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Wheeled mobile robots present a typical case of complex systems with nonholonomic constraints. In the past few years, the
dominance of these systems has been a very active research field. In this paper, a new method based on an integral sliding mode
control for the trajectory tracking of wheeled mobile robots is proposed. The controller is designed to solve the reaching phase
problemwith the elimination ofmatched disturbances andminimize the unmatched one.We distinguish two parts in the suggested
controller: a high-level controller to stabilize the nominal system and a discontinuous controller to assess the trajectory tracking
in the presence of disturbances. This controller is robust during the entire motion. The effectiveness of the proposed controller is
demonstrated through simulation studies for the unicycle with matched and unmatched disturbances.

1. Introduction

Generally, wheeled mobile robots (WMRs) are the most
widely used classes of mobile robots. This is due to their
practical importance and theoretically interesting proper-
ties. These systems are a typical example of nonholonomic
mechanisms where the constraints imposed on the motions
are not integrable resulting from the assumption that there
is no slipping of the wheels. The main consequence of a
nonholonomic constraint for the WMRs is that not each
path of the admissible configuration space corresponds to
a feasible trajectory for the robot. In the literature of the
wheeled mobile robot control, there are two fundamental
problems: posture stabilization and trajectory/path tracking.
The aim of posture stabilization is to stabilize the robot
to a desired point [1], while the trajectory tracking is to
enforce the robot to follow a reference trajectory [2]. For
WMRs, it is difficult to control such system by continuous
time-invariant controller. This is due to the uncontrollability
of their linear approximation and to Brockett’s necessary
condition, which is not satisfied for this kind of system
[3]. To overcome these difficulties, various control strategies
have been investigated among them: homogeneous and time-
varying feedback [4], sinusoidal and polynomial controls

[5], backstepping approaches [6, 7], and hybrid controls
[8]. In the real implementation, it is desired to design an
inherently robust control which provides fast convergence
and good robustness properties with respect to the parameter
variation and the disturbances. One of the robust techniques
is the discontinuous control such as sliding mode control
(SMC). There are a number of references on sliding mode
control devoted to this type of discontinuous control, the best
known one of which is by Utkin et al. [9]. More theoretical
analyses and comparison study of performances for different
SMC controllers are presented in [10]. The sliding mode
control has many advantages, among them, its finite time
convergence to a stable manifold and its insensitivity to the
disturbances andmodel uncertainties satisfying thematching
condition. However, it has some disadvantages such as the
chattering phenomena, the reaching phase, and sensitivity to
the unmatched perturbation. To enhance the robustness of
the slidingmode control in the whole motion, it is interesting
to eliminate the reaching phase andminimize the effect of the
unmatched disturbances. This idea can be done by applying
the integral sliding mode design concept proposed in [9, 11–
14]. The integral sliding mode control seeks to eliminate
the reaching phase by enforcing sliding mode throughout

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2016, Article ID 7915375, 10 pages
http://dx.doi.org/10.1155/2016/7915375



2 Journal of Control Science and Engineering

the entire system response. The basic idea of this control
(ISMC) is the inclusion of an integral term to the sliding
manifold.This integral term enables the system to start on the
sliding manifold at the initial condition, hence eliminating
the reaching phase. From the integral sliding manifold, we
define two controllers [9]: a continuous control and a dis-
continuous control. The continuous controller is a nonlinear
continuous feedback designed to stabilize the nominal system
and the discontinuous control is used to reject the matched
disturbances and minimize the unmatched one.

The main objective of this work is the design of a robust
controller for the trajectory tracking of the unicycle subject
to state-dependent uncertainties (matched and unmatched).
To attain this objective, we use an integral sliding mode
based controller. This suggested controller combining non-
linear time-varying feedback with an integral sliding mode
controller. An integral sliding mode controller is constructed
by incorporating an integral term in the switching manifold.

The outline of this paper is as follows. In Section 2, the
problem statement and the integral sliding mode controller
design are presented for nonlinear uncertain system. Then,
the kinematic model of the unicycle-type wheeled mobile
robot is derived in Section 3. In Section 4 the design of
integral sliding mode controller for tracking control of the
unicycle is presented. Then, some simulation results are
discussed in Section 5. Finally, Section 6 concludes this paper.

2. Problem Statement

Consider the following nonlinear uncertain system:

𝑞̇

𝑒
= 𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢 + 𝑃 (𝑞

𝑒
, 𝑡) , (1)

where 𝑞
𝑒
∈ 𝑄 ⊂ IR𝑛 is the state of the system with initial

condition 𝑞
𝑒
(𝑡

0
) = 𝑞

0
and 𝑢 ∈ IR𝑚 is the control variable.

The function 𝑓 ∈ IR𝑛 is a known vector and the matrix
𝑔 ∈ IR𝑛×𝑚 is a known full rank state-dependent matrix. We
suppose also that the origin is an equilibrium point of (1);
that is, 𝑓(0, 𝑡) = 0 ∀𝑡 > 0. 𝑃(𝑞

𝑒
, 𝑡) ∈ IR𝑛 is an unknown

vector representing the modeling uncertainties and external
disturbances. The following assumption is introduced.

Assumption 1. The uncertain vector 𝑃(𝑞
𝑒
, 𝑡) is bounded:

𝑃 (𝑞

𝑒
, 𝑡) ∈ Φ,

Φ ≜ {V ∈ IR𝑛 s.t. ‖V‖
2
≤ 𝐷sup} ,

(2)

where𝐷sup is a known positive constant.
The uncertain vector 𝑃(𝑞

𝑒
, 𝑡) for system (1) can always

be expressed by separating thematched disturbance𝑃
𝑀
(𝑞

𝑒
, 𝑡)

and the unmatched one 𝑃
𝑈
(𝑞

𝑒
, 𝑡), as follows:

𝑃 (𝑞

𝑒
, 𝑡) = 𝑃

𝑀
(𝑞

𝑒
, 𝑡) + 𝑃

𝑈
(𝑞

𝑒
, 𝑡) , (3)

𝑃

𝑀
(𝑞

𝑒
, 𝑡) = 𝑔 (𝑞

𝑒
) 𝑔

+

(𝑞

𝑒
) 𝑃 (𝑞

𝑒
, 𝑡) ,

𝑃

𝑈
(𝑞

𝑒
, 𝑡) = 𝑔

⊥

(𝑞

𝑒
) 𝑔

⊥+

(𝑞

𝑒
) 𝑃 (𝑞

𝑒
, 𝑡) ,

(4)

where 𝑔⊥(𝑞
𝑒
) ∈ IR𝑛×(𝑛−𝑚) is a matrix with indepen-

dent columns that span the null space of 𝑔(𝑞
𝑒
): that is,

𝑔

⊥𝑇

(𝑞

𝑒
)𝑔(𝑞

𝑒
) = 0

(𝑛−𝑚)×𝑚
, Rank(𝑔⊥(𝑞

𝑒
)) = 𝑛 − 𝑚. Moreover,

𝑔

+

(𝑞

𝑒
) is the left pseudoinverse of 𝑔(𝑞

𝑒
); that is, 𝑔+(𝑞

𝑒
) =

(𝑔

𝑇

(𝑞

𝑒
)𝑔(𝑞

𝑒
))

−1

𝑔

𝑇

(𝑞

𝑒
), analogously for 𝑔⊥+(𝑞

𝑒
). This separa-

tion principle relies on proposition 1 [15], which ensures that
𝐼

𝑛
= 𝑔(𝑞

𝑒
)𝑔

+

(𝑞

𝑒
)+𝑔

⊥

(𝑞

𝑒
)𝑔

⊥+

(𝑞

𝑒
) for any full rank𝑔(𝑞

𝑒
), being

𝐼

𝑛
∈ IR𝑛×𝑛 an identity matrix.
Our aim is to construct a robust feedback controller,

whichmakes system (1) asymptotically stable. More precisely,
for a given known stabilizing control for the nominal system
of (1), wewant to redesign another robust stabilizing feedback
control of the perturbed system (1). We can realize that we
want to robustify an existing feedback control of the nominal
system. To attempt this objective, we will take into account
the following assumption.

Assumption 2. The system nominal part of (1)

𝑞̇

𝑒
= 𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢 (5)

is globally asymptotically stabilizable via a nonlinear time-
varying continuous control 𝑢

𝑐
(𝑞

𝑒
, 𝑡).

Since the control 𝑢
𝑐
(𝑞

𝑒
, 𝑡) is supposed to be not robust

with respect to dynamic (1) and to enhance the robustness,
we will add to it an integral sliding mode controller, which
guarantees a good robustness during the entire motion of the
states of the obtained closed-loop system.

2.1. Integral Sliding Mode Controller Design. The enhance-
ment of the robustness of the feedback control 𝑢

𝑐
(𝑞

𝑒
, 𝑡) is

done by using the integral sliding mode controller to reject
the perturbations while eliminating the reaching phase. The
integral sliding mode algorithm is designed in two design
steps [12, 13] as follows.

(1) The design of a suitable integral sliding manifold
𝑠(𝑞

𝑒
, 𝑡) satisfying the control objectives on the sliding

mode.

(2) The design of corresponding control input 𝑢 con-
straining the system trajectories to evolve on the
integral sliding surface from the initial time andmake
the feedback system insensitive to the disturbances.

The integral sliding function can be defined as

𝑠 (𝑞

𝑒
, 𝑡) = 𝑠

0
(𝑞

𝑒
, 𝑡) + 𝑧

𝑠
(𝑞

𝑒
, 𝑡) , (6)

where 𝑠 ∈ IR𝑚, 𝑠
0
∈ IR𝑚 is designed as the linear or nonlinear

function of the system states, and 𝑧
𝑠
∈ IR𝑚 is an unknown

integral function of the state to be determined such that the
reaching phase is eliminated. The integral sliding manifold is
given by 𝑠(𝑞

𝑒
, 𝑡) = 0.

Differentiating 𝑠 in (6) yields

̇𝑠 (𝑞

𝑒
, 𝑡) = 𝐻 (𝑞

𝑒
) [𝑓 (𝑞

𝑒
, 𝑡)

+ 𝑔 (𝑞

𝑒
) (𝑢 + 𝑔

+

(𝑞

𝑒
) 𝑃 (𝑞

𝑒
, 𝑡)) + 𝑃

𝑈
(𝑞

𝑒
, 𝑡)] + 𝑧̇

𝑠
,

(7)

where𝐻(𝑞
𝑒
) = 𝜕𝑠

0
(𝑞

𝑒
)/𝜕𝑞

𝑒
∈ IR𝑚×𝑛.
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In absence of perturbation, the invariance conditions of
the integral sliding manifold with the nonlinear time varying
continuous control 𝑢

𝑐
(𝑞

𝑒
, 𝑡) are given by

𝑠 (𝑞

𝑒
, 𝑡) = 0 ∀𝑡 > 0,

̇𝑠 (𝑞

𝑒
, 𝑡) = 0 ∀𝑡 > 0 󳨐⇒

𝑧̇

𝑠
= −𝐻 (𝑞

𝑒
) [𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢

𝑐
] .

(8)

To satisfy this invariance condition from the initial time,
we obtain from the above equations the dynamics of the
variable 𝑧

𝑠
:

𝑧̇

𝑠
= −𝐻 (𝑞

𝑒
) [𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢

𝑐
] ,

𝑧

𝑠
(0) = −𝑠

0
(𝑞

𝑒
(𝑡

0
)) .

(9)

According to (6), (9), we obtain

𝑠 = 𝑠

0
(𝑞

𝑒
, 𝑡) − 𝑠

0
(𝑞

𝑒
(𝑡

0
))

− ∫

𝑡

𝑡0

𝐻(𝑞

𝑒
) [𝑓 (𝑞

𝑒
, 𝜏) + 𝑔 (𝑞

𝑒
) 𝑢

𝑐
] 𝑑𝜏.

(10)

Note that this integral sliding manifold is analogous to
those proposed in [11]. We can see that the invariance condi-
tion is verified for this sliding surfacewith the control𝑢

𝑐
(𝑞

𝑒
, 𝑡)

if the disturbance does not appear. In order to guarantee the
attractivity of the sliding manifold (10) and the robustness
against the perturbation, we will add a discontinuous control
part to the time varying continuous control 𝑢

𝑐
(𝑞

𝑒
, 𝑡). We put

the robust feedback control in the following form:

𝑢 (𝑞

𝑒
, 𝑡) = 𝑢

𝑐
(𝑞

𝑒
, 𝑡) + 𝑢disc (𝑞𝑒, 𝑡) , (11)

where 𝑢
𝑐
(𝑞

𝑒
, 𝑡) is the feedback stabilizing control of the nom-

inal system (5)which guarantees the invariance of the integral
sliding manifold. 𝑢disc(𝑞𝑒, 𝑡) is a discontinuous control action
designed to minimize the disturbance terms, forcing the
system state on a suitably designed integral sliding manifold
𝑠(𝑞

𝑒
, 𝑡) = 0.

Assumption 3. 𝐻(𝑞
𝑒
) is such that

Rank (𝐻 (𝑞
𝑒
) 𝑔 (𝑞

𝑒
)) = 𝑚 ∀𝑞

𝑒
∈ IR𝑛. (12)

Take into account the reachability condition defined as
follows [9]:

̇

𝑆 = −𝑀 ⋅ sign (𝑆) . (13)

The discontinuous control is

𝑢disc (𝑞𝑒, 𝑡) = −𝑀
(𝐻 (𝑞

𝑒
) 𝑔 (𝑞

𝑒
))

𝑇

𝑠 (𝑞

𝑒
, 𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(𝐻 (𝑞

𝑒
) 𝑔 (𝑞

𝑒
))

𝑇

𝑠 (𝑞

𝑒
, 𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩2

, (14)

where 𝑀 = [

𝑀1

0

0

𝑀2
] ∈ IR𝑚×𝑚 is a positive definite

diagonal matrix. To determine the state equations at the
sliding motion, the equivalent control method is used. This
consists of forcing of ̇𝑆(𝑞

𝑒
, 𝑡) = 0, then determining the value

of the equivalent control, and finally substituting it into the
state equations. The derivative of 𝑆(𝑞

𝑒
, 𝑡) is

̇

𝑆 (𝑞

𝑒
, 𝑡) = 𝐻 (𝑞

𝑒
) 𝑞̇

𝑒
−

̇

𝑍

𝑠
(𝑞

𝑒
, 𝑡)

= 𝐻 (𝑞

𝑒
) 𝑔 (𝑞

𝑒
) (𝑢disc (𝑞𝑒, 𝑡) + 𝑔

+

(𝑞

𝑒
) 𝑃 (𝑞

𝑒
, 𝑡))

+ 𝐻 (𝑞

𝑒
) 𝑃

𝑈
(𝑞

𝑒
, 𝑡) .

(15)

The equivalent control is defined as

𝑢

eq
disc = − (𝐻 (𝑞𝑒) 𝑔 (𝑞𝑒))

−1

𝐻(𝑞

𝑒
) 𝑃

𝑈
(𝑞

𝑒
, 𝑡)

− 𝑔

+

(𝑞

𝑒
) 𝑃 (𝑞

𝑒
, 𝑡) .

(16)

Substituting 𝑢 = 𝑢
𝑐
+ 𝑢

eq
disc into system (1), we have

𝑞̇eq

= 𝑔 (𝑞

𝑒
) 𝑢

𝑐

+ (𝐼 − 𝑔 (𝑞

𝑒
) (𝐻 (𝑞

𝑒
) 𝑔 (𝑞

𝑒
))

−1

𝐻(𝑞

𝑒
)) 𝑃

𝑈
(𝑞

𝑒
, 𝑡) .

(17)

One has that the matched disturbance is eliminated,
and the ISM control strategy has transformed the original
uncertain term 𝑃(𝑞

𝑒
, 𝑡) into a new term:

𝑃eq (𝑞𝑒, 𝑡)

= (𝐼 − 𝑔 (𝑞

𝑒
) (𝐻 (𝑞

𝑒
) 𝑔 (𝑞

𝑒
))

−1

𝐻(𝑞

𝑒
)) 𝑃

𝑈
(𝑞

𝑒
, 𝑡) .

(18)

An optimal choice of the state-dependent matrix 𝐻(𝑞
𝑒
)

would minimize this term. The goal of the remainder of this
work is then to solve the following problem.

Problem 4. For system (1) fulfilling Assumptions 1 and 3, find
a function 𝑆

0
(𝑞

𝑒
, 𝑡) such that

𝑑𝑆

∗

(𝑞

𝑒
, 𝑡)

𝑑𝑞

𝑒

= 𝐻

∗

(𝑞

𝑒
) = argmin
𝐻(𝑞𝑒)∈IR𝑚×𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝑃eq (𝑞𝑒, 𝑡)
󵄩

󵄩

󵄩

󵄩

󵄩2

. (19)

2.2. The Proposed Sliding Manifold. A serval result is intro-
duced for the minimization of the equivalent disturbance
(18) for system (1), when the ISM control strategy is applied;
hence, we consider the distribution given by

Λ (𝑞

𝑒
) = span {𝑔⊥ (𝑞

𝑒
)} . (20)

That introduces the following assumption.

Assumption 5. Λ(𝑞
𝑒
) is involutive: that is,

[𝑔

⊥

𝑖
, 𝑔

⊥

𝑗
] =

𝜕𝑔

⊥

𝑗

𝜕𝑞

𝑔

⊥

𝑖
−

𝜕𝑔

⊥

𝑖

𝜕𝑞

𝑔

⊥

𝑗
∈ Λ (𝑞

𝑒
) ∀𝑖, 𝑗 = 1, 2,

(21)

where [⋅, ⋅] is the Lie bracket of two vector fields. Since
Assumption 5 is fulfilled, there exists a function ̃𝑆

0
(𝑞

𝑒
, 𝑡) such

that

𝜕

̃

𝑆

0
(𝑞

𝑒
, 𝑡)

𝜕𝑞

𝑒

=

̃

𝐻(𝑞

𝑒
) = 𝐵 (𝑞

𝑒
) 𝑔

𝑇

(𝑞

𝑒
) ,

(22)
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→
j

y

O x →
i

C = (x, y)

𝜃

Figure 1: Kinematic model of unicycle-type mobile robot.

where 𝐵(𝑞) ∈ IR𝑚×𝑚 is a full rank matrix. Note that (22)
guarantees that Assumption 3 holds.

The involutivity of Λ(𝑞
𝑒
) is equivalent to the existence of

𝑚 independent functions ̃𝑆
0
(𝑞

𝑒
, 𝑡) such that

𝜕

̃

𝑆

0
(𝑞

𝑒
, 𝑡)

𝜕𝑞

𝑒

𝑔

⊥

(𝑞

𝑒
) =

̃

𝐻 (𝑞

𝑒
) 𝑔

⊥

(𝑞

𝑒
) = 0.

(23)

Since 𝑚 columns of ̃𝐻𝑇(𝑞
𝑒
) are independent, they span

the orthogonal complement of Λ(𝑞
𝑒
). Recall that the double

orthogonal complement of a closed subspace is equal to the
subspace itself which is equivalent to

span {̃𝐻𝑇 (𝑞
𝑒
)} = span {𝑔 (𝑞

𝑒
)} . (24)

The columns of ̃𝐻𝑇(𝑞
𝑒
) and 𝑔(𝑞

𝑒
) are basis of the same

subspace and the matrix 𝐵𝑇(𝑞) in (22) is simply the transfor-
mation matrix relating them.

3. Kinematics Model of Wheeled Mobile Robot

The kinematic model of unicycle-type wheeled mobile robot
is described with consideration of the nonholonomic con-
straints. A complete study of the kinematics model of WMRs
could be found in [16].

3.1. KinematicsModel of Unicycle-TypeWheeledMobile Robot.
A unicycle-type mobile robot is considered as depicted in
Figure 1. The kinematic scheme of the robot consists of
platform with two driving wheels mounted on the same axis
with independent actuators and one free wheel (caster) is
used to keep the robot stable [16]. It is assumed that thewheels
are nondeformable and roll without lateral sliding.

The point 𝐶 at the center of the driving wheels axle is
used as a reference point of the robot. The configuration of

Controlled robot

Virtual reference robot

Reference trajectory

y

xO

C = (x, y)

Cr = (xr, yr)

ey

ex

𝜃

𝜃r

e𝜃

Figure 2: Tracking the reference trajectory of WMR.

the robot can be described by three generalized coordinates
as

𝑞 = (𝑥, 𝑦, 𝜃)

𝑇

∈ 𝑄 = IR2 × 𝑆𝑂1, (25)

where (𝑥, 𝑦) are the coordinates of point 𝐶 and 𝜃 is the robot
orientation. The nonholonomic constraint that the wheels
cannot slip in the lateral direction is

[−sin 𝜃 cos 𝜃 0]
[

[

[

[

𝑥̇

𝑦̇

̇

𝜃

]

]

]

]

= 0. (26)

From this constraint, the kinematicmodel of the unicycle can
be written as follows:

𝑞̇ = 𝑔 (𝑞) 𝑢 󳨐⇒

[

[

[

[

𝑥̇

𝑦̇

̇

𝜃

]

]

]

]

=

[

[

[

cos 𝜃
sin 𝜃
0

0

0

1

]

]

]

[

V

𝑤

] , (27)

where V and 𝑤 area linear velocity of the wheels and its
angular velocity, respectively.They are taken as control inputs
𝑢 = (V, 𝑤)𝑇.

The driftless nonlinear system (27) has several control
properties, most of which actually hold for the whole class
of WRMs and nonholonomic mechanisms in general. This
property comes from the fact that any position is an equilib-
rium point if the inputs are zero, and hence the system has no
dynamical motion.

3.2. Posture Error Model of Mobile Robot. In trajectory track-
ing of wheeled mobile robots, the reference trajectory 𝑞

𝑟
and

the velocity 𝑢
𝑟
are considered, where they are written as

𝑞

𝑟
= (𝑥

𝑟
(𝑡) , 𝑦

𝑟
(𝑡) , 𝜃

𝑟
(𝑡))

𝑇

,

𝑢 = (V
𝑟
(𝑡) , 𝑤

𝑟
(𝑡))

𝑇

.

(28)

The mobile robot moves from posture 𝑞 to posture 𝑞
𝑟
, as

shown in Figure 2. The posture error is given by

(𝑒

𝑥
, 𝑒

𝑦
, 𝑒

𝜃
)

𝑇

= (𝑥 − 𝑥

𝑟
(𝑡) , 𝑦 − 𝑦

𝑟
(𝑡) , 𝜃 − 𝜃

𝑟
(𝑡))

𝑇

.
(29)
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Figure 3: Closed-loop control diagram.

According to coordinate transformation, the posture error
equation of the mobile robot is described as

𝑞

𝑒
=

[

[

[

𝑥

𝑒

𝑦

𝑒

𝜃

𝑒

]

]

]

=

[

[

[

cos 𝜃
𝑟

sin 𝜃
𝑟
0

−sin 𝜃
𝑟
cos 𝜃
𝑟
0

0 0 1

]

]

]

[

[

[

𝑒

𝑥

𝑒

𝑦

𝑒

𝜃

]

]

]

. (30)

Thederivative of the posture error given in (30) can bewritten
as

𝑞̇

𝑒
=

[

[

[

[

𝑥̇

𝑒

𝑦̇

𝑒

̇

𝜃

𝑒

]

]

]

]

=

[

[

[

𝑦

𝑒
𝑤

𝑟
− V
𝑟
+ cos 𝜃

𝑒
V

−𝑥

𝑒
𝑤

𝑟
+ sin 𝜃

𝑒
V

𝑤 − 𝑤

𝑟

]

]

]

. (31)

For unicycle, it is assumed that |𝜃
𝑒
| < 𝜋/2, which means

that the vehicle orientation must not be perpendicular to the
desired trajectory. We can write (31) in the form affine in the
control as follows:

𝑞̇

𝑒
= 𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢 󳨐⇒

𝑞̇

𝑒
=

[

[

[

[

𝑥̇

𝑒

𝑦̇

𝑒

̇

𝜃

𝑒

]

]

]

]

=

[

[

[

𝑦

𝑒
𝑤

𝑟
− V
𝑟

−𝑥

𝑒
𝑤

𝑟

−𝑤

𝑟

]

]

]

+

[

[

[

cos 𝜃
𝑒

sin 𝜃
𝑒

0

0

0

1

]

]

]

[

V

𝑤

] .

(32)

The model of the unicycle usually has external distur-
bance or unmodeled uncertainty, so the behavior of (32) can
be quite different fromexpected. If there is disturbances acting
on the system, the dynamic of the posture error is given by

𝑞̇

𝑒
=

[

[

[

[

𝑥̇

𝑒

𝑦̇

𝑒

̇

𝜃

𝑒

]

]

]

]

=

[

[

[

𝑦

𝑒
𝑤

𝑟
− V
𝑟

−𝑥

𝑒
𝑤

𝑟

−𝑤

𝑟

]

]

]

+

[

[

[

cos 𝜃
𝑒

sin 𝜃
𝑒

0

0

0

1

]

]

]

[

V

𝑤

]

+

[

[

[

𝑝

1
cos 𝜃
𝑒
− 𝑝

2
sin 𝜃
𝑒

𝑝

1
sin 𝜃
𝑒
+ 𝑝

2
cos 𝜃
𝑒

𝑝

3

]

]

]

.

(33)

From (3) and (4), we have

𝑔

+

(𝑞

𝑒
) = [

1 0 0

0 0 1

] ,

𝑔

⊥

(𝑞

𝑒
) =

[

[

[

−sin 𝜃
cos 𝜃
0

]

]

]

,

𝑔

⊥+

(𝑞) = [

0 0 0

0 1 0

] .

(34)

System (4) is written as

𝑞̇

𝑒
= 𝑓 (𝑞

𝑒
, 𝑡) + 𝑔 (𝑞

𝑒
) 𝑢 + 𝑃

𝑀
(𝑞

𝑒
, 𝑡) + 𝑃

𝑢
(𝑞

𝑒
, 𝑡)

󳨐⇒ 𝑞̇

𝑒
=

[

[

[

𝑥̇

𝑒

𝑦̇

𝑒

̇

𝜃

𝑒

]

]

]

=

[

[

[

𝑦

𝑒
𝑤

𝑟
− V
𝑟

−𝑥

𝑒
𝑤

𝑟

−𝑤

𝑟

]

]

]

+

[

[

[

cos 𝜃
𝑒

sin 𝜃
𝑒

0

0

0

1

]

]

]

[

V
𝑤

]

+

[

[

[

𝑝

1
cos 𝜃
𝑒

𝑝

1
sin 𝜃
𝑒

𝑝

3

]

]

]

+

[

[

[

−𝑝

1
sin 𝜃
𝑒

𝑝

1
cos 𝜃
𝑒

0

]

]

]

.

(35)

If we assume that each component of the vector 𝑃 is in
absolute value smaller than a constant, 𝑃

1
, 𝑃
2
, 𝑃
3
, respec-

tively, we obtain𝐷sup = √𝑃
2

1
+ 𝑃

2

2
+ 𝑃

2

3
as required in (2).

In the following, we applied the above control design (11)
to this obtained model for the trajectory tracking.

4. Integral Sliding Mode Controller Design
Applied to the Unicycle

In this section, the integral sliding mode controller (ISMC) is
applied to a unicycle. Firstly, we mention the nonlinear time-
varying continuous feedback based technique proposed by
Nonami et al. [16], for using it as a nominal controller. Then,
we determine the ISMC to assess the trajectory tracking in
the presence of matched and unmatched perturbations from
the initial condition (Figure 3).
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4.1. Nonlinear Time-Varying Feedback. Nonami et al. [16]
proposed a nonlinear controller, which is globally sta-
ble around a reference trajectory, with the same nominal
system structure described as in Figure 2. The Nonlinear
State Tracking Control law developed in [16] can be given
as

𝑢

𝑐
(𝑞

𝑒
, 𝑡) = [

V
𝑐

𝑤

𝑐

]

= [

V
𝑟
− 𝑘

𝑥

󵄨

󵄨

󵄨

󵄨

V
𝑟

󵄨

󵄨

󵄨

󵄨

𝑥

𝑒

𝑤

𝑟
− 𝑘

𝑦
V
𝑟
⋅ 𝑦

𝑒
+ 𝑘

𝜃

󵄨

󵄨

󵄨

󵄨

V
𝑟

󵄨

󵄨

󵄨

󵄨

tan (𝜃
𝑒
)

] ,

(36)

where 𝑘
𝑥
, 𝑘
𝑦
, and 𝑘

𝜃
are positive constantthat can be cal-

culated by eigenvalue placement and the first term in each
velocity is a feedforward part.

This controller makes the origin of system (32) globally
asymptotically stable if V

𝑟
is a bounded differentiable function

with bounded derivative and does not tend to zero when it
tends to infinity. Readers are referred to [16] for detailed
description. From (36) we note that V

𝑟
can entirely pass

through zero when it changes their sign.

4.2. Integral Sliding Mode Controller Design. The integral
sliding mode control can be used to eliminate the effect
of the matched disturbances and minimize the unmatched
one. From the above design procedure, we define the control
feedback as

V (𝑞
𝑒
, 𝑡) = V

𝑐
(𝑞

𝑒
, 𝑡) + Vdisc (𝑞𝑒, 𝑡) ,

𝑤 (𝑞

𝑒
, 𝑡) = 𝑤

𝑐
(𝑞

𝑒
, 𝑡) + 𝑤disc (𝑞𝑒, 𝑡) .

(37)

To check if Assumption 5 is fulfilled, we consider the
distribution:

Λ (𝑞

𝑒
) = span {𝑔⊥} = span

{

{

{

{

{

[

[

[

−sin 𝜃
cos 𝜃
0

]

]

]

}

}

}

}

}

. (38)

The distributionΛ(𝑞
𝑒
) verifies Assumption 5. As a conse-

quence, all the assumptions are fulfilled, and the minimiza-
tion of the disturbance terms can be performed. Now we can
calculate the sliding manifold by solving the equations in the
form:

𝜕

̃

𝑆

0
(𝑞

𝑒
, 𝑡)

𝜕𝑞

𝑒

𝑔

𝑇

(𝑞

𝑒
) = 0,

(39)

where 𝑆
0
= [𝑆

01
𝑆

02
]

𝑇 and from (39), we have

[

[

[

[

[

𝜕𝑆

01

𝜕𝑥

𝜕𝑆

01

𝜕𝑦

𝜕𝑆

01

𝜕𝜃

𝜕𝑆

02

𝜕𝑥

𝜕𝑆

02

𝜕𝑦

𝜕𝑆

02

𝜕𝜃

]

]

]

]

]

[

[

[

−sin 𝜃
cos 𝜃
0

]

]

]

= 0, (40)

−

𝜕𝑆

01

𝜕𝑥

sin 𝜃 +
𝜕𝑆

01

𝜕𝑦

cos 𝜃 = 0, (41)

−

𝜕𝑆

02

𝜕𝑥

sin 𝜃 +
𝜕𝑆

02

𝜕𝑦

cos 𝜃 = 0. (42)

Clearly, we can choose 𝑆
01
= 𝜃, 𝑆

02
= 𝑥 cos 𝜃 + 𝑦 sin 𝜃 as

an exact solution for (41) and (42). The sliding manifold is as
follows:

̃

𝑆

0
(𝑞

𝑒
, 𝑡) = [

𝜃

𝑥 cos 𝜃 + 𝑦 sin 𝜃
] . (43)

The partial derivative of 𝑆
0
(𝑞

𝑒
, 𝑡) with respect to 𝑞

𝑒
is

̃

𝐻(𝑞

𝑒
) = [

0

cos 𝜃
0

sin 𝜃
1

−𝑥 sin 𝜃 + 𝑦 cos 𝜃
] . (44)

From this choice of the integral sliding manifold, the
system will reach the integral sliding manifold infinite time
and remain on it in the presence of disturbances. On the other
hand, from (9) we can see the zero initial value of 𝑠(𝑞

𝑒
, 𝑡) at

𝑡 = 0. Therefore, the sliding mode exists ∀𝑡 ≥ 0.

5. Simulation Results

To assess the effectiveness of the proposed controller, com-
puter simulations using MATLAB/SIMULINK are imple-
mented.The simulations are performed by tracking a circular
trajectory in which the desired position, orientation, and
velocities of the unicycle are specified. This trajectory is
described as

𝑥

𝑟
(𝑡) = 𝑅 sin (𝜔𝑡) ,

𝑦

𝑟
(𝑡) = 𝑅 (1 − cos (𝜔𝑡)) ,

𝜃

𝑟
(𝑡) = 𝜔𝑡,

V
𝑟
(𝑡) = 𝑅𝜔,

𝑤

𝑟
(𝑡) = 𝜔.

(45)



Journal of Control Science and Engineering 7

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

Position x(t)

Po
sit

io
n 
y
(t
)

y = f(x)

yr = f(xr)

+Uc

Car path, with matched and unmatched disturbances + Uc

(a)

−3 −2 −1 0 1 2 3

0

2

4

Position x(t)

Po
sit

io
n 
y
(t
)

Car path, with matched disturbances + ISMC

y = f(x)

yr = f(xr)

(b)

−3 −2 −1 0 1 2 3

0

2

4

Position x(t)

Po
sit

io
n 
y
(t
)

Car path, with matched and unmatched disturbances + ISMC

y = f(x)

yr = f(xr)

(c)

Figure 4: The path of the unicycle x-y with initialization error and disturbances.

With initial configuration equal to (𝑥
0
, 𝑦

0
, 𝜃

0
) = (0m, 0m, 0∘),

and 𝑅 = 2m, 𝜔 = 1 rad/s.
To show the robustness of our controller, the sim-

ulation was run with initialization error (𝑥
0
, 𝑦

0
, 𝜃

0
) =

(2m, 0.5m, 20∘) and then with disturbances 𝑃(𝑞
𝑒
, 𝑡) such as

𝑃 (𝑞

𝑒
, 𝑡) =

[

[

[

2 sin (20𝑡)
sin (20𝑡)
0.8 sin (8𝑡)

]

]

]

. (46)

Leading to Φ ≈ 2.6 in Assumption 1, the gain is chosen
by 𝐷sup ≈ 2.6. Moreover, in order to reduce the so-called
chattering effect, the well-known equivalent control method
is used, applying a linear low-pass filter to the obtained
discontinuous control variable (Table 1).

First of all, we show (Figure 4(a)) the path of the unicycle
in the 𝑥-𝑦 plane in case there is matched and unmatched
disturbance and the high-level controller only is used. As

Table 1: The parameter values of the control law used in the
simulations.

Constants 𝑘

𝑥
𝑘

𝑦
𝑘

𝜃
𝑀

1
𝑀

2

𝑢

𝑐
(𝑞

𝑒
, 𝑡) 10 5 10 — —

𝑢disc (𝑞𝑒, 𝑡) — — — 3 3

expected, after a transient (since the initial condition is taken
on purpose different from the reference), the car trajectory
(solid line) does not settle on the desired one (dashed line),
and the high level controller has a poor performance, since
it is not designed to work in presence of disturbances.
Using the proposed ISM strategy, the bound on the matched
disturbances is eliminated (Figures 4(b) and 5(a)) and the
unmatched ones are not amplified (Figures 4(c) and 5(b));
the performance of the overall control law is improving. The
unicycle with ISMC indicates a higher robustness, global
stability, and higher tracking precision.
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Figure 5: Tracking the reference trajectories 𝑥(𝑡), 𝑦(𝑡), and 𝜃(𝑡), respectively, with initialization error. (a) In case of matched disturbances
with ISMC and (b) in case of matched and unmatched disturbances with ISMC.

In this last case, we show also (Figure 7) the time evolu-
tion of the control variables 𝑢

1
and 𝑢

2
. The time evolution of

the components of the sliding manifold 𝑠 is steered to zero as
shown in Figure 6, since the sliding mode is enforced from
the initial instance.

6. Conclusion

In automatic control, the sliding mode control improves
system performance by allowing the successful completion of
a task even in the presence of perturbations. In this work, the
uncertain system trajectories are asymptotically regulated to

zero inspite, while a sliding mode is enforced in finite time
along an integral manifold from the initial condition. The
use of the integral sliding manifold allows one to subdivide
the control design procedure into two steps. First high-level
control and then a discontinuous control component are
added so as to cope with the uncertainty presence.The design
procedure is relying on the definition of a suitable sliding
manifold and the generation of slidingmodes as it guarantees
theminimization of the effect of the disturbance terms, which
takes place when the matched disturbances are completely
rejected and the unmatched ones are not amplified. The
performance of closed-loop system has been verified using
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Figure 6: Time evolution of the components of sliding manifold 𝑠
1
and 𝑠

2
, (a) in case of matched disturbances and (b) in case of matched

and unmatched disturbances.
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Figure 7: The control inputs 𝑢
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of the unicycle using integral sliding mode controller with matched and unmatched disturbances.

simulation results for the unicycle. In a future work, we will
try to enhance this technique and to verify the obtained
simulation results on the real test bench.
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