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We focus on distributed model predictive control algorithm. Each distributed model predictive controller communicates with the
others in order to compute the control sequence. But there are not enough communication resources to exchange information
between the subsystems because of the limited communication network. This paper presents an improved distributed model
predictive control scheme with control planning set. Control planning set algorithm approximates the future control sequences
by designed planning set, which can reduce the exchange information among the controllers and can also decrease the distributed
MPC controller calculation demandwithout degrading the whole system performancemuch.The stability and system performance
analysis for distributedmodel predictive control are given. Simulations of the four-tank control problem andmultirobotmultitarget
tracking problem are illustrated to verify the effectiveness of the proposed control algorithm.

1. Introduction

Model predictive control (MPC), also referred to receding
horizon control (RHC), is an attractive control strategy
because of its ability to control systems with input and output
constraints in the optimization problem. The input sequence
is calculated by solving an optimization problem (minimiza-
tion of a given performance index) over a prediction horizon.
Once the optimization problem is solved, only the first input
value is implemented into the system. In the next sampling
time, a new optimization problem is solved repeatedly. MPC
has been widely applied in various control areas over the past
few decades [1–3].

Nowadays, systems are becoming more and more com-
plex. In centralized MPC, all the inputs sequences are
optimized with respect to one given performance index in
a single optimization problem. However, when the number
of the state variables and inputs of the system becomes
larger and larger, the computation burden of the centralized
optimization problem may increase significantly. Moreover,
the entire system would be out of control if the centralized

MPC controller fails. Therefore it is impractical to apply
the centralized MPC to large-scale systems. In fact, a large-
scale system is composed by physically parted subsystems.
Many decentralized and distributed model predictive con-
trol (DMPC) algorithms have been recently proposed [4–
7], which are some feasible alternatives to overcome the
computational burden of the centralized MPC.

In DMPC architecture, subsystems communicate with
each other via networks and the inputs are computed by solv-
ing more than one optimization problem in each subsystem
in a coordinated fashion. There are many achievements on
DMPC strategy and a survey of major DMPC algorithms is
presented in [8, 9]. The existing DMPC algorithms can be
divided into different categories.

Based on the topology of the communication network,
DMPC can be divided into fully connected algorithms and
partially connected algorithms. In fully connected algo-
rithms, DMPC is able to communicate with the rest of the
local controllers [10, 11]. In partially connected algorithms,
local optimization problems are solved by taking into account
the neighboring (not the whole system) interaction and
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solution, which is suitable for loosely connected subsystems
[12, 13]. However, it will deteriorate the whole system perfor-
mance.

Based on the exchange times among the distributed con-
trollers, DMPC can be divided into noniterative algorithms
and iterative algorithms. In iterative algorithms, information
is transmitted among the DMPC controllers many times in
the sampling interval [14, 15]. On the contrary, in noniterative
algorithms DMPC controller communicates with the other
controllers only once in the sampling interval [16, 17].

In this article, we consider that the DMPC controllers
can exchange information only once while they are solving
their local optimization problems at each sampling time
and the connectivity of the communication is sufficient
for the distributed controller to obtain information. This
paper proposes an extension of the fully connected nonit-
erative DMPC algorithm. However, the exchange informa-
tion between subsystems is usually realized over a digital
communication network. Thus, the local systems can only
have limited communication resource. For example, in a
networked environment, bandwidth limitations can restrict
the amount of exchange information. Thus, it is necessary to
restrict the distributed controllers to exchange information.
The proposed DMPC in the paper reduces the communica-
tion information compared to the standard distributed MPC
control scheme in complex large-scale systems and at the
same timedecreases computational burden of each controller.
This algorithm also provides a reasonable trade-off between
system performance and low communication requirements
needed to reach a cooperative solution.

The rest of the paper is organized as follows. In Section 2,
the centralized and distributed model predictive control
problem is formulated. In Section 3, the improved distributed
model predictive control with control planning set (CP-
DMPC) is proposed. The stability and performance analysis
is provided in Section 4. In Section 5, the simulations of
the proposed controller to four-tank system and multirobot
multitarget tracking system are presented. Finally, the conclu-
sions of the work are given in Section 6.

2. Centralized and Distributed Model
Predictive Control Formulation

Without loss of generality, suppose that the whole system is
comprised of 𝑁 interconnected subsystems. And consider
that each subsystem only couples through the input [18].
The discrete-time state-space model for 𝑖th subsystem is as
follows:

𝑥
𝑚,𝑖

(𝑘 + 1) = 𝐴
𝑚,𝑖

𝑥
𝑚,𝑖

(𝑘) + 𝐵
𝑚,𝑖𝑖

𝑢
𝑖
(𝑘)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑚,𝑖𝑗

𝑢
𝑗
(𝑘) ,

(1a)

𝑦
𝑖
(𝑘) = 𝐶

𝑚,𝑖
𝑥
𝑚,𝑖

(𝑘) , (1b)

where 𝑖 = 1, . . . , 𝑁. 𝑥
𝑚,𝑖

(𝑘), 𝑢
𝑖
(𝑘), and 𝑦

𝑖
(𝑘) are the state

vector, the control input vector, and the output vector of
𝑖th subsystem at kth sampling time. The model (1a), (1b)

is changed to suit the model predictive control design with
an embedded integrator. The augmented model of the 𝑖th
subsystem state space model is

𝑥
𝑖
(𝑘 + 1) = 𝐴

𝑖
𝑥
𝑖
(𝑘) + 𝐵
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𝑦
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(𝑘) , (2b)

where a new state variable vector is chosen to be

𝑥
𝑖
(𝑘) = [Δ𝑥

𝑚,𝑖
(𝑘) 𝑦

𝑖
(𝑘)] (3)

and a new control variable vector is chosen to be

Δ𝑢
𝑖
(𝑘) = 𝑢

𝑖
(𝑘) − 𝑢

𝑖
(𝑘 − 1) (4)

and the difference of the state variable is denoted by
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The state interaction vector is given by

𝑤
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The triplet 𝐴
𝑖
, [𝐵
𝑖𝑖
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] ,

𝐶
𝑖
= [𝑂 𝐼] .

(7)

The model of the whole system (centralized model) can be
expressed in compact way

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵Δ𝑢 (𝑘) , (8a)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) (8b)
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Figure 1: Centralized MPC control system architecture.

with state vector 𝑥(𝑘) ∈ 𝑅
𝑛
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2.1. Centralized Model Predictive Control Formulation. The
main idea of the centralized model predictive control for-
mulation is one large-scale optimization with constraint.

The centralized MPC control system architecture diagram is
shown in Figure 1.

In the centralized model predictive control formulation,
at each sampling time centralizedMPC controller obtains the
whole system measurement 𝑦(𝑘) = [𝑦

1
(𝑘), 𝑦
2
(𝑘), . . . , 𝑦

𝑁
(𝑘)]

and the control objective minimizes the following global
performance index:
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Here 𝑁
𝑝
is the prediction horizons and 𝑁

𝑢
is the control

horizons. And𝑁
𝑝

≥ 𝑁
𝑢
.𝑄
𝑖
and𝑅

𝑖
are penalties on the output

variables and control variables, respectively. 𝑦
𝑑

𝑖
is the output

set point. And because the central controller can handle all
the information of the system, the interaction predictions
𝑤
𝑖
(𝑘 + 𝑙 | 𝑘) are known at time 𝑘.
This optimization problem (10a), (10b) can be solved by a

standard quadratic program algorithm with constraints. The
optimal control sequence Δ𝑈

∗

(𝑘, 𝑁
𝑢

| 𝑘) = [Δ𝑢
∗

(𝑘 | 𝑘),
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Figure 2: DMPC control system architecture.

Δ𝑢
∗

(𝑘 + 1 | 𝑘), . . . , Δ𝑢
∗

(𝑘 + 𝑁
𝑢

− 1 | 𝑘)] is calculated and
only the first control signal Δ𝑢

∗

(𝑘 | 𝑘) = [Δ𝑢
∗

1
(𝑘 | 𝑘), Δ𝑢

∗

2
(𝑘 |

𝑘), . . . , Δ𝑢
∗

𝑁
(𝑘 | 𝑘)] is applied to the whole system; after new

measurements are available, a new optimization problem is
solved in the next sampling time.

Many engineering applications such as power systems,
unmanned aerial vehicles, sensor networks, economic sys-
tem, transportation systems, and process control systems,
have become larger and more complex. The overall number
of inputs and states (outputs) is very large, and the optimized
control sequence Δ𝑈

∗

(𝑘, 𝑁
𝑢

| 𝑘) is highly dimensional.
A single optimization problem may require computational
resources (CPU time, memory, etc.). In view of the above
consideration, it is natural to look for distributed MPC
algorithms.

2.2. Distributed Model Predictive Control Formulation. In the
distributed model predictive control formulation, the large

size optimization problem is replaced by 𝑁 small ones that
work cooperatively towards achieving the performance of
centralized control system. And the following assumptions
are made.

(a) Predictive horizons 𝑁
𝑝
and control horizons 𝑁

𝑢
are

the same for each subsystem.

(b) Controllers are synchronous.

(c) Controllers communicate with each other only once
within a sampling time interval.

(d) Controllers are interconnected and can obtain infor-
mation which the controllers need.

And the DMPC control system architecture diagram is
shown in Figure 2.
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The 𝑖th subsystem minimizes the following local perfor-
mance index, which is the 𝑖th optimization problem [19]:

𝐽
𝑖
(𝑘) =

𝑁
𝑝

∑

𝑙=1


𝑦
𝑖
(𝑘 + 𝑙 | 𝑘) − 𝑦

𝑑

𝑖
(𝑘 + 𝑙)



2

𝑄
𝑖

+

𝑁
𝑢

∑

𝑙=1

Δ𝑢
𝑖
(𝑘 + 𝑙 − 1 | 𝑘)



2

𝑅
𝑖

(11a)

s.t.

𝑥
𝑖
(𝑘𝑘 + 𝑙 + 1) = 𝐴

𝑖
𝑥
𝑖
(𝑘𝑘 + 𝑙) + 𝐵

𝑖𝑖
Δ𝑢
𝑖
(𝑘𝑘 + 𝑙)

+ 𝑤
𝑖
(𝑘𝑘 + −𝑙1) ,

𝑦
𝑖
(𝑘𝑘 + 𝑙) = 𝐶

𝑖
𝑥
𝑖
(𝑘𝑘 + 𝑙) .

(11b)

It can be seen that the global performance index can be
decomposed into a number of local performance indexes, but
the output of each agent is still related to all the input variables
due to the input coupling. Because controllers communicate
with each other only once within a sampling time interval,
the interaction predictions 𝑤

𝑖
(𝑘 + 𝑙 | 𝑘) are unknown for

the 𝑖th subsystem. And only the prediction 𝑤
𝑖
(𝑘 + 𝑙 | 𝑘 −

1) based on the information broadcasted at time 𝑘 − 1 is
available. A noniterative algorithm is developed to seek the
distributed solution at each sampling time. Based on the
information from other subsystems, each controller solves
local optimization problems to determine the future sequence
Δ𝑈
∗

𝑖
(𝑘, 𝑁
𝑢

| 𝑘) = [Δ𝑢
∗

𝑖
(𝑘 | 𝑘), Δ𝑢

∗

𝑖
(𝑘 + 1 | 𝑘), . . . , Δ𝑢

∗

𝑖
(𝑘 +

𝑁
𝑢

− 1 | 𝑘)] and broadcast Δ𝑈
∗

𝑖
(𝑘 | 𝑘) by communication

network to the other controllers.

3. Improved Distributed Model
Predictive Control with Control Planning
Set (CP-DMPC)

Besides the computational advantages of DMPC, the amount
of data needs to be exchanged among distributed controllers.
In the paper, fully connected noniterative DMPC algorithm
is focused on. However, each system exchanges information
with each other by both their initial state and their optimized
input. And time delays exist in communication network. In
Figure 3, we can see that time delay consists of three parts,
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Figure 4: The comparison between traditional MPC and CP MPC.

sensor measurement delay, DMPC controller calculation
delay, and controller information communication delay.

In this paper, a control planning set algorithm is com-
bined with DMPC controller to reduce the controller infor-
mation communication delay and meanwhile it also can
decrease the DMPC controller calculation demand without
degrading the whole system performance much. The control
planning set method presented in the paper is inspired by the
pulse-step control strategy [20]. Suboptimal strategies can be
obtained by restricting the future control sequence

Δ𝑢 (𝑘 + 𝑙 | 𝑘) = 𝑓 (Δ𝑢 (𝑘 + 𝑙 − 1 | 𝑘)) . (12)

For specification and simplicity, we choose function 𝑓 as
a linear function:

Δ𝑢 (𝑘 + 𝑙 | 𝑘) = 𝛽Δ𝑢 (𝑘 + 𝑙 − 1 | 𝑘) . (13)

In the control planning set algorithm, the future control
sequence is restricted by one possibility. The parameter 𝛽

is chosen to plan the future control sequence increases or
decreases in the same direction, which is suitable for the
experience of control engineering. And it will prevent the
frequent oscillation of the control input; see Figure 4.

In a traditional MPC scheme, the optimized control
sequence is calculated via the performance index, which may
oscillate during the control horizon. In CP MPC scheme,
the optimized control sequence changes in one direction,
which may not obtain the optimum solution but is suitable
for the control engineering. In control engineering, in some
time period control value does not change suddenly and
frequently, and this is good for the control hardware device.
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If 𝛽 = 1, the control sequence is set in equal increase. If
𝛽 > 1, the weight of the future control is larger than that of
the current control.

Let one assume that
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=
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2

𝑖
)
𝑇

⋅ ⋅ ⋅ (𝐴
𝑁
𝑝

𝑖
)

𝑇

]

𝑇

, (14g)

𝑆 = diag {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
} , (14h)

𝑇
𝑖
=

[
[
[
[

[

𝐴
0

𝑖
0

.

.

. d

𝐴
𝑁
𝑝
−1

𝑖
⋅ ⋅ ⋅ 𝐴

0

𝑖

]
]
]
]

]

, (14i)

𝑇 = diag {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} , (14j)

𝐵
𝑖
= diag

𝑝
{𝐵
𝑖𝑖
, . . . , 𝐵

𝑖𝑖
} Γ
𝑖
, (14k)

𝐵 = diag {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑁
} . (14l)

Lemma 1. The interaction predictions of 𝑖th subsystem at time
𝑘 are given by

𝑊
𝑖
(𝑘, 𝑁
𝑝

| 𝑘 − 1) =
←→
𝐵
𝑖
𝐸
𝑖
Δ𝑈 (𝑘 | 𝑘 − 1) (15)

and the compact predictions have the following form:

𝑊 (𝑘, 𝑁
𝑝

| 𝑘 − 1) =
←→
𝐵 𝐸Δ𝑈 (𝑘 | 𝑘 − 1) . (16)

Proof. With (6) and (13), the prediction of the interaction
vectors of time 𝑘 is given by

𝑤
𝑖
(𝑘 | 𝑘 − 1) =

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 | 𝑘 − 1)

= �̃�
𝑖
Δ𝑈 (𝑘 | 𝑘 − 1)

𝑤
𝑖
(𝑘 + 1 | 𝑘 − 1) =

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 + 1 | 𝑘 − 1)

=

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝛽Δ𝑢
𝑗
(𝑘 | 𝑘 − 1) = 𝛽

𝑖
�̃�
𝑖
Δ𝑈 (𝑘 | 𝑘 − 1)

.

.

.

𝑤
𝑖
(𝑘 + 𝑁

𝑢
| 𝑘 − 1) =

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 + 𝑁

𝑢
| 𝑘 − 1)

=

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝛽
𝑁
𝑢
−1

𝑖
Δ𝑢
𝑗
(𝑘 | 𝑘 − 1)

= 𝛽
𝑁
𝑢
−1

𝑖
�̃�
𝑖
Δ𝑈 (𝑘 | 𝑘 − 1) 𝑤

𝑖
(𝑘 + 𝑁

𝑢
+ 1 | 𝑘 − 1)

=

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 + 𝑁

𝑢
+ 1 | 𝑘 − 1) = 0

.

.

.

𝑤
𝑖
(𝑘 + 𝑁

𝑝
| 𝑘 − 1)

=

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 + 𝑁

𝑢
− 1 | 𝑘 − 1) = 0.

(17)

By definitions (14a)–(14l), this implies the relations (15) and
the equivalent compact forms (16) hold.

Lemma 2. The state and output predictions of 𝑖th subsystem at
time 𝑘 are expressed by

𝑋
𝑖
(𝑘 + 1, 𝑁

𝑝
| 𝑘) = 𝑆

𝑖
𝑥
𝑖
(𝑘 | 𝑘) + 𝑇

𝑖
𝐵
𝑖
𝐸
𝑖
Δ𝑢
𝑖
(𝑘)

+ 𝑇
𝑖

←→
𝐵
𝑖
𝐸Δ𝑈 (𝑘 | 𝑘 − 1) ,

𝑌
𝑖
(𝑘 + 1, 𝑁

𝑝
| 𝑘) = 𝐶

𝑖
𝑋
𝑖
(𝑘 + 1, 𝑁

𝑝
| 𝑘)

(18)

and the compact predictions have the following form:

𝑋 (𝑘 + 1, 𝑁
𝑝

| 𝑘) = 𝑆𝑥 (𝑘 | 𝑘) + 𝑇𝐵𝐸Δ𝑢 (𝑘)

+ 𝑇
←→
𝐵 𝐸Δ𝑈 (𝑘 | 𝑘 − 1) ,

𝑌 (𝑘 + 1, 𝑁
𝑝

| 𝑘) = 𝐶𝑋 (𝑘 + 1, 𝑁
𝑝

| 𝑘) .

(19)
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(1) Set initial parameter values
(2) Repeat
(3) 𝑖th CP-DMPC controller receives the output measurement 𝑦

𝑖
(𝑘) from the sensors,

𝑖 = 1, . . . , 𝑁.
(4) Obtain the control input Δ𝑢

𝑗
(𝑘 | 𝑘 − 1) and control index parameters 𝛽

𝑗

𝑗 = 1, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑁 from the other CP-DMPC controllers.
(5) Compute the predictions of the interaction 𝑊

𝑖
(𝑘, 𝑁
𝑝

| 𝑘 − 1).
(6) Compute the optimal control input Δ𝑢

∗

𝑖
(𝑘 | 𝑘) and broadcast it by the communication network.

(7) Apply the control input Δ𝑢
∗

𝑖
(𝑘) into each subsystem.

(8) until the control procedure ends

Algorithm 1: Algorithm CP-DMPC: CP-DMPC in a pseudo-algorithm format.

Proof. With (2a), (2b), and (13), the state and output predic-
tions of 𝑖th subsystem at time 𝑘 are expressed by

𝑥
𝑖
(𝑘 + 1 | 𝑘) = 𝐴

𝑖
𝑥
𝑖
(𝑘 | 𝑘) + 𝐵

𝑖𝑖
Δ𝑢
𝑖
(𝑘 | 𝑘)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 | 𝑘)

𝑥
𝑖
(𝑘 + 2 | 𝑘) = 𝐴

𝑖
𝑥
𝑖
(𝑘 + 1 | 𝑘) + 𝐵

𝑖𝑖
Δ𝑢
𝑖
(𝑘 + 1 | 𝑘)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
Δ𝑢
𝑗
(𝑘 + 1 | 𝑘) = 𝐴

2

𝑖
𝑥
𝑖
(𝑘 | 𝑘) + [𝐴

𝑖
𝐵
𝑖𝑖

+ 𝐵
𝑖𝑖
𝛽] Δ𝑢

𝑖
(𝑘 | 𝑘) +

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

[𝐴
𝑖
𝐵
𝑖𝑗

+ 𝐵
𝑖𝑗
𝛽]

⋅ Δ𝑢
𝑗
(𝑘 | 𝑘)

.

.

.

𝑥
𝑖
(𝑘 + 𝑁

𝑝
| 𝑘) = 𝐴

𝑁
𝑝

𝑖
𝑥
𝑖
(𝑘 | 𝑘) + [𝐴

𝑁
𝑝
−1

𝑖
𝐵
𝑖𝑖

+ ⋅ ⋅ ⋅

+ 𝐴
𝑁
𝑝
−𝑁
𝑢

𝑖
𝐵
𝑖𝑖
𝛽
𝑁
𝑢
−1

] Δ𝑢
𝑖
(𝑘 | 𝑘)

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

[𝐴
𝑁
𝑝
−1

𝑖
𝐵
𝑖𝑗

+ ⋅ ⋅ ⋅ + 𝐴
𝑁
𝑝
−𝑁
𝑢

𝑖
𝐵
𝑖𝑗
𝛽
𝑁
𝑢
−1

]

⋅ Δ𝑢
𝑗
(𝑘 | 𝑘) .

(20)

By definitions (14a)–(14l), this implies the relations (18) and
the equivalent compact forms (19) hold.

Remark 3. There are three parts in the state (output) predic-
tions of 𝑖th subsystem𝑋

𝑖
(𝑘+1, 𝑁

𝑝
| 𝑘).Thefirst part is 𝑆

𝑖
𝑥
𝑖
(𝑘 |

𝑘), which can be obtained by the current state value. The
second part 𝑇

𝑖
𝐵
𝑖
𝐸
𝑖
Δ𝑢
𝑖
(𝑘) is the interaction item between 𝑖th

subsystem and 𝑖th system (𝑖 = {1, . . . , 𝑖 −1, 𝑖+1, . . . , 𝑁}). And
the last part 𝑇

𝑖

←→
𝐵
𝑖
𝐸Δ𝑈(𝑘 | 𝑘 − 1) is the future optimization

item.

Lemma 4. The 𝑖th subsystem at time 𝑘 has to solve the
following optimization problem:

𝐽
𝑖
= −𝐺
𝑇

𝑖
(𝑘 + 1, 𝑁

𝑝
| 𝑘) Δ𝑈

𝑖

+ Δ𝑈
𝑇

𝑖
(Φ
𝑇

𝑖𝑖
𝑄
𝑖
Φ
𝑖𝑖

+ 𝑅
𝑖
) Δ𝑈
𝑖
,

(21)

where Φ
𝑖𝑖

= 𝑇
𝑖
𝐵
𝑖
𝐸
𝑖
, 𝐺
𝑖
(𝑘 + 1, 𝑁

𝑝
| 𝑘) = 2Φ

𝑇

𝑖𝑖
𝑄
𝑖
(𝑌
𝑑

𝑖
− 𝑆
𝑖
𝑥
𝑖
(𝑘 |

𝑘) − 𝑇
𝑖
𝑊
𝑖
(𝑘, 𝑁
𝑝

| 𝑘 − 1)).

Proof. Using the local performance index (11a), the cost
function can be written in the equivalent form

𝐽
𝑖
= (𝑌
𝑑

𝑖
− 𝑌
𝑖
)
𝑇

𝑄
𝑖
(𝑌
𝑑

𝑖
− 𝑌
𝑖
) + Δ𝑈

𝑇

𝑖
𝑅
𝑖
Δ𝑈
𝑖
. (22)

Applying (18) into it, the local performance index 𝐽
𝑖
takes the

form (21).

Theorem 5. For 𝑖th subsystem, the explicit form of the control
law is given by

Δ𝑢
𝑖
(𝑘 | 𝑘)

= 𝐾
𝑖
(𝑌
𝑑

𝑖
− 𝑆
𝑖
𝑥
𝑖
(𝑘 | 𝑘) − 𝑇

𝑖
𝑊
𝑖
(𝑘, 𝑁
𝑝

| 𝑘 − 1)) .

(23)

And the compact expression is

Δ𝑈 (𝑘 | 𝑘) = Ξ𝑌
𝑑

+ Θ𝑥 (𝑘 | 𝑘)

+ ΨΔ𝑈 (𝑘 − 1 | 𝑘 − 1) ,

(24)

where 𝐾
𝑖

= (Φ
𝑇

𝑖𝑖
𝑄
𝑖
Φ
𝑖𝑖

+ 𝑅
𝑖
)
−1

Φ
𝑇

𝑖𝑖
𝑄
𝑖
, Ξ = diag{𝐾

1
, . . . , 𝐾

𝑁
},

Θ = −Ξ𝑆, Ψ = Ξ𝑇
←→
𝐵 𝐸

The distributed MPC algorithm with control planning set
(CP-DMPC) can be summarized as shown in Algorithm 1.

4. Stability and Performance Analysis

4.1. Stability Analysis. We provide sufficient conditions that
guarantee practical stability of the closed-loop system.
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Theorem 6. The closed-loop system with 𝑁 subsystems is
asymptotically stable if and only if

𝜆

{{{{{{

{{{{{{

{

[
[
[
[
[
[

[

𝐴 0 𝐵 0

𝑆 0 𝑇𝐵𝐸 𝑇
←→
𝐵 𝐸

Θ𝐴 0 Θ𝐵 + Ψ 0

0 0 𝐼 0

]
]
]
]
]
]

]

}}}}}}

}}}}}}

}

< 1. (25)

Proof. Combining the process (8a) and (8b) and control law
(23), the closed-loop state-space representation is derived:

𝑥 (𝑘) = 𝐴𝑥 (𝑘 − 1)

+ 𝐵Δ𝑢 (𝑘 − 1 | 𝑘 − 1) ,

𝑋 (𝑘, 𝑁
𝑝

| 𝑘 − 1) = 𝑆𝑥 (𝑘 − 1)

+ 𝑇𝐵𝐸Δ𝑈 (𝑘 − 1 | 𝑘 − 1)

+ 𝑇
←→
𝐵 𝐸Δ𝑈 (𝑘 − 2 | 𝑘 − 2) ,

Δ𝑈 (𝑘 | 𝑘) = Ξ𝑌
𝑑

+ Θ𝑥 (𝑘 | 𝑘)

+ ΨΔ𝑈 (𝑘 − 1 | 𝑘 − 1) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) .

(26)

Define the extended state

𝑋
𝑁

(𝑘) = [𝑥
𝑇

(𝑘) 𝑋
𝑇

(𝑘, 𝑁
𝑝

| 𝑘 − 1) Δ𝑈
𝑇

(𝑘 | 𝑘) Δ𝑈
𝑇

(𝑘 − 1 | 𝑘 − 1)] ,

[
[
[
[
[

[

𝑥 (𝑘)

𝑋 (𝑘, 𝑁
𝑝

| 𝑘 − 1)

Δ𝑈 (𝑘 | 𝑘)

Δ𝑈 (𝑘 − 1 | 𝑘 − 1)

]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝐴 0 𝐵 0

𝑆 0 𝑇𝐵𝐸 𝑇
←→
𝐵 𝐸

Θ𝐴 0 Θ𝐵 + Ψ 0

0 0 𝐼 0

]
]
]
]
]
]

]

[
[
[
[
[

[

𝑥 (𝑘 − 1)

𝑋 (𝑘 − 1, 𝑁
𝑝

| 𝑘 − 1)

Δ𝑈 (𝑘 − 1 | 𝑘 − 1)

Δ𝑈 (𝑘 − 2 | 𝑘 − 2)

]
]
]
]
]

]

+

[
[
[
[
[

[

0

0

Ξ

0

]
]
]
]
]

]

𝑌
𝑑

,

𝑦 (𝑘) = [𝐶 0 0 0]

[
[
[
[
[

[

𝑥 (𝑘)

𝑋 (𝑘, 𝑁
𝑝

| 𝑘 − 1)

Δ𝑈 (𝑘 | 𝑘)

Δ𝑈 (𝑘 − 1 | 𝑘 − 1)

]
]
]
]
]

]

.

(27)

4.2. Performance Analysis

Remark 7 (exchange information). In traditional DMPC, the
optimal variable is Δ𝑈

𝑖
(𝑘 | 𝑘) = [Δ𝑢

𝑖
(𝑘 | 𝑘), Δ𝑢

𝑖
(𝑘 + 1 |

𝑘), . . . , Δ𝑢
𝑖
(𝑘 + 𝑁

𝑢
− 1 | 𝑘)], whose dimension is 𝑁

∗

𝑢
𝑛
𝑢𝑖
.

InCP-DMPCalgorithm, the optimal variable isΔ𝑢
𝑖
(𝑘 | 𝑘)

and the dimension of variable is 𝑛
𝑢𝑖
, which decreases greatly.

As a result, exchange information among the CP-DMPC
controllers reduces from 𝑁

∗

𝑢
𝑛
𝑢𝑖
to 𝑛
𝑢𝑖
.

Remark 8. However, the computation of the optimization
problem is reduced greatly because of the dimension reduc-
tion of the optimal variables.

The control value is calculated as

Δ𝑢
𝑖
(𝑘 | 𝑘)

= 𝐾
𝑖
(𝑌
𝑑

𝑖
− 𝑆
𝑖
𝑥
𝑖
(𝑘 | 𝑘) − 𝑇

𝑖
𝑊
𝑖
(𝑘, 𝑁
𝑝

| 𝑘 − 1)) .

(28)

In the traditional DMPC algorithm, when the number of
subsystem inputs and the control horizon becomes large, the
optimized control sequence Δ𝑈

𝑖
(𝑘 | 𝑘) = [Δ𝑢

𝑖
(𝑘 | 𝑘), Δ𝑢

𝑖
(𝑘 +

1 | 𝑘), . . . , Δ𝑢
𝑖
(𝑘 + 𝑁

𝑢
− 1 | 𝑘)] is highly dimensional. The

matrices Φ
𝑖𝑖
have also high dimensions. The computation

load of (10a) and (10b) is mainly to calculate the inverse of
the matrix (Φ

𝑇

𝑖𝑖
𝑄
𝑖
Φ
𝑖𝑖

+ 𝑅
𝑖
)
−1, which may require significant

computational resources.
In CP-DMPC algorithm, Φ

𝑖𝑖
is a vector not a matrix.

Compared with (10a) and (10b), the computation load of (21)
is lower because of no calculation of the matrix inverse. As
a result, the CP-DMPC controller decreases the computation
demand greatly.

5. Simulations and Results

In this section the theoretical results are illustrated using two
different examples.Thefirst example is focused on the process
control system, four-tank system whose sampling time inter-
val is about several seconds. The second example is focused
on the motion control, multirobot target tracking scenario
whose sampling time interval is about milliseconds. All the
simulations are run in MATLAB on the same computer with
Intel(R) Core (TM) 2.6GHz processor and 8GB RAM.

5.1. Four-Tank Plant

5.1.1. System Description. The four-tank problem used in the
section is described by [21–23] and the description of the
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Figure 5: Description of the four-tank system.

system is shown in Figure 5. It is a multivariable system
with two manipulates variables and four state variables. The
differential equations that model the nonlinear dynamics of
the system can be expressed as

𝑑ℎ
1

𝑑𝑡
= −

𝑎
1

𝑆
√2𝑔ℎ

1
+

𝑎
3

𝑆
√2𝑔ℎ

3
+

𝛾
𝑎

𝑆
𝑞
𝑎
,

𝑑ℎ
2

𝑑𝑡
= −

𝑎
2

𝑆
√2𝑔ℎ

2
+

𝑎
4

𝑆
√2𝑔ℎ

4
+

𝛾
𝑏

𝑆
𝑞
𝑏
,

𝑑ℎ
3

𝑑𝑡
= −

𝑎
3

𝑆
√2𝑔ℎ

3
+

(1 − 𝛾
𝑏
)

𝑆
𝑞
𝑏
,

𝑑ℎ
4

𝑑𝑡
= −

𝑎
4

𝑆
√2𝑔ℎ

4
+

(1 − 𝛾
𝑎
)

𝑆
𝑞
𝑎
,

(29)

where the parameters in (29) can be found in Table 2.
For the predictive controllers to be tested, a linear pre-

dictive model is obtained by linearizing (29) at the operating
point. Define the deviation variables

𝑥
𝑖
= ℎ
𝑖
− ℎ
0

𝑖
, 𝑖 = 1, 2, 3, 4,

𝑢
1

= 𝑞
𝑎

− 𝑞
0

𝑎
,

𝑢
2

= 𝑞
𝑏

− 𝑞
0

𝑏
.

(30)

The following continuous-time linear model can be
obtained:

𝑑𝑥

𝑑𝑡
= 𝐴
𝑐
𝑥 + 𝐵
𝑐
𝑢,

𝑦 = 𝐶
𝑐
𝑥,

(31)

where 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)
𝑇, 𝑢 = (𝑢

1
, 𝑢
2
)
𝑇, 𝑦 = (𝑥

1
, 𝑥
2
)
𝑇,

𝐴
𝑐

=

[
[
[
[
[
[
[
[
[
[
[

[

−1

𝜏
1

0
1

𝜏
3

0

0
−1

𝜏
2

0
1

𝜏
4

0 0
−1

𝜏
3

0

0 0 0
−1

𝜏
4

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵
𝑐

=

[
[
[
[
[
[
[
[
[
[

[

𝛾
𝑎

𝑆
0

0
𝛾
𝑏

𝑆

0
1 − 𝛾
𝑏

𝑆

1 − 𝛾
𝑎

𝑆
0

]
]
]
]
]
]
]
]
]
]

]

,

𝐶
𝑐

= [

1 0 0 0

0 1 0 0
] ,

(32)

where 𝜏
𝑖
= 𝑆/𝑎
𝑖
√2ℎ
0

𝑖
𝑔, 𝑖 = 1, 2, 3, 4.

The whole system can be divided into two input-coupled
subsystems. Subsystem 1 consists of tanks 1 and 3 while
subsystem2 consists of tanks 2 and 4.And the two subsystems
are discretized with a sampling time.

Subsystem 1

𝑥
𝑠1

(𝑘) = (𝑥
1

(𝑘) , 𝑥
3

(𝑘))
𝑇

,

𝑦
𝑠1

(𝑘) = (𝑥
1

(𝑘))
𝑇

,

𝑢 (𝑘) = (𝑢
1

(𝑘) , 𝑢
2

(𝑘))
𝑇

,

𝑥
𝑠1

(𝑘 + 1) = 𝐴
𝑐1

𝑥
𝑠1

(𝑘) + 𝐵
𝑐1

𝑢 (𝑘)

= 𝐴
𝑐1

𝑥
𝑠1

(𝑘) + 𝐵
(1)

𝑐1
𝑢
1

(𝑘) + 𝐵
(2)

𝑐1
𝑢
2

(𝑘) ,

𝑦
𝑠1

(𝑘) = 𝐶
𝑐1

𝑥 (𝑘) .

(33)

Subsystem 2

𝑥
𝑠2

(𝑘) = (𝑥
2

(𝑘) , 𝑥
4

(𝑘))
𝑇

,

𝑦
𝑠2

(𝑘) = (𝑥
2

(𝑘))
𝑇

,

𝑢 (𝑘) = (𝑢
1

(𝑘) , 𝑢
2

(𝑘))
𝑇

,

𝑥
𝑠2

(𝑘) = 𝐴
𝑐2

𝑥
𝑠2

(𝑘) + 𝐵
𝑐2

𝑢 (𝑘)

= 𝐴
𝑐2

𝑥
𝑠2

(𝑘) + 𝐵
(1)

𝑐2
𝑢
1

(𝑘) + 𝐵
(2)

𝑐2
𝑢
2

(𝑘) ,

𝑦
𝑠2

(𝑘) = 𝐶
𝑐2

𝑥 (𝑘) .

(34)

5.1.2. Simulations with Centralized MPC, DMPC, and CP-
DMPC. The control objective in the four-tank system is to
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Figure 6: Dynamic response of the four-tank system of centralized
MPC for tracking.

keep the levels of tank 1 and tank 2 at reference values.
In this section, the system performance of three control
algorithms is compared, which are centralized MPC, DMPC,
and CP-DMPC. All of these strategies have the same input
constraints, input and output weights, prediction, and control
horizon. The parameters used in the simulations are 𝑄

𝑖
= 1,

𝑅
𝑖

= 0.01, 𝑁
𝑝

= 15, 𝑁
𝑢

= 4, 𝑖 = 1, 2. And the sampling time
is 5 s. The parameter used in CP-DMPC is 𝛽 = 0.1.

The set-point levels of tank 1 and tank 2 are as follows:

(1) From 0 s to 1000 s, the set-point of tank 1 is 0.65m and
the set-point of tank 2 is 0.65m.

(2) From 1001 s to 3000 s, the set-point of tank 1 is 0.3m
and the set-point of tank 2 is 0.3m.

(3) From 1001 s to 3000 s, the set-point of tank 1 is 0.5m
and the set-point of tank 2 is 0.75m.

From Figures 6, 7 and 8, we can conclude that CMPC
has the best control and that CP-DMPC can also have similar
control performance as traditional DMPC (noniterative). But
from Figure 9, we can see that the CMPC and traditional
DMPC provide a higher optimization time than CP-DMPC
algorithm.

5.2. Multirobot Target Tracking Scenario. In the section, N
robots with sensors track a target and the motion model of
each robot is
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Figure 7: Dynamic response of the four-tank system of DMPC for
tracking.

[

𝑃
𝑥,𝑖

(𝑘 + 1)

𝑃
𝑦,𝑖

(𝑘 + 1)
] = [

𝑃
𝑥,𝑖

(𝑘)

𝑃
𝑦,𝑖

(𝑘)
] + 𝑇
𝑠
[

V
𝑥,𝑖

(𝑘)

V
𝑦,𝑖

(𝑘)
] , (35)

where 𝑃
𝑖
(𝑘) = [𝑃

𝑥,𝑖
(𝑘), 𝑃
𝑦,𝑖

(𝑘)] is the state of 𝑖th robot at time
𝑘. 𝑃
𝑥,𝑖

(𝑘) and 𝑃
𝑦,𝑖

(𝑘) are the 𝑥-coordinate position and 𝑦-
coordinate position of 𝑖th robot at time 𝑘. V

𝑥,𝑖
(𝑘) and V

𝑦,𝑖
(𝑘)

are the 𝑥-coordinate velocity and 𝑦-coordinate velocity of 𝑖th
robot at time 𝑘. 𝑇

𝑠
is the time interval.

The target motion model is modeled by the constant
velocity model, that is,

𝑥
𝑡
(𝑘 + 1) = 𝐹𝑥

𝑡
(𝑘) , (36)

where

𝐹 =

[
[
[
[
[

[

1 0 𝑇
𝑠

0

0 1 0 𝑇
𝑠

0 0 1 0

0 0 0 1

]
]
]
]
]

]

. (37)

The objective of the whole system is to track a target with
𝑁 robots and to keep the distant between the robots and
the target. Meanwhile there will not be a collision among
the robots during tracking the target. As a result, the local
performance index of the ith robot can be selected as

𝐽
𝑖
(𝑘) = (

𝑃
𝑖
(𝑘) − 𝑃

𝑡
(𝑘)

 − 𝑅)
2

. (38)
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Figure 8: Dynamic response of the four-tank system of CP-DMPC
for tracking.

We simulate the scenario from time 𝑡 = 1, . . . , 30 s. The
targetmoves according to the dynamic (25)with the sampling
time 𝑇

𝑠
= 1 in the area collectively monitored by the three

robots states above. The initial positions of three robots is
(20m, 0m), (−20m, 0m), and (0m, −10m). The maximum
velocities of robots are 2m/s of the 𝑥 and 𝑦 coordinates. The
initial positions of the target is (−10m, −10m) and the target
motion trajectory is illustrated in Figure 10.

5.2.1. Simulations with CP-DMPC Algorithm. In this section,
the system performance of two control algorithms is com-
pared, which are DMPC (noniterative) and CP-DMPC. Both
of these strategies have the same input constraints, input
and output weights, prediction, and control horizon. The
parameters used in the simulations are 𝑄

𝑖
= [
1 0

0 1
], 𝑅
𝑖

=

[
1 0

0 1
], 𝑁
𝑝

= 4, 𝑁
𝑢

= 4 (𝑖 = 1, 2, 3). The parameter used
in CP-DMPC is 𝛽 = 1. The traditional DMPC and CP-
DMPC algorithms are applied to the scenario by the same
parameters.

The trajectories of three robots and target and four typical
snapshots at time = 1, 10, 20, 30 are depicted in Figure 11. The
simulation results demonstrate that the multirobot system
with the CP-DMPC controller can track the target well.

5.2.2. Comparisons between Traditional MPC and CP-DMPC
Algorithm. In the section, we compare the computational

Table 1: Metrics comparisons among different algorithms.

Algorithm Centralized
MPC

Distributed MPC
Traditional DMPC CP-DMPC

Solution Optimal Nash optimal Suboptimal

Robustness
Central node
failure leads to
system down

Good Good

Information Large Small Smaller
Calculation load Large Small Smaller

Table 2: Parameters of the four-tank system.

Value Unit Description
ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4 Water level

𝑎
1

1.31 ∗ 10
−4 m2 Discharge constant of tank

1

𝑎
2

1.51 ∗ 10
−4 m2 Discharge constant of tank

2

𝑎
3

9.27 ∗ 10
−5 m2 Discharge constant of tank

3

𝑎
4

8.82 ∗ 10
−5 m2 Discharge constant of tank

4
𝑆 0.06 m2 Cross-section of the tanks
𝑞
𝑎

1.63 m3/h Flow 𝑎

𝑞
𝑏

2.00 m3/h Flow 𝑏

𝛾
𝑎

0.3 Ratio of the three-way valve
of pump 𝑎

𝛾
𝑏

0.4 Ratio of the three-way valve
of pump 𝑏

𝑔 9.8 ∗ 3600 ∗ 3600 m/h2

complexity, communication energy, and optimal perfor-
mance index value between the traditional DMPC and CP-
DMPC (Table 1).

In [24], communication energy is made up of transmit-
ting energy 𝐸

𝑡𝑥
and receiving energy 𝐸

𝑟𝑥
:

𝐸
𝑡𝑥

(𝑖, 𝑗) = (𝛼
1

+ 𝛼
2
𝑑 (𝑖, 𝑗)

𝑛

) 𝑟, (39)

where 𝑑(𝑖, 𝑗) is the distance between the two robots, 𝑛 is the
path loss index, 𝑟 is a transmitting data rate, and 𝛼

1
, 𝛼
2
are

constants (45 nJ/bit and 10 pJ/bit). And the receiving energy
𝐸
𝑟𝑥
is constant, which is 135 nJ/bit.
The computational complexity corresponds to the num-

ber of operations required to complete the task, where an
operation is defined as a combination of one addition and
onemultiplication. Andmodel predictive control requires the
solution of an open-loop optimal control problem at every
sampling instant. In the paper, we use fast gradient method
which has low implementation calculation and numerical
robustness.

The two optimization problems between traditional
DMPC and CP-DMPC algorithm are evaluated 50 times.The
simulation results are shown in Figure 11. From Figure 12(a),
the traditional DMPC provides a lower performance cost
(better system performance) than CP-DMPC algorithm.
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Figure 10: Scenario: three robots and one target.

From Figure 12(b), the communication energy using tra-
ditional DMPC is generally larger than that of CP-DMPC
algorithm. This is because the traditional DMPC transmits
the optimal variable Δ𝑈

𝑖
(𝑘 | 𝑘) = [Δ𝑢

𝑖
(𝑘 | 𝑘), Δ𝑢

𝑖
(𝑘 + 1 |

𝑘), . . . , Δ𝑢
𝑖
(𝑘 + 𝑁

𝑢
− 1 | 𝑘)], and it has higher communication

burden than the CP-DMPC algorithm. FromFigure 12(c), the
time needed to solve the traditional DMPC is much larger
than the time needed to solve the CP-DMPC. It is because
the traditional DMPC has to solve a much larger (in terms
of decision variables) optimization problem than the CP-
DMPC.

From Figure 12, we can see that the traditional DMPC
provides a lower performance cost (better system perfor-
mance) than CP-DMPC algorithm. But the CP-DMPC pro-
vides a lower calculation demand and communication data
than the traditional DMPC.

Obviously, a short prediction horizon would require a
smaller amount of communication data and computational
time, and a longer prediction horizon can prove the bet-
ter effectiveness of CP-DMPC compared to the traditional

DMPC. From Figure 13, the communication data in tradi-
tional DMPC increases as the prediction horizon increases.
But the communication data in CP-DMPC do not change too
much as the prediction horizon increases.

6. Conclusion

In the paper, a distributed model predictive control scheme
with control planning set has been proposed. In the proposed
scheme, the future control sequences are approximated by
a set of planning set. It can reduce exchange information
among the controller and at the same time also can reduce
the distributed MPC controller calculation demand without
degrading the whole system performance. Extensive simula-
tions using a multirobot target tracking example have been
carried out to compare the proposed distributed MPC with
existing traditional DMPC algorithms from computational
complexity, communication energy, and closed-loop system
performance.
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