastic systems,
such as neural networks, infinite-delay Kolmogorov-type
systems, and Volterra equations in mathematical biology.
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